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a b s t r a c t

Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure in the US and many
western countries. It is well known that APAP induces mitochondrial damage to trigger centrilobular
necrosis. Emerging evidence suggests that autophagic removal of damaged mitochondria may protect
against APAP-induced liver injury. Electron and confocal microscopy analysis of liver tissues revealed that
APAP overdose triggers unique biochemical and pathological zonated changes in the mouse liver, which
includes necrosis (zone 1), mitochondrial spheroid formation (zone 2), autophagy (zone 3) and
mitochondrial biogenesis (zone 4). In this graphic review, we discuss the role of autophagy/mitophagy
in limiting the expansion of necrosis and promoting mitochondrial biogenesis and liver regeneration for
the recovery of APAP-induced liver injury. We also discuss possible mechanisms that could be involved in
regulating APAP-induced autophagy/mitophagy and the formation of mitochondrial spheroids.

& 2013 The Authors. Published by Elsevier B.V. All rights reserved.
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Introduction

Mechanisms of acetaminophen hepatotoxicity: role of mitochondrial
damage

Acetaminophen (APAP) is a widely used antipyretic and analge-
sic drug in the US. At therapeutic doses APAP is a safe drug, but an
overdose can cause severe liver injury and even acute liver failure
in animals and man. APAP overdose is the most frequent cause of
acute liver failure of any etiology in the US and many western

countries. APAP is also one of the most studied hepatotoxic drugs
worldwide [1], and thus considerable progress has been made in
understanding the mechanisms of APAP-induced liver injury.
Today, it is well known that N-acetyl-p-benzoquinone imine
(NAPQI), a highly reactive metabolite that is generated from the
metabolism of APAP by the cytochrome P450 system (such as
CYP2E1), plays a key role in APAP-induced hepatotoxicity. NAPQI
depletes cellular glutathione (GSH) and reacts with many cellular
proteins, including mitochondrial proteins, to form protein
adducts (AD), which are critical to trigger mitochondrial damage
and subsequent necrosis. It has been recognized that APAP over-
dose causes mitochondrial dysfunction such as inhibition of
mitochondrial respiration, mitochondrial oxidant stress and per-
oxynitrite formation, mitochondrial DNA damage, release of mito-
chondrial intermembrane space proteins such as apoptosis
inducing factor (AIF) and endonuclease G (Endo G), which trans-
locate to the nucleus and cause nuclear DNA fragmentation and
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eventual opening of the membrane permeability transition pore
(MPT). While it remains to be tested for Endo G knockout (KO)
mice, we have previously shown that AIF KO mice are more
resistant to APAP-induced liver injury [2]. In addition to the
protein adduct-initiated mitochondrial damage, early oxidant
stress also promotes c-jun-N-terminal kinase (JNK) activation.
Activated phosphorylated-JNK translocates to mitochondria and
amplifies the mitochondrial oxidant stress, which eventually leads
to the MPT pore opening, membrane potential collapse, ATP
depletion and necrotic cell death [1,3–5]. Pharmacological inhibi-
tion of JNK using SP600125, a specific JNK inhibitor, significantly
attenuates APAP-induced liver injury. Interestingly, while knock-
down of either JNK1 or JNK2 using antisense oligonucleotides
showed protection against APAP-induced liver injury, it was later
shown that JNK2 KO mice had higher mortality rates compared to
the wild type mice up to 48 h after APAP treatment [6–8]. This was
due to the impaired hepatocyte proliferation and repair in JNK2 KO
mice after APAP treatment [8]. Therefore, the effects of JNK
inhibitors need to be carefully evaluated on both injury mechan-
isms and regeneration and potentially selective JNK1 inhibitors
may be considered for therapeutic interventions in the future.

More recently, we showed that mitochondrial dynamics could
also be involved in APAP-induced necrosis because APAP induced
translocation of Drp1, a mitochondrial fission molecule, to mito-
chondria [9]. More importantly pharmacological inhibition of Drp1
attenuated APAP-induced necrosis. The translocation of Drp1 to
mitochondria induced by APAP seemed to be mediated by the
receptor interacting protein kinase 3 (Rip3), and deletion of Rip3
in the mouse liver resulted in reduced early phase APAP-induced
liver injury [9].

Adaptive response to cellular stress: autophagy/mitophagy

While the detrimental mechanisms induced by APAP have been
well studied, little is known about the cellular adaptive mechan-
isms that may attenuate APAP-induced liver injury. Cells may
protect themselves by removing damaged mitochondria using a
mechanism called autophagy. Autophagy is an evolutionary con-
served catabolic process that degrades cellular proteins and
organelles, a process involved in the formation of double-
membrane autophagosomes that deliver cargos into lysosomes
[10]. Enclosed cargos are then degraded inside the lysosomes and
can be recycled as sources for the synthesis of new macromole-
cules or to generate ATP for cell survival. In addition to non-
selective bulk autophagy, emerging evidence now support that
autophagy can also be selective. Selective autophagy for peroxi-
somes (pexophagy), endoplasmic reticulum (erphagy), ribosomes
(ribophagy), lipid droplets (lipophagy), invading microbes (xeno-
phagy) and protein aggregates have been reported. Selective
autophagy is mediated by a series of autophagy receptor com-
plexes that can bridge cargo to the autophagy machinery. In
mammalian cells, one common tag for autophagic recognition is
ubiquitin, and autophagy receptor proteins such as p62/SQSTM1,
NBR1, NDP52 or optineurin bind to ubiquitin and LC3 protein
through their LIR (LC3 interacting region) [11–13]. Among the
types of selective autophagy, autophagic removal of damaged/
excess mitochondria (termed mitophagy) has been well studied. In
yeast, the mitochondrial outer membrane protein Atg32 serves as
a mitochondrial receptor for selective mitophagy, in which Atg32
binds with Atg11 and then later further recruits Atg8-PE to the
mitochondria [14,15]. While no Atg32 homologs have been iden-
tified in mammalian cells, several mitochondrial outer membrane
proteins such as NIX and FUNDC1 that have a LIR motif and directly
interact with LC3 have been implicated in selective mitophagy [16–
19]. In addition to NIX and FUNDC1, perhaps the best studied
signaling pathway for selective mitophagy in mammalian cells is

the PINK1 (PTEN-induced putative protein kinase 1)-Parkin
mediated mitophagy. In this model, PINK1 is stabilized on depolar-
ized mitochondria, which further recruits the ubiquitin E3 ligase
Parkin to the mitochondria from the cytosol [19,20]. Parkin then
ubiquitinates a subset of mitochondrial proteins, including Miro,
Mitofusin1/2, hFis1, VDAC1 and Tom20 as well as others to promote
mitophagy [21,22]. It has been suggested that Parkin-mediated
mitochondrial protein ubiquitination can subsequently recruit an
autophagy receptor such as p62 to mitochondria. Once on the
mitochondria, p62 further recruits LC3-positive autophagosomes to
p62–ubiquitin decorated mitochondria for their degradation, but
the exact role of p62 in mitophagy is still controversial [19,23,24].
Mitochondria are extended reticular-shaped organelles; thus, it is a
great challenge for autophagic removal of such elongated struc-
tures. It is thus not surprising that work from both mammalian cells
and yeast suggest that mitochondrial fission can facilitate mito-
phagy [25,26]. Moreover, Parkin can also promote mitophagy by
inducing mitochondrial fragmentation through proteasome-
mediated Mfn1/2 degradation [27,28]. It should be noted that most
of the molecules regulating mitophagy and mitochondrial dynamics
have not been studied in the liver, and their roles in liver cell
necrosis remain to be investigated. The possible scheme for APAP-
induced mitophagy is illustrated in Fig. 1.

As a cellular catabolic process, autophagy is activated when
cells lack nutrients and energy. Two key sensors in response to the
changes of cellular nutrients and energy are the mammalian target
of rapamycin complex 1 (mTORC1) and the AMP-activated protein
kinase (AMPK). Both mTORC1 and AMPK regulate the activity of
ULK1 (yeast Atg1) complex, the most upstream component of the

Fig. 1. Possible mechanisms and functions of APAP-induced mitophagy. APAP is
metabolized by CYP2E1 to generate NAPQI, which depletes cellular GSH to induce
oxidative stress. Following GSH depletion, NAPQI adducts cellular proteins by targeting
their cysteine residues, and some of them are mitochondrial proteins. Increased
oxidative stress and mitochondrial protein adducts trigger mitochondrial damage.
Damaged mitochondria then could be removed through selective mitophagy involving
the autophagy receptor complex: mitochondrial ubiquitination–p62–LC3. Mechanisti-
cally, damaged depolarized mitochondria inactivate the mitochondrial protease PARL
to prevent PARL-mediated degradation of PINK1. Increased PINK1 then recruits Parkin
to mitochondria to trigger the ubiquitination of mitochondrial proteins. In addition to
Parkin, several other ubiquitin E3 ligases such as smurf1 and MARCH-V may also
promote mitochondrial ubiquitination. The removal of damaged mitochondria through
mitophagy may attenuate mitochondria-mediated oxidative stress, JNK activation and
the release of mitochondrial cell death factors such as apoptosis inducing factor.
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core autophagy machinery that is composed of ULK1, Atg13,
FIP200 and Atg101 [29]. mTORC1 negatively regulates autophagy
by directly phosphorylating ULK1 (S757) and inhibiting ULK1
activity [30,31]. Conversely, AMPK phosphorylates ULK1 at differ-
ent sites (S317, S467, S555, T574, S637 and S777) and activates
ULK1 to promote autophagy [31,32]. Interestingly, phosphoryla-
tion of ULK1 on S757 by mTORC1 disrupts the interaction between
AMPK and ULK1. Since mTORC1 is activated when anabolic inputs
are presented such as amino acids, glucose and growth factors, the
phosphorylation of ULK1 by mTORC1 to prevent AMPK-mediated
ULK1 activation will ensure that autophagy is blocked to allow the
synthesis of proteins and lipids for cell proliferation. Intriguingly,
when cellular energy is depleted, AMPK can also suppress
mTORC1 activity by phosphorylation of TSC2 and raptor, two
essential regulators of mTORC1 [33,34]. Once activated, ULK1
further phosphorylates Beclin1 on S14 to activate the Beclin1
complex which includes Atg14L, p150 and the class-III PI3 kinase
VPS34 [35]. This ULK1-mediated phosphorylation of Beclin
1 enhances the autophagy specific VPS34 kinase activity contain-
ing Atg14L and is required for autophagy activation [35]. To add
more layers of complexity to this regulation, AMPK also regulates
the function of Beclin 1 complex by directly phosphorylating
VPS34 and Beclin 1. It is known that Beclin1 and VPS34 exist in
different complexes for regulating a variety of cellular functions.
The autophagy-specific complex consists of VPS34, p150, Beclin1
and Atg14L. The non-autophagy complex consists of VPS34, p150,
Beclin1 and VPS38, which functions for retrograde trafficking of
endosome-to-Golgi. AMPK phosphorylates T163/S165 in VPS34
and suppresses its non-autophagy activity. In parallel, AMPK
phosphorylates S91/S94 in Beclin1, which increases proautophagy
VPS34 kinase activity to promote autophagy induction, which is
further enhanced by Atg14L [36]. Thus, AMPK activates autophagy
through at least three layers of signaling pathways to ensure the
activation of the ULK1 and Beclin1 complex: suppression of
mTORC1, direct activation of ULK1, and activation of Beclin1
complex via phosphorylation. In the context of APAP-induced
autophagy, it is possible that APAP may inhibit mTORC1 activity
through increased generation of mitochondrial ROS and decreased
cellular ATP levels to trigger AMPK activation. Increased mitochondrial
ROS levels have been shown to suppress mTOR through the activation
of LKB1–AMPK pathway [37], although other un-identified mechan-
isms may also be involved [38,39]. More importantly, we and others
have demonstrated that pharmacological inhibition of mTOR or activa-
tion of AMPK attenuates APAP-induced liver injury [40–42]. Although
knockout mice for AMPK, ULK1, mTOR, VPS34 or Beclin1 heterozygous
mice are available, their roles in regulating necrosis in the liver remain
elusive. The possible cellular events in regulating APAP-induced
autophagy are described in Fig. 2.

Pharmacologic or genetic modulating autophagy has been
widely used in many experimental models to determine the role
of autophagy in liver diseases. Because of the essential role of
autophagy in cell survival, mice with global knockout of the key
autophagy genes results in prenatal death. Therefore, to study the
role of autophagy in liver cell death has to rely on the using of
liver-specific knockout mice. However, liver-specific knockout of
either Atg7, Atg5 or VPS34 leads to severe hepatomegaly and cell
death, suggesting that hepatic basal autophagy is a critical survival
mechanism [43–45]. In addition, accumulation of p62 in the
autophagy deficient mouse liver also leads to persistent activation
of Nrf2, a key transcription factor for antioxidant genes. Because of
the extensive adaptation mechanisms to the stress of impaired
autophagy, the mice are resistant to other insults, e.g., APAP
overdose [43]. As a result, these autophagy gene knockout mice
are not suitable for experimental studies for liver injury [43].

It has been well known that liver displays a remarkable metabolic
zonation, which generally is divided into three zones: periportal,

intermediate and perivenous/or centrilobular zone [46]. Thus the liver
forms functional gradients due to different activities of metabolic
enzymes or oxygen concentrations as well as hormonal factors. For
example, hepatocytes in the periportal zone have higher gluconeogen-
esis and higher O2 concentration, whereas hepatocytes in the perive-
nous zone have higher glycolytic and lower O2 concentration [47,48].
Moreover, the expression pattern of the P450 enzymes in the liver also
displays a zonated pattern in normal rodent liver, with higher
expression levels of CYP2E1, CYP1A2, CYP3A and CYP4A at the
perivenous zone [49]. These P450 enzymes are important for APAP
metabolism [1,50], and thus it is not surprising that APAP is mainly
metabolized in the perivenous/centrilobular zone where APAP formed
protein adducts are enriched, which results in mitochondrial damage
and centrilobular necrosis [51]. A typical APAP-induced centrilobular
necrosis in mouse liver is shown in Fig. 3A. Interestingly, using GFP–
LC3 transgenic mice that constitutively express GFP–LC3 in the liver to
monitor the formation of GFP–LC3 punctated autophagosome forma-
tion, we found that APAP increased GFP–LC3 positive autophago-
somes, which were also enriched in the centrilobular area [42]. These
findings are not surprising since APAP-induced mitochondrial damage
is a key event in APAP-induced necrosis, and autophagy may be
induced in that area to remove APAP-induced damaged mitochondria
to promote cell survival and restrict the expansion of necrotic areas.
Results from electron microscopy studies further revealed a striking
and unique pattern of zonated changes in the centrilobular area,
which we divided into four different zones (Fig. 3). Within the center
adjacent to the central vein are the typical necrotic cells with swollen
mitochondria, accumulated lipid droplets and disrupted plasma
membrane (zone 1). In the areas next to the necrotic areas, we found
distinctive mitochondrial structure changes where the mitochondria
display ring-like or cup-like morphology, which we have termed
mitochondria spheroids [28,52]. Similar mitochondrial structural

Fig. 2. Possible role of AMPK–mTOR–ULK1–Beclin 1 signaling cascade in APAP-
induced autophagy. APAP-induced damaged mitochondria increases mitochondria-
mediated reactive oxygen species (ROS) and decreases cellular ATP levels. ROS may
inactivate mTORC1 through AMPK and other not yet known mechanisms. mTORC1
negatively regulates autophagy through direct phosphorylation of S757 at ULK1 to
inactivate ULK1 complex activity. ULK1 directly phosphorylates Beclin-1 and
enhances VPS34 kinase activity to promote autophagy. TORC1-mediated phosphor-
ylation of ULK1 also prevents ULK1 interaction with AMPK, which phosphorylates
ULK1 at different sites to activate ULK1 and autophagy. AMPK positively regulates
autophagy through three layers of regulation: (1) suppression of mTORC1 activity
through phosphorylation of TSC2 and raptor; (2) phosphorylation of ULK1 at
S317, S467, S555, T574, S637 and S777; (3) promotion of VPS34 kinase activity
through phosphorylation of Beclin-1. Activated VPS34 increases the production of
phosphatidylinositol 3-phosphate (PI3P), which promotes the biogenesis of
autophagosomes.
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changes are also observed in CCCP-treated mouse embryonic fibro-
blasts (MEF), which causes mitochondrial depolarization and frag-
mentation in these cells [52]. Morphologically, mitochondrial
spheroids look like autophagosomes with lumen surrounded by
mitochondrial membranes (Fig. 3C, zone 2). Mitochondrial spheroid
lumen can also enwrap cytosolic contents, small pieces of endoplasmic
reticulum, lipid droplets or even another mitochondrion. These
mitochondrial spheroids are also positive for some lysosomal proteins
and are acidic and seem to have limited degradation capacity [28].
However, it remains to be determined whether this formation of
mitochondrial spheroid would represent another alternative pathway
for the regulation of mitochondrial turn over and homeostasis.

The third zone next to zone 2 is the area where most hepatocytes
contain typical double-membrane autophagosomes, and the majority
of the autophagosomes have enclosed mitochondria, which we
named zone 3 to represent the autophagy active area. Finally the
cells at zone 4, which are in the outer areas surrounding the
autophagy zone 3, have increased numbers of mitochondria indicat-
ing an increased mitochondrial biogenesis. We also found that most
of the cells in zone 4 are positive for the hepatocyte proliferation
marker proliferating cell nuclear antigen (PCNA). It is well known
that liver has the high capacity to regenerate hepatocytes, which
plays a critical role in the recovery phase of APAP-induced liver injury
[1]. Liver regeneration/repair is an energy consuming process, and it
is possible that the removal of damaged mitochondria at zone 2/zone
3, and mitochondrial biogenesis in hepatocytes in zone 4 will also be

important for the restriction of cell injury and recovery from APAP-
induced liver injury.

Why does APAP induce these zonated changes in the liver? As
discussed above, liver has a gradient distribution of the P450
enzymes that are required for the metabolism of APAP [49].
In addition, centrilobular hepatocytes have the lower glutathione
levels in the liver [53]. Therefore, the levels of APAP-AD and APAP-
induced ROS and peroxynitrite as well as APAP-induced glu-
tathione depletion also display a gradient pattern in that they
are higher near the perivenous zone and lower near the periportal
zone [54,55]. These gradient changes may eventually induce the
specific zonated pathophysiological changes as we discussed
above (Fig. 3C). The highest levels of these detrimental factors
will lead to overwhelming mitochondrial damage and necrosis in
the perivenous areas. When the levels of these detrimental factors
are declining (with increasing distance from the perivenous areas),
the cells may adapt and use autophagy/mitophagy to remove
damaged mitochondria when the numbers and extent of damaged
mitochondria are limited. In the areas where these detrimental
factors are relatively low, there will be minimal or no mitochon-
drial damage. Thus, there would be no need to induce autophagy/
mitophagy in these areas and instead, the mitochondria in these
cells may proliferate to generate more ATP for cell proliferation
and repair. It is most likely that different signaling pathways could
be involved in regulating each specific zonated change. In addition
to the signaling pathways that has been discussed in this

Fig. 3. Distinctive zonated changes for necrosis, mitochondrial spheroids, mitophagy/autophagy and mitochondrial biogenesis/hepatocyte Proliferation in APAP-induced
liver injury. (A) Typical histological changes of APAP-induced centrilobular necrosis. Male C57BL/6 mice were treated with APAP (500 mg kg, i.p.) for 6 h and liver tissues
were processed for H & E staining. Necrotic areas were mainly detected around the central vein (green circled area) and adjacent areas appeared to be normal unaffected
hepatocytes. (B) Distinctive zonated morphological changes detected by electron microscopy analysis in APAP-induced mouse liver. Four distinctive zonated morphological
changes are: Zone 1-necrosis (panel a) where cells display swollen mitochondria, condensed nuclei and accumulated lipid droplets (LD); Zone 2-mitochondrial spheroids
(panel b) where mitochondria undergo structural remodeling with squeezed matrix and form a lumen that can enwrap cytosol, endoplasmic reticulum and even another
mitochondria (an arrow denotes the squeezed matrix of a mitochondrial spheroid); Zone 3-mitophagy (panel c) where double membrane autophagosomes envelop
mitochondria (an arrow denotes a typical autophagosome); Zone 4-mitochondrial biogenesis and cell proliferation (panel d) where hepatocytes have an increased number of
mitochondria and PCNA positive cells. n: nucleus; m: mitochondria; LD: lipid droplet.
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manuscript (mTOR, AMPK and NO), more signaling pathways need
to be further investigated to better understand the formation of
these zonated changes. Moreover, it should be noted that these
zonated changes induced by APAP in the mouse livers may also
occur with other drugs such as thioacetamide and carbon tetra-
chloride, which also require metabolism and bioactivation by P450
enzymes and induce centrilobular necrosis in the liver [56,57].
However, the extent of the formation of mitochondrial spheroids
and induction of mitophagy could be different because thioaceta-
mide and carbon tetrachloride do not induce robust mitochondrial
damage like APAP.

How is mitochondrial spheroid formation regulated? Mitochon-
dria are dynamic organelles that constantly undergo fission and
fusion. Fission is regulated by the dynamin-related protein 1 (Drp1),
fission protein 1 (Fis1) and mitochondrial protein 18 kDa (MTP18).
Drp1 does not have any transmembrane domains and requires
interaction with Fis1, a protein anchored to the outer membrane of
mitochondria. It has been suggested that Drp1 and Fis1 mainly
regulate the outer mitochondrial membrane fission while MTP18
regulates the inner mitochondrial membrane fission [58,59]. Mito-
chondrial fusion is mainly regulated by mitofusin 1 (Mfn1), Mfn2 and
optic atrophy 1 (OPA1), where Mfn1 and Mfn2 regulate the outer
mitochondrial membrane fusion and OPA1 regulates the inner
membrane fusion [60]. Once Parkin is translocated to mitochondria,
it promotes the ubiquitination of Mfn1 and Mfn2 and their protea-
somal degradation results in mitochondrial fragmentation [21,22].
We found that the formation of mitochondrial spheroids requires
either Mfn1 or Mfn2 in cultured cells, and thus Parkin can negatively
regulate the formation of mitochondrial spheroids by promoting the
degradation of Mfn1 and Mfn2 [28]. Intriguingly, formation of
mitochondrial spheroids is still detected in zone 2 next to the
necrotic areas (zone 1) in APAP-treated mouse livers that expresses
Parkin [61](Fig. 3). Moreover, no obvious changes in Mfn1 and Mfn2
levels were found in APAP-treated mouse livers by western blot
analysis even though APAP treatment increased mitochondrial
translocation of Parkin (Ding et al., unpublished observations). It is

known that the E3 ligase function of Parkin is regulated by post-
translational modifications such as phosphorylation, ubiquitination
and S-nitrosylation [62]. S-nitrosylation of Parkin inhibits its E3 ligase
activity and its protective functions [63]. APAP has been shown to
increase levels of nitric oxide and protein nitration in mouse livers,
especially in mitochondria [6,64]. Given the gradient and zonation
pattern of cytochrome P450 enzymes in the liver, it is likely that the
concentrations of NO and reactive nitric species induced by APAP
could also display a gradient pattern where it could be enriched in
the Zone 2 area next to the necrosis area. Therefore, it is possible that
APAP may induce some of these post-translational modifications on
Parkin resulting in inactivation of Parkin and formation of mitochon-
drial spheroids in Zone 2. The possible mechanisms for how APAP
induces the formation of mitochondrial spheroids are summarized in
Fig. 4. Further work is definitely needed to further elucidate the exact
role of post-translational modifications of Parkin induced by APAP in
mouse livers. We are currently investigating the role of Parkin-
mediated mitophagy in APAP-induced liver injury using the Parkin
KO mice.

Summary and future perspectives

APAP induces distinctive cellular changes including centrilob-
ular necrosis (Zone 1), mitochondrial spheroids (Zone 2), autop-
hagy/mitophagy (Zone 3) and mitochondrial biogenesis and
hepatocyte proliferation (Zone 4), which depends on the liver
zonation. It seems that induction of autophagy/mitophagy may
help to restrict the necrotic areas and promote liver regeneration
and recovery for APAP-induced liver injury. Modulating autop-
hagy/mitophagy pathways may thus provide a novel therapeutic
avenue for treating APAP-induced liver injury. The recent observa-
tion that mitochondrial damage is also a critical feature in human
overdose patients [65] supports the potential relevance of autop-
hagy/mitophagy as a therapeutic target in the clinic. However,
future studies will be needed to investigate the signaling pathways
regulating autophagy/mitophagy downstream of mTOR and AMPK
such as the ULK1 complex and VPS34–Beclin1 complex as well as
the Pink1–Parkin–ubiquitination-mediated selective mitophagy
pathway in APAP-induced liver injury in experimental animals
and in humans to assess which pathway holds the most promise
as therapeutic target.
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