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Simple Summary: The number of honey bee, Apis mellifera L., colonies has reduced around the
globe, and one potential cause is their unintended exposure to sublethal stressors such as agricultural
pesticides. The quantification of such effects at colony level is a very complex task due to the
innumerable collective activities done by the individual within colonies. Here, we present a Bayesian
and computational approach capable of tracking the movements of bees within colonies, which
allows the comparison of the collective activities of colonies that received bees previously exposed to
uncontaminated diets or to diets containing sublethal concentrations of an agricultural pesticide (a
commercial formulation containing the synthetic fungicides thiophanate-methyl and chlorothalonil).
Our Bayesian tracking technique proved successful and superior to comparable algorithms, allowing
the estimation of dynamical parameters such as entropy and kinetic energy. Our efforts demonstrated
that fungicide-contaminated colonies behaved differently from uncontaminated colonies, as the
former exhibited anticipated collective activities in peripheral hive areas and had reduced swarm
entropy and kinetic energies. Such findings may facilitate the electronic monitoring of potential
unintended effects in social pollinators, at colony level, mediated by environmental stressors (e.g.,
pesticides, electromagnetic fields, noise, and light intensities) alone or in combination.

Abstract: Interactive movements of bees facilitate the division and organization of collective tasks,
notably when they need to face internal or external environmental challenges. Here, we present a
Bayesian and computational approach to track the movement of several honey bee, Apis mellifera,
workers at colony level. We applied algorithms that combined tracking and Kernel Density Estima-
tion (KDE), allowing measurements of entropy and Probability Distribution Function (PDF) of the
motion of tracked organisms. We placed approximately 200 recently emerged and labeled bees inside
an experimental colony, which consists of a mated queen, approximately 1000 bees, and a naturally
occurring beehive background. Before release, labeled bees were fed for one hour with uncontami-
nated diets or diets containing a commercial mixture of synthetic fungicides (thiophanate-methyl
and chlorothalonil). The colonies were filmed (12 min) at the 1st hour, 5th and 10th days after the
bees’ release. Our results revealed that the algorithm tracked the labeled bees with great accuracy.
Pesticide-contaminated colonies showed anticipated collective activities in peripheral hive areas, far
from the brood area, and exhibited reduced swarm entropy and energy values when compared to
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uncontaminated colonies. Collectively, our approach opens novel possibilities to quantify and predict
potential alterations mediated by pollutants (e.g., pesticides) at the bee colony-level.

Keywords: crowded image processing; living systems; entropy; kernel density estimations;
probability distribution functions; bee contamination

1. Introduction

Bees play relevant roles in the pollination of innumerable wild plants and crop fields,
which have been estimated to generate 153 billion euros globally [1]. Honey bee popula-
tions, however, are in decline worldwide [2–4], and its cause is not yet fully understood,
but environmental pollutants such as agricultural pesticides have been suggested as one of
the leading causes of this phenomenon [5–9]. The pesticide-mediated problems go beyond
the direct lethality of these compounds, as the potential sublethal contamination of the
hive individuals has been shown to alter the visual perceptions, learning, locomotion,
and foraging activities of individuals [5,6,10,11]. However, how this sublethal contami-
nation affects colony dynamics has not received adequate attention, possibly due to the
challenges associated with such measures [10,12,13].

A powerful tool for analyzing collective dynamics of animal behaviors is the utiliza-
tion of video tracking [14–17]. This technique is under constant development as it has
applicability in a wide range of fields [18]. Due to its lower cost and the relevant advances
in computational power, video tracking has been targeted by sophisticated techniques
in image processing [19–22]. However, it is still a challenge to solve complex problems,
such as tracking similar objects near each other [23,24], especially under heavy background
noise [18,23]. Using deep neural networks has provided significant contributions [25],
but these approaches are still computationally expensive, hindering their widespread ap-
plication [26]. Recent approaches to object tracking (e.g., hierarchical learned features for
tracking and cognitive vision) present similar difficulties as algorithms and are limited to
tracking only a few objects at the same time [27,28].

Labeling methods provide efficient performance for distinguishing between objects
during multi-target tracking [29,30]. The primary challenge of the multi-target tracking
algorithm is the non-swapping of the labels when two objects (for example, animals being
tracked) intersect. All of these multi-target video tracking challenges occur within natural
colonies of social insects such as honey bees, Apis mellifera, as honey bee colonies are
densely composed of individuals that exhibit similarities in their form and locomotion [31].
The quantitative understanding of worker behaviors within the honey bee colonies (e.g.,
swarm entropy [32], kinetic energy [33,34], spatial distribution, and collective activities [35]),
however, is useful to recognize colony health, which can be used as indirect evidence of
potential contamination by environmental pollutants.

Here, we propose a Bayesian multi-target strategy that addresses the above constraints
and establishes the theoretical framework to track the movement of several A. mellifera
individuals at colony level. We automatically monitored the movement of A. mellifera
individuals within natural colonies. The monitored individuals were first fed with diets
containing sublethal concentrations of agricultural pesticides (i.e., a commercial formulation
containing the synthetic fungicides thiophanate-methyl and chlorothalonil) commonly used
to control pathogens in Brazilian fields of melon, Cucumis melo L. [12,36,37], which is an
agricultural crop heavily dependent on bee-mediated pollination.

2. Materials and Methods

In this section, we describe the experimental setup, video recording, and approaches
for the preprocessing of the video frames. The algorithms for detecting and tracking each
labeled individual bee are also presented. A comprehensive overview of the recording
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techniques and tracking is illustrated in Figure 1. The methods employed to analyze bee
behavior through movement and location patterns are described.

A B

C

D

Figure 1. Representation of the video recording setup. An observation beehive (wooden frame
with 52.5 cm x 43.5 cm) covered on the laterally with plate glass allowed the video recording of the
colony. A lateral view (A) and a frontal view (B) of the experimental setup are presented. Marked
workers were detected using a background subtraction algorithm and color picking (C). By using
a Bayesian multi-target strategy, we tracked the trajectories traveled by labeled workers (either
pesticide-unexposed or sublethally exposed to commercial fungicide formulation) (D).

2.1. Bees’ Exposure and Experimental Setup

Recently emerged (<24 h old) A. mellifera bees were selected from the four colonies
in the experimental apiary of the Universidade Federal de Viçosa (UFV, Viçosa, MG,
Brazil) and fed upon a saccharose (50%, w/v) solution that was either uncontaminated
(control treatment) or had a sublethal concentration (4.35× 10−4 g i.a./mL) of a commercial
formulation containing the synthetic fungicides thiophanate-methyl and chlorothalonil as
previously described in [6]. The bees were housed in controlled environments comparable
to those seen in a colony (34 ± 2 ºC and 70 ± 10% relative humidity) and were kept in
the dark until the experiments were completed. Afterwards, they were placed inside the
observation colonies (for detail, see Figure 1A,B). We labeled the uncontaminated and
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pesticide-contaminated bees with different colors for easy identification. The mesonotum
of each worker bee was tagged with different colors according to the contaminated and
uncontaminated groups. We released 200 labeled bees in each hive that already had
approximately 800 unexposed and unmarked bees.

After being reintroduced to their colonies, the bees’ activities were recorded on the 1st
hour, 5th and 10th days. The initial observation periods (1st and 5th days) were defined
considering the possible effect of the fungicide on behavior (e.g., walking and stopping [6]),
possible mortality by manipulation, and rejection with the removal of the introduced
workers from the experimental beehive due to hygienic behavior. At 10 days of age in
natural conditions, workers start caring for the brood as nurse workers in the central
area of the comb (task location) (for a review see in [38]). In this way, it was possible to
verify the effect of the fungicide on the behavior of the workers over time within the nest.
The recordings were performed using a CCD (charge-coupled device) camera (ViewPoint
LifeSciences, Montreal, QC, Canada). We used four hives for each treatment, and due to
the amount of data and the better technical conditions for the recordings, the hives were
recorded in two periods (9:00 a.m. and 5:00 p.m.) in order to cover the moments when
there are external activities occurring in the experimental colonies under natural conditions.
Recording took place for 12 min in each hive at each period of the day, and all recorded
videos and images were in Full HD (1920 × 1080, at 30 frames/s). The dataset comprised
48 videos (2 videos each day, for four nuclei per treatment, two treatments, and three
evaluation days).

2.2. Image Preprocessing

The analysis of the video was performed with the extraction of its frames. A
3 frames/second rate was used in order to save computational time without losing relevant
data of the bees’ activities. After that, each frame was analyzed in order to detect moving
objects in the video and identify colored marks on the bees. To accomplish that, an algo-
rithm of background subtraction [39,40] was performed, followed by a selection of colors
in a previously determined range of RGB (Red-Green-Blue) values of each pixel.

The background subtraction algorithm estimated a probabilistic distribution for each
pixel of the video based on a Gaussian mixture model (GMM) or k-nearest neighbors
(k-NN) model [41,42]. Based on the estimated probabilistic values, the pixels of each frame
of the video should be classified as background or foreground, allowing the exclusion
of background information. Here, we used a k-nearest neighbors approach. After the
background subtraction, each pixel was segregated according to its RGB value, and if its
value was in a color range sought for tracking, it became white in accordance with the
markings on the bees; otherwise, this pixel was made black.

With the objects defined as the bees’ marks, their coordinates could be evaluated by
calculating their center of mass [43]. This approach is exemplified in Figure 1C. After that,
each processed frame was analyzed by the algorithm from top to bottom and left to right,
and each swarm object (marked workers) on the comb was labeled in order of occurrence.
Because the bees are always moving, their identities (or labels) vary with each frame. If an
element is labeled A in the first frame, it may be labeled B in the next frame due to its
mobility. The labels of the tracked objects are reversed, which must be adjusted in order
to retrieve their trajectory. The initial label must be preserved until the end of the video
stream. However, even when the radius of displacement of the items is restricted, there
may be more than one feasible location in the following moment due to the closeness of
other bees’ positions. Similarly to that, many bees were briefly hidden behind other bees or
outside of the camera capture field. Those are widely described problems in video tracking
theory [23]. To solve the issues presented above, Bayesian inference was used in such a
way that the next right point of the trajectory is estimated to maximize the likelihood of the
preceding information, yielding a mensuration for the variable, given the prior information
about the path traveled by the individuals. Then, the coordinates previously obtained were
used to feed a Bayesian algorithm for tracking.
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2.3. Bayesian Tracking

With the bees’ positions saved, the next step is to determine their correct trajectory. We
are confronted with two issues here: selecting the appropriate location and the overlapping
issue. The latter occurs because certain bees are overlapping with their partners and so are
not visible for a period of time. To overcome this limitation, it is assumed that the bee does
not move while being covered by others, thus retaining their locations. Visual investigation
corroborated this empirically.

It was determined that the next correct location of the bee’s trajectory is smooth,
i.e., the angle between two consecutive points is small or close to zero. The Probability
Distribution Function (PDF) for the angle is assumed to be a von Mises distribution [44,45],
with µ = 0 and κ = 4. The inference is calculated for each bee in each frame as follows: the
angle variance between the bee’s potential future position, within a radius region, and the
current one is evaluated. Then, the next position is optimally calculated based on the von
Mises distribution, and its parameters are updated for the following step. Mathematical
formulations are presented in Section S1 of the Supplementary Material.

After all iterations, a von Mises PDF is obtained for the angular displacement for each
bee, and another distribution is obtained for the radius over a uniform non-informative
prior. With the corrected path of each object, a Kernel Density Estimator (KDE) algo-
rithm [41,42] creates a continuous PDF from the empirical data of angular displacement
and translational displacement. More mathematical details are presented in Section S1 of
the Supplementary Material.

For the real case study, the algorithm was executed on the experimental dataset of the
bees previously described. The time for processing a video of approximately 12 min was
~60 min. The algorithms were developed using OpenCV 10 with Python 3.7.11.

Synthetic Video Simulation

As traditional databases could not offer material for the algorithm’s quality assess-
ments, they were evaluated in a particle swarm simulation. During 500 s, a succession of
frames with several dimensions and 200, 300, and 600 randomly dispersed circular objects
traveling across the region was created computationally to evaluate algorithm quality and
the impact of the radius on the performance.

The simulation behaves exactly like the marked bees from the previous section: the
objects were chosen to be in a set of frames with the same dimensions as a Full HD video,
i.e., 1080 pixels in the vertical direction and 1920 pixels in the horizontal direction, be-
cause the goal is to apply the method to real-life particle swarm videos. Complementary
information about the simulation and its results are presented in Section S2 of Supplemen-
tary Material.

2.4. Dynamical Evaluation

Based on the acquired PDF for angle and radius, the entropy of the movement of the
contaminated bees on different days may be calculated to evaluate bee dynamics. Given
that the intended function of agrochemicals is to alter the metabolism of insects [33,34],
this entropy should decrease with time. However, it is worthwhile to register that the
entropy being assessed here is not the thermodynamical entropy, which should increase
for polluted bees as they die and thus tend to reach equilibrium with the environment [46].
The entropy measured at the molecular scale certainly would grow [47].

In this work, the Shannon entropy [48] is used to evaluate the randomness of the
tracked item and thus infer about their movement in space. According to the traditional
view, an event’s entropy indicates how much information is required to represent the
complete space state. In reality, this means that the higher the entropy, the less predictable
the event, while occurrences with zero entropy have no uncertainty [49]. As it may be
understood as a measurement of the randomness of the variable, the entropy of a system
can give insight into the nature of the evaluated variables [48,50]. In the context of motion
analysis, a greater entropy suggests that the object’s route is less predictable. For each bee,
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the entropy was determined using the algebraic formulation of the PDF acquired by KDE
(expressed in Section S1 of the Supplementary Material).

Another measure to evaluate the dynamics of the bees is Kinetic Energy (KE). KE
is a measure of how many tracked objects are moving, and it is given by the equation
KE = mv2/2, where m is the object mass, and v is its velocity. Therefore, assuming all bees
have the same mass, and as KE is proportional to the velocity squared, variations of energy
might be represented just by v2. Decreased energy suggests lower entropy as movement
becomes less random and can provide crucial insights into a variety of real-world systems.
A lower KE suggests that a bee spends more time not moving and, combined with entropy,
indicates improper insect behavior [33,34].

Further details and mathematical formulation for both dynamical measures presented
in this section are available in Section S3 of the Supplementary Material.

3. Results
3.1. Spatial Distribution

The distribution of bees in the colony over time was determined by counting the
number of centroids in each comb area at each frame. In order to provide intuitive analysis,
a map of this distribution was generated using the Seaborn library for Python, which is
presented in Figure 2. In those colonies that received fungicide-contaminated bees, there
was an earlier, faster, and more intense spread of bees’ activities from the center to the
boards when compared to those colonies that received only uncontaminated bees.

3.2. Dynamical Measurements

The trajectories obtained from the Bayesian algorithm, through KE calculations (using
the average velocity), revealed that the energy decreases from the first to the last evaluation
day for beehives that received fungicide-contaminated worker bees (Figure 3A). On the
other hand, it is noticeable that the KE values considerably increased in the last evaluation
day for the hives that received labeled non-contaminated bees (Figure 3A). Based on the
PDF values of each bee, there was a notable reduction in the entropy values over time for
hives that received fungicide-contaminated labeled bees when compared to those hives
that had only uncontaminated bees (Figure 3B). Our record of dead bees at the hive’s
entrance revealed an increase in the number of labeled bees for the hives that received
fungicide-contaminated bees, which is in accordance with the Bayesian algorithm that also
recorded a smaller number of labeled bees in such fungicide-contaminated hives (Figure 4).

The Bayesian approach is sufficiently robust to determine the number of living bees
each day. Other bees normally evict the dead bees from the colony. Because the nucleus
has access to the outside environment, the number of bees might vary, but with a general
decreasing tendency, as seen in Figure 4, which can be better explained as mortality by
the agrochemical.
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Figure 2. Spatial distribution of labeled Apis mellifera individuals at the 1st hour, 5th and 10th
days after being introduced within a hive. Higher intensity color represents a higher probability of
having a worker bee occupying the region. The labeled bees consisted of either pesticide-unexposed
individuals (uncontaminated beehives) or individuals that were sublethally exposed to a commercial
formulation containing the synthetic fungicides chlorothalonil and thiophanate-methyl (pesticide-
contaminated beehives). The heatmaps indicate the number of labeled worker bee appearances in
each comb region. As shown in Figure 1, the hive’s entrance is located at the lower right side of each
panel representation.



Insects 2022, 13, 181 8 of 12

average entropy

b
it
s

st
1  hour

th
5  day

th
10  day

time after contamination

4

6

8

10

12

2

0

A

uncontaminated 
colonies

uncontaminated 
colonies

pesticide-contaminated 
colonies

pesticide-contaminated 
colonies

average kinetic energy

st
1  hour

th
5  day

th
10  day

time after contamination

m
J/

b
e
e

2

3

4

5

6

1

B

0

Figure 3. Dynamic quantification of swarm entropy (A) and kinetic energy (B) within a hive of
Apis mellifera bees. The measurements were based on the trajectories traveled by labeled bees (i.e.,
either pesticide-unexposed individuals or individuals that were sublethally exposed to a commercial
formulation containing the synthetic fungicides chlorothalonil and thiophanate-methyl). Each symbol
represents the average value of four colonies. The measurements were conducted at the 1st hour, 5th
and 10th day after the introduction of labeled bees within the colony.
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Figure 4. Temporal quantifications of labeled Apis mellifera individuals within observational hives.
Each symbol represents the average value of four colonies. The measurements were conducted at the
1st hour, 5th and 10th day after the introduction of labeled bees within the hive.

4. Discussion

Here, we present a Bayesian strategy capable of simultaneously tracking the move-
ment of several A. mellifera individuals at the colony level, allowing determination of the
entropy and probability distribution function (PDF) of tracked organisms. Such approaches
facilitated the quantification of unintended effects mediated by agricultural pesticides
(e.g., a commercial formulation containing the synthetic fungicides chlorothalonil and
thiophanate-methyl) in A. mellifera colonies. Colonies that received pesticide sublethally-
treated bees exhibited higher mortality levels, had lower swarm entropy and energy levels,
and anticipated the collective activities for the peripheral hive areas, indicating a behavioral
change possibly related to physiological alteration, which is suggested as a social behavioral
strategy in honey bees [51,52].

Our Bayesian tracking algorithm reached great precision and performed well even
with 200 labeled bees within a hive. Such a tracked number is much higher than those
tracked by other software and algorithms used in biological measurements [28,53,54],
maintaining an accuracy greater than 99% for the specified radius (r = 10). For instance,
when the algorithms faced the image swap problems, the code had learnt the PDF of the
object motions and did not make any errors in their trajectories. Another advantage of our
Bayesian analysis strategy is its ability to detect the variations in the distribution, which
makes the code usable for any application that tracks objects (or individuals) at variable
color background possibilities, using algorithms with much fewer complexities than those
presented elsewhere [27].

Despite its potentialities for measurements in dynamically evolving systems, entropy
estimation via Bayesian inference is still a rather uncommon approach. Previous stud-
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ies have dealt with high-quality background treatment [55] and tracking of unlabeled
organisms [31,56], resulting in precise measurements. However, differently from our ef-
forts, the other algorithms have the disadvantages of needing a low-noise image and
lacking the ability to extract dynamical features of the system, as their identification is
made by a convolutional neural network (a black-box model).

As previously described elsewhere [6,10,12,57,58], a commercial formulation of syn-
thetic or natural pesticides can present risks to pollinator bees that surpass the mortality.
Our Bayesian multi-target strategy clearly identified reductions in kinetic energy and
entropy of hives containing individuals previously sublethally exposed to fungicides.
The entropy evaluation revealed that pesticide-treated colonies had their behavior changed,
with their movement becoming more predictable than before.

In general, sublethal doses of pesticides in bees can act as physiological stressors,
altering metabolic responses (e.g., oxidative stress), glandular (e.g., hypopharyngeal, fat
body), and bee brain (e.g., JH, biogenic amines), which alter their behavior and decrease
longevity [52]. On the other hand, the distancing behavior has a social character, in which
the contaminated worker bees distance themselves from the brood area, representing the
most susceptible individuals in the colony, migrating earlier than expected to the peripheral
areas of the comb [59,60], thus preserving colony health [52]. Despite fungicides seeming
to represent lower acute toxicity, recent studies have shown their abilities to unbalance bee
health by modifying quercetin-dependent detoxification [57,58,61], which can detrimentally
affect mitochondrial regeneration and ATP production. Although further investigations
are needed before drawing firm conclusions, it is worth noting that the disruption of
quercetin-mediated detoxification has been proposed as one of the main causes for lifespan
reductions in honey bees [61,62].

5. Conclusions

Our Bayesian tracking technique proved successful and superior to comparable ones
in that it allowed for the estimation of dynamical parameters such as entropy and kinetic
energy. Our technique can also convert past information about the system into mathematical
equations and learn patterns whenever fresh data are added, which are two major benefits
compared with traditional inferences. These qualities enabled the algorithm to detect and
repair mistakes during processing, as well as forecast pathways and distributions in other
scenarios of color segmentation, making the tracking more adaptable. Finally, the findings
described here also contribute to getting a better understanding of potential unintended
effects mediated by environmental stressors (e.g., pesticides, electromagnetic fields, noise,
and light intensities) alone or in combination in pollinator bees at colony levels.

Supplementary Materials: Further details and mathematical formulations for the presented method
are available online at https://www.mdpi.com/article/10.3390/insects13020181/s1.
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