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SUMMARY

Homeostasis in adult tissues depends on the precise regulation of stem cells and their surrounding 

microenvironments, or niches. Here, we show that the cell cycle inhibitor and tumor suppressor 

Retinoblastoma (RB) is a critical regulator of niche cells in the Drosophila testis. The testis 

contains a single niche, composed of somatic hub cells, that signals to adjacent germline and 

somatic stem cells. Hub cells are normally quiescent, but knockdown of the RB homolog Rbf in 

these cells causes them to proliferate and convert to somatic stem cells. Over time, mutant hub cell 

clusters enlarge and split apart, forming ectopic hubs surrounded by active stem cells. 

Furthermore, we show that Rbf’s ability to restrict niche number depends on the transcription 

factors E2F and Escargot and the adhesion molecule E-cadherin. Together this work reveals how 

precise modulation of niche cells, not only the stem cells they support, can drive regeneration and 

disease.

In Brief

Greenspan and Matunis find that the tumor suppressor Retinoblastoma is required in niche cells to 

maintain quiescence, cell fate, and niche number. Loss of Retinoblastoma causes niche cell 

divisions, conversion to somatic stem cells, and ectopic niche formation through niche fission, 

suggesting that mutations in niche cells may drive disease.
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INTRODUCTION

Stem cells maintain homeostasis within many adult tissues by producing both new stem cells 

(self-renewal) and daughter cells that differentiate (Greenspan et al., 2015). Signals from the 

surrounding microenvironment in which the stem cells reside, called the niche, are vital for 

promoting stem cell maintenance (Greenspan et al., 2015; Ohlstein et al., 2004). 

Understanding how niches regulate stem cells is key to using the regenerative capacity of 

stem cells for therapeutic purposes after damage. In addition, mis-regulation of cell 

signaling within stem cell niches can lead to tumor growth and cancer metastases (Dagogo-

Jack and Shaw, 2018), underscoring the need for better understanding niche function.

The Drosophila testis provides an ideal model system to study stem cell regulation in vivo 
because it contains a well-defined niche in which cell types are easily identified and 

manipulated genetically. A major component of this niche is a cluster of quiescent somatic 

hub cells that signal to the attached germline stem cells (GSCs) and somatic cyst stem cells 

(CySCs) (Figure 1A) (Hardy et al., 1979; Kiger et al., 2001). Damage to this niche triggers 

an unexpected degree of cellular plasticity. Recently we found that genetic ablation of all 

CySCs induces hub cells to exit quiescence and begin mitotic divisions (Hétié et al., 2014). 

Surprisingly, this also leads to the cell fate conversion of hub cells to CySCs. This change in 

cell fate is accompanied by the formation of new niches throughout the testis, characterized 

by the presence of multiple hubs, each supporting active stem cells. However, it is still not 

known if hub cell quiescence and fate must be actively maintained. In addition, the 

molecular regulators and cellular behaviors that drive these phenotypes have not been 

characterized.

The Drosophila Retinoblastoma homolog Retinoblastomafamily protein (Rbf) is a key cell 

cycle regulator that inhibits cell cycle progression by binding and repressing the cell cycle 

activator E2F and whose activity is controlled through phosphorylation from Cyclins 

(Sutcliffe et al., 2003). Rbf is known to negatively regulate cell proliferation in many cell 
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types and is a tumor suppressor gene that is downregulated in many cancers (Cheung and 

Rando, 2013; Dyson, 2016). Here, we show that Rbf is required to autonomously maintain 

quiescence in terminally differentiated hub cells and is necessary for hub cell fate. Loss of 

Rbf in hub cells leads to the activation of E2F driving hub cell proliferation and conversion 

of hub cells to cyst lineage cells. Rbf also has unexpected effects on this model stem cell 

system: extended Rbf loss in hub cells causes ectopic niche formation within the testis. Live 

imaging and lineage tracing reveal that this process is driven by fission of the original hub. 

This leads to an increase in the stem cell population via two means: autonomously through 

the direct conversion of hub cells to stem cells and non-autonomously through the expansion 

of the niche. Together our results suggest a mechanism whereby cell cycle factors regulate 

hub cell quiescence and plasticity and demonstrate how the modulation of niche cells, as 

opposed to the stem cells they support, can drive regeneration and disease.

RESULTS

Rbf Is Required to Maintain Hub Cell Quiescence

Because hub cell proliferation is one of the first phenotypes observed upon recovery from 

CySC ablation, we hypothesized that cell cycle inhibitors might play an active role in 

intrinsically maintaining hub cell quiescence. Retinoblastoma (RB) is a known cell cycle 

regulator in many mammalian stem cell populations. Loss of RB in frequently dividing 

spermatogonial stem cells leads to a depletion of the stem cell pool, while loss of RB in the 

quiescent support cells (Sertoli cells) that contribute to the testis niche leads to Sertoli cell 

proliferation and dysfunction, causing a failure in sperm development (Hu et al., 2013; 

Rotgers et al., 2014). In the Drosophila testis, Rbf is normally expressed broadly and is 

detected in all of the cells within the testis apex. This includes the terminally differentiated 

hub cells, germ cells, and cyst lineage cells (Figures S1A and S1A‘). To determine if this 

cell cycle inhibitor is necessary for the maintenance of hub cell quiescence, we used the 

E132Gal4-UAS-TubGal80ts system (hereafter E132ts) to conditionally knock down Rbf 

specifically in adult hub cells. A complete loss of Rbf protein specifically within the hub, 

confirmed by immunostaining adult testes with anti-Rbf antisera (Figures S1B–S1Cʹ), was 

observed in E132ts > Rbf RNAi flies raised at the permissive temperature of 18°C and 

shifted to 29°C for 7 days to induce RNAi knockdown. To determine if hub cells lacking Rbf 

can proliferate, we immunostained testes for the mitotic marker phosphohistone H3 (PH3). 

PH3-positive hub cells were seen in 26% (n = 19 of 73) and 20% (n = 20 of 101) of testes 

with Rbf knocked down in the hub (p < 0.0001, Rbf RNAi A and B, respectively) (Figures 

1B–1D) compared with E132ts > GFP RNAi control testes, in which we never saw 

PH3positive hub cells (n = 0 of 90). To extend these findings, hub cells lacking Rbf were 

assessed for incorporation of the thymidine analog ethynyl deoxyuridine (EdU), which 

labels cells undergoing DNA replication. EdU-positive hub cells were seen in 88% (n = 23 

of 26) and 60% (n = 27 of 45) of testes expressing two independent Rbf RNAi lines for 7 

days (Figures 1B–1D), confirming that these hub cells are progressing through the cell 

cycle. We rarely saw EdU-positive hub cells in E132ts > GFP RNAi control testes (n = 2 of 

28). In comparison, low levels of S phase labeling have been reported in other studies of 

wild-type testes (Voog et al., 2008), suggesting that sometimes hub cells may undergo 

replication. However, ploidy measurements of hub cells (Figure S1I) suggest that most hub 
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cells are normally diploid. We conclude that in contrast to wild-type hub cells, which are 

quiescent, hub cells lacking Rbf enter both S and M phase of the cell cycle.

Because hub cells divide in hubs lacking Rbf, we expected the hub cell clusters to increase 

in size. To assess this, hub volume was measured using three-dimensional (3D) 

reconstructions of testes expressing a bright cytoplasmic GFP transgene in hub cells.Within 

3 days,hub-specific knockdown of Rbf led to a significantly larger hub volume than control 

testes expressing only GFP (Figures S1D, S1E, and S1H). Hub volumes continued to 

increase at 7 and 14 days post-induction (Figure S1H). Additionally, hub cells appeared to 

spread along the basement membrane of the tissue and protrude into the center of the testis, 

creating a neck that connected the two sections in some testes, while hubs in control testes 

remained unchanged (Figures S1F and S1G). Altogether these data indicate that Rbf is 

required in hub cells to actively maintain their quiescent state, and loss of Rbf leads to hub 

cell proliferation and subsequent enlargement of the hub.

Loss of Rbf in Hub Cells Causes Conversion to Cyst Lineage Cells

Because CySC ablation causes loss of hub cell quiescence and drives hub cell-to-CySC 

conversion (Hétié et al., 2014), we next asked if loss of Rbf could also change hub cell 

identity. To assess the fate of hub cells upon Rbf knockdown, the Gal4 technique for real-

time and clonal expression (G-TRACE) (Evans et al., 2009) was used to track hub cells 

lacking Rbf over time. This lineage tracing system uses a red fluorescent protein (RFP) to 

mark current Gal4 expression and a GFP to track cells that originate from the Gal4-

expressing cells. When combined with a hub-specific Gal4 driver, hub cells expressing this 

system will appear yellow, while cells derived from hub cells that have changed fate will 

lose RFP expression and retain GFP expression, appearing green. E132ts > G-TRACE, Rbf 

RNAi flies were shifted to 29°C for 7 days to simultaneously induce marking and Rbf 

knockdown specifically in hub cells. Testes from these flies frequently had green cells 

dispersed throughout the niche outside of the hub cell cluster (78% [n = 70 of 90 testes]), 

indicating that they had lost their hub cell identity (Figures 2B and2D). In comparison, 

control testes expressing G-TRACE alone contained yellow hub cells (RFP+GFP+) that 

remained confined to the apical tip of the testis (Figures 2A and 2C). As expected on the 

basis of prior studies using the G-TRACE system in the Drosophila testis (Voog et al., 

2014), a few green cells were occasionally seen outside of the hub cluster in control testes 

(25% [n = 21 of 85 testes]). This background marking could be due to incomplete repression 

of Gal4 by Gal80 during part of development or due to effects of the hub-Gal4 driver itself. 

Importantly, significantly more testes contained green (hub-derived) cells outside the 

original hub cluster when Rbf was knocked down in hub cells (p < 0.0001; Table S1). This 

indicates that Rbf is required to maintain hub cell fate.

To verify that Rbf knockdown causes hub cells to leave the hub cluster and lose their 

identity, a second lineage-tracing reporter was used with a different drug inducible hub-

specific driver (GS2295-Gal4). Using this system, 21% (n = 8 of 38) of testes lacking Rbf in 

hub cells showed conversion of hub cells (as indicated by GFP-marked cells outside of the 

hub cell cluster) by 21 days post-induction (Figures S2B and S2D). In contrast, GFP-marked 

cells were not detected outside of the hub in testes from lineage traced controls (n = 0 of 64 
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testes) (Figures S2A and S2C; Table S1). Together with the G-TRACE lineage-tracing, these 

data indicate that Rbf is necessary to maintain hub cell identity.

To determine the identity of lineage-traced cells arising upon hub-specific Rbf knockdown, 

we immunostained testes with hub, cyst lineage, and germ cell markers. Traced cells close to 

the hub cluster expressed the CySC marker Zinc finger homeodomain 1 (Zfh1; Figure S2B), 

suggesting that these cells converted into somatic stem cells. These cells also expressed the 

general cyst lineage marker Traffic Jam (TJ; Figures 2D and S2D) but lacked the hub-

specific marker Fasciclin III (Fas III; Figures 2F, S2B, and S2D). Traced cells were seen 

flanking germ cells but did not express the germ cell marker Vasa (Figures S3A and S3B), 

suggesting that they had converted from hub cells to cyst cells. When Rbf was continuously 

knocked down in hub cells for a longer period of time (14 days), traced cells were seen away 

from the hub cluster undergoing further differentiation, as indicated by expression of the late 

cyst lineage marker Eyes Absent (Eya; Figures 2E and 2F). These cells also maintained their 

male sex identity, as staining for the female somatic cell markers Castor and Cut showed no 

expression in testes with Rbf knocked down in the hub (data not shown). This indicates that 

upon Rbf loss, a subset of hub cells convert to CySCs and progress through the cyst lineage 

differentiation process.

However, converted hub cells did show some aberrant behaviors compared with normal cyst 

cells. In wild-type testes, the only proliferating somatic cells are the CySCs next to the hub 

(Figures S3C and S4A) (Gönczy and DiNardo, 1996; Inaba et al., 2011). In contrast, traced 

hub cells were seen proliferating both next to and more than 2 cell diameters away from the 

hub (Figure S3D). This suggests that Rbf may also be required for cyst cell quiescence in the 

adult testis, as has been recently shown to occur in the Drosophila larval testis (Dominado et 

al., 2016). Therefore we speculated that Rbf levels might not be restored in converted cyst 

cells fast enough to keep them quiescent. To directly address whether Rbf promotes adult 

cyst cell quiescence, Rbf was knocked down specifically in cyst cells but not CySCs using 

the EyaGal4 driver (Ma et al., 2014). Loss of Rbf specifically in cyst cells led to an 

expansion of Tj-positive cells throughout the testis, and these cells were capable of dividing 

away from the hub, compared with controls, which only showed proliferating somatic cells 

within 2 cell diameters from the hub (Figures S4A and S4B). Rbf knockdown in cyst cells 

also led to a non-autonomous expansion of undifferentiated germ cells throughout the adult 

testis, as indicated by the TJ-negative DAPI bright nuclei (Figures S4A and S4B), consistent 

with previous reports in the larval testis (Dominado et al., 2016). Interestingly, the CySC 

marker Zfh1 remained restricted to the apex in testes lacking Rbf in the cyst cells (Figures 

S4C and S4D), suggesting that dividing cyst cells did not revert to a stem cell-like state. 

Altogether, these data suggest that Rbf is required in cyst cells to maintain their quiescence 

but not their differentiation state, demonstrating a contrast to its role in hub cells.

Live Imaging Reveals Dynamics of Hub Cell Conversion In Vivo

The G-TRACE lineage-tracing system (Evans et al., 2009) combined with our established 

techniques for live imaging (Greenspan and Matunis, 2017; Sheng and Matunis, 2011) 

affords us the opportunity to visualize how and from where within the hub cell fate 

conversion occurs in vivo. Testes co-expressing Rbf RNAi and the G-TRACE system in hub 
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cells for 10 days were imaged live for 12–18 hr. As we expected on the basis of our fixed 

images, hub cells were seen dividing in most testes (n = 18 of 27 testes; Video S1) within 

different regions of the hub cluster, including the portion along the basement membrane, 

within the protrusion, and in the neck connecting these two sections. However, cell division 

did not correlate with those cells that converted to a cyst lineage fate, as daughter cells could 

be seen remaining in the hub cluster throughout the duration of the video after division 

(Video S1). Live imaging further revealed that these hub cells are very dynamic. Hub cells 

could be seen moving between different regions of the hub cluster (n = 18 of 27 testes; data 

not shown) as well as leaving the hub cell cluster entirely (n = 15 of 27 testes), mostly from 

the basement membrane but occasionally from the neck and protrusion (Video S1). Because 

a change in hub identity is indicated by loss of red fluorescence signal, we asked whether the 

cells that migrated away from the hub cluster lost their hub cell fate. To answer this 

question, a subset of hub cells were analyzed to determine their loss of fluorescence over 

time (Figures 3A and3B; Video S3). Hub cells with Rbf knocked down could be seen 

exhibiting three different behaviors throughout the course of the video. Some cells 

maintained their RFP expression and stayed within the hub cluster, some cells started to lose 

their RFP expression but stayed within the hub cluster, and a third category lost most of their 

RFP expression and migrated away from the main hub cluster (Figure 3C). Linear regression 

analysis showed a significant correlation between a hub cell’s displacement and its loss of 

RFP expression, meaning that cells that migrated the farthest from their original position 

tended to lose the most fluorescence (Figure 3C). In contrast to hub cells lacking Rbf, hub 

cells in control testes expressing the G-TRACE system alone were never seen dividing or 

leaving the main hub cluster during live imaging (n = 0 of 6 testes; Video S2). In addition, 

no correlation was seen between RFP expression levels and displacement among hub cells 

expressing G-TRACE alone in control testes, because these cells did not lose RFP 

expression or migrate far from their original position (Figure 3C; Video S2). Together these 

live imaging data reveal that upon Rbf loss some hub cells start to lose their hub identity 

before migrating away, further supporting the conclusion that Rbf is required for hub cell 

fate.

During our live imaging of hubs lacking Rbf, we occasionally observed cells dying within 

the hub or being extruded from the hub first, then shrinking, eventually losing fluorescence 

(Figures 3A and 3B; Video S3). This, together with the previous findings that 

Retinoblastoma is known to inhibit apoptosis in certain tissues (DeGregori et al., 1997; 

Dyson, 2016; Tanaka-Matakatsu et al., 2009), prompted us to assay for expression of the 

cleaved caspase Dcp1, which marks dying somatic cells in the testis (Hasan et al., 2015; 

Yacobi-Sharon et al., 2013). Dcp1-positive hub cells were occasionally seen when Rbf was 

specifically knocked down in hub cells (n = 9 of 44 and n = 3 of 53 testes for Rbf RNAi A 

and B, respectively; Figures 3D–3F) but undetectable in hubs of GFP RNAi control testes (n 

= 0 of 61 testes). This indicates that Rbf is required not only to maintain hub cell quiescence 

and fate but also to prevent hub cell apoptosis. However, the level of apoptosis that occurs 

upon Rbf knockdown must be minimal compared with the level of cell proliferation, because 

overall hub size increases with time upon Rbf knockdown.

Greenspan and Matunis Page 6

Cell Rep. Author manuscript; available in PMC 2018 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rbf Acts through E2F to Maintain Hub Cell Quiescence and Fate

Rbf is known to inhibit the cell cycle by binding to the transcriptional activator E2F and 

preventing its activity. Upon hyper-phosphorylation by Cyclin D/Cdk4, Rbf releases E2F, 

allowing it to transcribe its target genes, many of which drive cell cycle progression (Dyson, 

2016). However, Rbf is also known to have E2F-independent roles (Korenjak et al., 2012). 

Because knockdown of Rbf alone leads to cell cycle activation, we hypothesized that 

knockdown of Rbf and E2F simultaneously in hub cells could be sufficient to prevent hub 

cell proliferation. To ask whether Rbf acts through E2F to regulate hub cell quiescence and 

fate, we simultaneously removed Rbf and E2F specifically in hub cells for 14 days and 

assessed their proliferation status using the mitotic marker PH3. Testes lacking both Rbf and 

E2F in hub cells showed a complete rescue of hub size, and proliferating hub cells were 

undetectable (n = 0 of 42 testes; Figure 4D; Table 1). For comparison, Rbf knockdown alone 

yielded dividing hub cells in 52% of testes (n = 29 of 56; Figure 4A; Table 1). To ensure that 

this rescue was specific to E2F, flies expressing Rbf RNAi and a generic RNAi (GFP RNAi) 

still showed proliferating hub cells similar to Rbf RNAi alone (n = 4 of 15; Table 1). As 

expected, E2F knockdown alone showed no hub cell proliferation phenotype, because hub 

cells are normally quiescent (Figure 4C; Table 1). Together these data indicate that Rbf acts 

through E2F to maintain hub cell quiescence. Because testes lacking both Rbf and E2F in 

hub cells contain hubs that are phenotypically indistinguishable from wild-type hubs, this 

suggests that loss of E2F is sufficient to suppress both hub cell proliferation and the hub-to-

cyst lineage conversion phenotype induced by Rbf knockdown alone. This is because if 

conversion were still occurring without proliferation, we would expect a complete loss of 

hub cells over time, which is not seen.

Esg Does Not Rescue Hub Cell Quiescence upon Rbf Knockdown

To identify pathway components that could be acting downstream of E2F, we considered the 

snail family transcription factor Escargot (Esg), because loss of Esg in hub cells causes hub 

cell-to-cyst lineage conversion (Voog et al., 2014) but not excessive hub cell proliferation. 

Instead, this conversion causes a loss of hub cells over time, leading to testes that completely 

lack hubs. In contrast, testes lacking Rbf in hub cells develop increasingly larger hubs with 

time as well as hub cell-to-cyst lineage conversion. Thus we hypothesized that Esg is 

working downstream of or in a parallel pathway to Rbf/E2F to regulate quiescence. To test 

this hypothesis we overexpressed Esg specifically in hub cells while simultaneously 

knocking down Rbf in the hub and assayed testes for hub cell proliferation. Mitotic (PH3-

marked) hub cells were detected in 35% of testes expressing Esg and Rbf RNAi 

simultaneously (n = 17 of 48; Figure 4F), which was not statistically different from the 22% 

seen with Rbf RNAi alone (n = 18 of 83; Figure 4B; Table 1). Furthermore, Esg 

overexpression alone did not cause hub cells to divide (n = 0 of 35; Figure 4E; Table 1). This 

indicates that overexpression of Esg is not sufficient to induce hub cell proliferation or 

suppress divisions induced by loss of Rbf and thus suggests that Esg does not play a role in 

regulating hub cell quiescence.
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Loss of Rbf in Hub Cells Results in Ectopic Niche Formation

Although more than half of testes that have undergone CySC ablation are able to recover 

their cyst cells after damage, many (42%) of these recovering testes contain multiple niches, 

rather than the single niche found in wild-type testes (He´ tie´ et al., 2014). Because mis-

regulated niche formation may underlie cancer metastases (Greaves et al., 2006) and 

Retinoblastoma is known to be downregulated in many forms of cancer (Dyson, 2016), we 

asked if knockdown of Rbf in hub cells for 14 days is sufficient to drive ectopic niche 

formation. Ectopic hubs were identified as clusters of Fas III-positive cells no longer 

connected to any other cluster of hub cells. Ectopic hubs were detected in 18% (n = 15 of 

85) and 25% (n = 29 of 117) of testes with Rbf knocked down in the hub compared with 

GFP RNAi controls, which always contained a single hub (n = 0 of 61) (Figures 5A–5C; 

Table 1). Ectopic hubs expressed multiple hub markers, including Fas III, Armadillo, 

Hedgehog, and Unpaired (Figures 5A–5F and S5A–S5D). In addition, ectopic hubs were 

surrounded by both GSCs, as indicated by Vasa-positive cells with a dot fusome, and cyst 

stem cells, as demonstrated by Zfh1 staining (Figures 5D–ablation (Hétié et al., 2014). This 

suggests that Rbf is necessary to prevent ectopic hub formation and that loss of Rbf can 

cause multiple functional niches to form within the testis.

Knockdown of E2F, Overexpression of Esg, or Overexpression of Ecad Prevents Ectopic 
Hub Formation

Because Rbf is required to prevent ectopic hub formation, we next wanted to ask whether 

the same downstream components that influence quiescence and changes in fate also 

regulate ectopic hub formation. Therefore we simultaneously removed Rbf and E2F 

specifically in hub cells by RNAi knockdown for 14 days (E132ts > Rbf RNAi, E2F RNAi) 

and assayed for ectopic hubs using the hub marker Fas III. We saw a complete rescue of the 

ectopic hub phenotype (n = 0 of 42 testes with ectopic hubs; Figure 6D; Table 1) compared 

with Rbf knockdown alone or Rbf knockdown combined with a generic GFP RNAi (n = 15 

of 85 or n = 5 of 19, respectively; Figure 6A; Table 1). As expected, E2F knockdown alone 

did not cause ectopic hub formation (n = 0 of 53 testes with ectopic hubs; Figure 6C; Table 

1). This suggests that Rbf acts through E2F to prevent ectopic hub formation. Because Esg 

may work downstream of Rbf/E2F to regulate hub cell-to-cyst stem cell conversion, we next 

asked if Esg plays a role in the formation of multiple hubs. We saw a significant rescue in 

ectopic hub formation when Esg was overexpressed simultaneously with Rbf knockdown in 

hub cells (n = 1 of 48; Figures 6B and 6F; Table 1). This rescue was surprising, because loss 

of Esg alone in hub cells is not sufficient to cause ectopic hub formation (Voog et al., 2014, 

and data not shown). As expected, ectopic hubs were never seen when Esg was 

overexpressed in hub cells (n = 0 of 35 testes with ectopic hubs; Figure 6E; Table 1), 

because Esg is normally expressed in the hub (Hétié et al., 2014; Voog et al., 2014). 

Together these data indicate that both loss of Esg, which has been shown to regulate cell 

adhesion, and activation of E2F targets, such as those that stimulate cell proliferation, are 

necessary for the formation of ectopic niches.

Because the adherens junction molecule E-cadherin (Ecad) is positively regulated by Esg in 

the Drosophila trachea (TanakaMatakatsu et al., 1996) and a loss of Ecad is seen when Esg 

is knocked down in the hub (Voog et al., 2014), we wanted to determine if Ecad expression 
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was altered in hub cells upon Rbf knockdown. To determine Ecad expression levels, testes 

with Rbf knocked down in hub cells for 7 days were immunostained with Ecad antisera and 

protein levels assessed by fluorescence intensity. A significant reduction in the levels of 

Ecad expression was seen throughout the entire hub in testes in which Rbf had been knocked 

down specifically in hub cells compared with GFP RNAi controls (Figure S6), suggesting 

that Rbf can regulate levels of Ecad-mediated adhesion. To next test the role that cell 

adhesion plays in the formation of ectopic hubs, Ecad was overexpressed simultaneously 

with Rbf RNAi knockdown in hub cells for 14 days. This yielded a significant suppression 

of ectopic hub formation (n = 2 of 73; Figure 6H; Table 1). These testes still contained 

enlarged hubs with dividing hub cells (Table 1), suggesting that proliferation alone is not 

sufficient to drive ectopic hub formation. As expected, multiple hubs were never seen when 

Ecad alone was overexpressed in the hub (Figure 6G; Table 1). These data further support 

the model that adhesion must be downregulated in hub cells upon Rbf knockdown in order 

for ectopic niches to form and that upregulating adhesion molecules is sufficient to suppress 

their formation.

Ectopic Niches Form through Splitting of the Original Hub

The formation of new stem cell niches may be useful for regenerating tissue after injury, but 

its mis-regulation could lead to cancer (Greaves et al., 2006). Because this is challenging to 

study in vivo, we wanted to better characterize the cellular aspects of ectopic hub formation 

upon Rbf knockdown. Theoretically, new niches could occur in two ways: the original hub 

could split apart (niche fission), as seen in intestinal crypts (Withers and Elkind, 1970), or 

individual cells could move out of the hub and establish new niches (seeding). To see if 

either possibility was occurring, Drosophila testes expressing GFP specifically in the hub 

were imaged live for 12–18 hr after 13 days of Rbf knockdown. Clusters of hub cells were 

seen both spreading across the periphery of the testis along the basement membrane and 

protruding toward the center of the testis, as previously seen in our fixed images (Figure 

S1G). This dichotomy in behavior sometimes drove clusters of hub cells far enough apart to 

occasionally cause a single cluster of hub cells to split in to two clusters (Video S4). Fixing 

and immunostaining testes for the hub marker Fas III after live imaging confirmed that the 

membranes of these multiple hub cell clusters were no longer connected (data not shown), 

verifying that ectopic hubs can arise from fission of the original hub. Although this does not 

rule out the seeding mechanism, live imaging of testes expressing Rbf RNAi and the G-

TRACE system in hub cells for 10 days (described above) did not show re-expression of the 

hub cell driver in cells leaving the hub, as indicated by loss of RFP expression. This suggests 

that converted hub cells and their progeny are most likely not involved in the formation of 

new hubs. Altogether these data support a model that ectopic niches form because of fission 

of an enlarged hub and not the seeding of cells leaving the hub.

DISCUSSION

In many tissues, stem cells have the ability to self-renew through either asymmetric or 

symmetric divisions. However, upon damage, other mechanisms may be required to 

replenish lost stem cells, as demonstrated in the crypt base columnar stem cells of the mouse 

intestinal niche (Beumer and Clevers, 2016). In the Drosophila testis, two additional modes 
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of regeneration have been discovered. Dedifferentiation of spermatogonia allows GSCs to be 

replenished after loss (Brawley and Matunis, 2004), while direct conversion of niche cells to 

cyst stem cells regenerates the somatic stem cell population after ablation (Hétié et al., 

2014). These studies provide vital insight into cellular plasticity, helping advance 

regenerative therapies for tissue repair. However, un-regulated cellular regeneration can 

cause cells to over-proliferate, leading to cancer. Thus understanding the mechanisms that 

underlie such processes is key to providing tissue regeneration therapies without inducing 

undesirable and unintended side effects.

The tumor suppressor Retinoblastoma (RB) is mutated in many forms of cancer, driving 

cellular over-proliferation (Burkhart and Sage, 2008). Although Retinoblastoma is best 

known for its role in cell cycle control, many studies have shown additional functions for 

Retinoblastoma in regulating endoreplication, apoptosis, genome stability, and cellular 

differentiation (Calo et al., 2010; Cayirlioglu et al., 2003; Coschi et al., 2014; DeGregori et 

al., 1997; Dyson, 2016; Tanaka-Matakatsu et al., 2009; Thomas et al., 2001). Although we 

have previously shown that overexpression of Cyclin D/Cdk4 is sufficient to induce hub cell 

divisions and cell fate conversion in the Drosophila testis (Hétié et al., 2014), here, we show 

that Retinoblastoma’s homolog, the Retinoblastoma-family protein (Rbf) is required to 

actively promote hub cell quiescence and identity. Therefore, we have identified a molecule 

that acts under normal conditions to maintain the terminally differentiated state of hub cells. 

Loss of Rbf in the hub causes hub cells to proliferate and convert to CySCs, which we show 

is mediated through the activity of Rbf’s canonical binding partner E2F. Upon Rbf 

knockdown in the hub, some cells maintain their hub cell fate, as shown by the appearance 

of hub cells upon prolonged Rbf knockdown, whereas other cells convert to a cyst lineage 

fate. Why this is the case is an intriguing question for future studies. Because hub cells start 

to lose hub their identity while still within the hub cluster (Figures 3A–3C; Videos S1 and 

S3), it is most likely not autocrine signaling from hub cells that maintains their identity. One 

possibility could be that the rate of proliferation is greater than the rate of conversion, 

allowing some hub cells to remain hub cells while others do not. And perhaps in the case of 

Esg knockdown in hub cells (Voog et al., 2014), the rate of proliferation is too slow for any 

hub cells to be maintained so all convert to cyst lineage cells. Another possibility could be 

that the hub cells are more heterogeneous than initially thought, and only a subset of hub 

cells are capable of maintaining their identity. Little is currently known about hub cell 

heterogeneity, but in situ hybridization to whole testes for transcripts from the magu gene 

suggests this possibility (Zheng et al., 2011). Single-cell sequencing of hub cells would 

provide great insight into the diversity of this cell population.

In addition to being required in hub cells, we show that Rbf is required to regulate somatic 

cyst cell quiescence but not stem cell fate. Loss of Rbf in cyst cells causes them to 

proliferate away from the hub but does not cause these cells to express stem cell markers. 

This suggests that even within the same tissue, Rbf can have different functions within 

varying somatic cell types. This is surprising because both hub cells and cyst cells are 

derived from a common pool of somatic gonadal precursor cells in the Drosophila embryo 

(Le Bras and Van Doren, 2006).
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Besides regulating niche cell quiescence and fate, here, we show that Rbf plays a role in 

regulating niche number in the Drosophila testis. Prolonged loss of Rbf in hub cells causes 

hub cells to form functional ectopic niches. Multiple direct or indirect downstream targets of 

E2F play a role in controlling this process, as overexpression of either the transcription 

factor Esg or the adhesion molecule Ecad is sufficient to suppress ectopic hub formation but 

not hub cell proliferation. This leads to the intriguing question of what is minimally required 

to build a new niche. Although niche fission is known to occur within the mammalian 

intestinal crypt during postnatal development (Maskens and Dujardin-Loits, 1981), 

regeneration after certain damage (Cairnie and Millen, 1975; Wright and Al-Nafussi, 1982), 

and upon mutation of the Wnt signaling pathway regulator APC (Wasan et al., 1998), little is 

known about the mechanisms that drive these processes. Our fixed and live imaging of Rbf 

knockdown in hub cells of the Drosophila testis suggests that a combination of niche cell 

proliferation with a loss of cell-cell adhesion can lead to the splitting of the hub causing 

niche fission. Because crypt fission may play a role in the propagation of cancerous cells 

within the mammalian intestine (Greaves et al., 2006), better understanding the mechanisms 

that drive this process will provide vital therapeutic targets.

Great heterogeneity is often observed among the cells that comprise a single human tumor. 

This can occur from genomic instability within a cell population (Carter et al., 2006) or 

environmental cues driving vast changes in cellular morphology, proliferation, gene 

expression, and other cellular processes (Dagogo-Jack and Shaw, 2018; Marusyk and 

Polyak, 2010). Here, we show that loss of the tumor suppressor gene Rbf in the hub cells of 

the Drosophila testis can lead to an excess of many different cell types within the tissue 

through non-autonomous and autonomous means. Increasing niche cell number allows more 

germline and cyst stem cells to be maintained, presumably because of an increase in the 

physical size of the niche, niche signals, or both. In addition, Rbf knockdown in the hub 

leads to the increase of cyst lineage cells because of the conversion of hub cells to CySCs. 

Together this causes an increase in stem cell number, which consequently leads to an 

increase in early differentiated daughters, thus driving an expansion of different cell 

populations within the tissue. Furthermore, the formation of ectopic niches within the testis 

leads to stem cells’ residing in aberrant locations, similar to cancer metastases. This 

demonstrates how a mutation in a particular cell type (in this case, specifically within niche 

cells) can drive many different phenotypes. Thus understanding the cell or origin for many 

cancers may provide better insight into how certain cancers progress. Future studies 

dissecting whether quiescent stromal support cells contribute to cancer more generally and 

whether Rbf family members act in multiple niches will further illuminate the role of niche 

cells, not just the stem cells they support, in tissue regeneration and disease progression.

STAR⋆METHODS

KEY RESOURCE TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse monoclonal anti–Fasciclin 
III(Drosophila)

DSHB Cat#: 7G10; RRID: AB_528238

Mouse monoclonal anti-phospho-
HistoneH3 (Ser10) (6G3)

Cell Signaling Technology Cat#: 9706S; RRID: AB_331748

Guinea Pig polyclonal anti-Traffic Jam Laboratory of D. Godt (Li et al., 2003) N/A

Rabbit polyclonal anti-Vasa (d-260) Santa Cruz Biotechnology Cat#: SC-30210; RRID: AB_793874

Mouse monoclonal anti-Rbf Laboratory of N. Dyson (Frolov et al., 
2003)

N/A

Chick polyclonal anti-GFP Abcam Cat#: ab13970; RRID: AB_300798

Rabbit polyclonal anti-DsRed Clontech Cat#: 632496; RRID: AB_10013483

Goat polyclonal anti-DsRed (C-20) Santa Cruz Biotechnology Cat#: SC-33354; RRID: AB_639922

Mouse monoclonal anti-Discs 
large(Drosophila)

DSHB Cat#: 4F3; RRID: AB_528203

Mouse monoclonal anti-Eyes Absent DSHB Cat#: eya10H6; RRID: AB_528232

Mouse monoclonal anti-Armadillo DSHB Cat#: N27A1; RRID: AB_528089

Guinea Pig polyclonal anti-Zfh1 Laboratory of E. Matunis N/A

Rabbit polyclonal anti-cleaved 
DrosophilaDcp1 (Asp216)

Cell Signaling Technology Cat#: 9578; RRID: AB_2721060

Mouse monoclonal anti-hu-li tai shao DSHB Cat#: 1B1; RRID: AB_528070

Mouse monoclonal anti-b-Galactosidase Promega Cat#: Z378A; RRID: AB_2313752

Rabbit polyclonal anti-Stat92E Laboratory of Erika Bach (Flaherty et al., 
2010)

N/A

Rat monoclonal anti-DE-cadherin DSHB Cat#:DCAD2; RRID: AB_528120

Rabbit polyclonal anti-Castor Laboratory of Denise Montell N/A

Mouse monoclonal anti-Cut DSHB Cat#: 2B10; RRID: AB_528186

Goat anti-chicken IgY (H+L) secondary 
antibody, Alexa Fluor 488 conjugate

ThermoFisher Scientific Cat#: A11039; RRID: AB_2534096

Donkey anti-chicken IgY (H+L), highly 
cross absorbed, CF 488A

Millipore/Sigma (formerly Sigma-Aldrich) Cat#: SAB4600031; RRID: AB_2721061

Goat anti-Mouse IgG (H+L) secondary 
antibody, Alexa Fluor 405 conjugate

ThermoFisher Scientific Cat#: A31553; RRID: AB_221604

Goat anti-Mouse IgG (H+L) secondary 
antibody, Alexa Fluor 488 conjugate

ThermoFisher Scientific Cat#: A11029; RRID: AB_2534088

Goat anti-Mouse IgG (H+L) secondary 
antibody, Alexa Fluor 568 conjugate

ThermoFisher Scientific Cat#: A11004; RRID: AB_2534072

Goat anti-Mouse IgG (H+L) secondary 
antibody, Alexa Fluor 633 conjugate

ThermoFisher Scientific Cat#: A21050; RRID: AB_2535718

Goat anti-Guinea Pig IgG (H+L) 
secondary antibody, Alexa Fluor 488 
conjugate

ThermoFisher Scientific Cat#: A11073; RRID: AB_2534117

Goat anti-Guinea Pig IgG (H+L) 
secondary antibody, Alexa Fluor 568 
conjugate

ThermoFisher Scientific Cat#: A11075; RRID: AB_2534119

Goat anti-Guinea Pig IgG (H+L) 
secondary antibody, Alexa Fluor 633 
conjugate

ThermoFisher Scientific Cat#: A21105; RRID: AB_2535757

Goat anti-Rabbit IgG (H+L) secondary 
antibody, Alexa Fluor 568 conjugate

ThermoFisher Scientific Cat#: A11011; RRID: AB_143157

Donkey anti-Rabbit IgG Antibody Cy5 
CON

Millipore/Sigma (formerly Sigma-Aldrich) Cat#: AP182SA6; RRID: AB_2721062
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REAGENT or RESOURCE SOURCE IDENTIFIER

Donkey anti-Goat IgG (H+L) secondary 
antibody, Alexa Fluor 568 conjugate

ThermoFisher Scientific Cat#: A11057; RRID: AB_2534104

Chemicals, Peptides, and Recombinant Proteins

4,6-diamidino-2-phenylindole (DAPI) Millapore/Sigma (formerly Sigma-Aldrich) Cat#: 10236276001; CAS: 28718–90-3

MIFEPRISTONE-11beta-(4-Dimethy 
amino) phenyl-17beta-hydroxy-17-(1-
propynyl) estra-4,9-dien-3-one; 
RU-38486; RU-486

Millapore/Sigma (formerly Sigma-Aldrich) Cat#: M8046; CAS: 84371–65-3

Insulin from Bovine Pancreas powder Millapore/Sigma (formerly Sigma-Aldrich) Cat#: I6634; CAS: 11070–73-8

Fetal Bovine Serum heat inactivatedUS-
FBS

Millapore/Sigma (formerly Sigma-Aldrich) Cat#: F4135

Penicillin-Streptomycin (10,000 U/mL) ThermoFisher Scientific Cat#: 15140122; CAS: 69–57-8 (Penicillin) and 3810–74-0 (Sreptomycin)

16% Paraformaldehyde (formaldehyde) 
aqueous solution

Electron Microscopy Sciences Cat#: 15710; CAS: 50–00-0

Goat Serum Millapore/Sigma (formerly Sigma-Aldrich) Cat#: G9023

Donkey Serum Millapore/Sigma (formerly Sigma-Aldrich) Cat#: D9663;

Green food color McCormick N/A

Schneider’s Drosophila Medium ThermoFisher Scientific Cat#: 21720024

Shields and Sang M3 Insect Medium Millapore/Sigma (formerly Sigma-Aldrich) Cat#: S3652

Vectashield antifade mounting medium Vector Laboratories Cat#: H-1000

Poly-L-lysine Hydrobromide Mol Wt 
30000

Millapore/Sigma (formerly Sigma-Aldrich) Cat#: P2636; CAS: 25988–63-0

Critical Commercial Assays

Click-iT EdU Alexa Fluor 555 Imaging 
Kit

ThermoFisher Scientific Cat#: C10338

Experimental Models: Organisms/Strains

D. melanogaster: P{w[+mW.hs] = 
GawB} E132, w[*](also called upd-
Gal4)

Bloomington Drosophila Stock Center BDSC: 26796; FlyBase: FBti0002638

D. melanogaster: w[*]; P{w[+mW.hs] = 
Switch2}GSG2295

Laboratory of H. Keshishian (Nicholson et 
al., 2008)

BDSC: 40266

Flybase: FBti0115018

D. melanogaster: Hh-LacZ/TM3,Sb Laboratory of K. Vani (Mohler et al., 1995) N/A

D. melanogaster: EyaA3-Gal4 Laboratory of S. DiNardo (Leatherman and 
Dinardo, 2008)

N/A

D. melanogaster: w[*]; P{w[+mC] = 
tubPGAL80[ts]}2/TM2

Bloomington Drosophila Stock Center BDSC: 7017; FlyBase: FBst0007017

D. melanogaster: w[*]; P{w[+mC] = 
UAS-FLP.D}JD2

Bloomington Drosophila Stock Center BDSC: 4540; FlyBase: FBst0004540

D. melanogaster: RNAi of GFP: 
w[1118];P{w[+mC] = UAS-
GFP.dsRNA.R}142

Bloomington Drosophila Stock Center BDSC: 9330; FlyBase: FBst0009330

D. melanogaster: RNAi of Rbf: y[1] 
sc[*] v[1]; P{y[+t7.7] v[+t1.8] = 
TRiP.HMS03004} attP2/TM3, Sb[1]

Bloomington Drosophila Stock Center BDSC: 36744; FlyBase: FBst0036744

D. melanogaster: RNAi of Rbf: y[1] 
sc[*] v[1];P{y[+t7.7] v[+t1.8] = 
TRiP.GL01293}attP40/CyO

Bloomington Drosophila Stock Center BDSC: 41863; FlyBase: FBst0041863
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REAGENT or RESOURCE SOURCE IDENTIFIER

D. melanogaster: GTRACE: 
w[*];P{w[+mC] = UAS-
RedStinger}4,P{w[+mC] = UAS-
FLP.D}JD1, P{w[+mC] =Ubi-
p63E(FRT.STOP)Stinger}9F6/CyO

Bloomington Drosophila Stock Center BDSC: 28280; FlyBase: FBst0028280

D. melanogaster: RNAi of E2F: y[1] 
v[1];P{y[+t7.7] v[+t1.8] = 
TRiP.JF02718}attP2

Bloomington Drosophila Stock Center BDSC: 27564; FlyBase: FBst0027564

D. melanogaster: y[1] w[*]; 
PBac{y[+mDint2] w[+mC] = 
20XUAS-6XGFP}VK00018/
CyO,P{Wee-P.ph0}Bacc[Wee-P20]

Bloomington Drosophila Stock Center BDSC: 52261; FlyBase: FBst0052261

D. melanogaster: ywhsFlp; UAS-esg/
CyO;UAS-LacZ/TM2

Laboratory of A. Tomlinson (Kumar et al.,
2015)

N/A

D. melanogaster: hs-FLP; tub > CD2 > 
Gal4,UAS-GFP/CyO Laboratory of B. Ohlstein N/A

D. melanogaster: E132Gal4;;TubGal80ts Laboratory of E. Matunis N/A

D. melanogaster: EyaA3Gal4;TubGal80ts Laboratory of E. Matunis N/A

D. melanogaster: UAS-GTRACE/
SM6B;UAS-Rbf RNAi/TM6B: 
P{w[+mC] = UAS-RedStinger}4, 
P{w[+mC] = UAS-FLP.D}JD1, 
P{w[+mC] = Ubi-
p63E(FRT.STOP)Stinger}9F6/SM6B; 
P{y[+t7.7] v[+t1.8] 
=TRiP.HMS03004}attP2/TM6B

This Paper N/A

D. melanogaster: GS2295-Gal4/
Sm6B;UAS-Rbf RNAi/TM6B: w[*]; 
P{w[+mW.hs] =Switch2}GSG2295/
SM6B; P{y[+t7.7] v[+t1.8] = 
TRiP.HMS03004}attP2/TM6B

This Paper N/A

D. melanogaster: tub > CD2 > Gal4, 
UAS-GFP/SM6B; UAS-Flp/TM6B: tub 
> CD2 >Gal4, UAS-GFP/SM6B; 
P{w[+mC] = UAS-FLP.D}JD2/TM6B

This Paper N/A

D. melanogaster: UAS-Rbf RNAi/
SM6B;UAS-E2F RNAi/TM6B: 
P{y[+t7.7] v[+t1.8] = 
TRiP.GL01293}attP40/SM6B; 
P{y[+t7.7] v[+t1.8] = 
TRiP.JF02718}attP2/TM6B

This Paper N/A

D. melanogaster: UAS-esg/SM6B; 
UASRbf RNAi/TM6B: UAS-esg/
SM6B; ]; P{y[+t7.7] v[+t1.8] = 
TRiP.HMS03004} attP2/TM6B

This Paper N/A

D. melanogaster: UAS-GFP RNAi/
SM6B;UAS-Rbf RNAi/TM6B: 
P{w[+mC] = UASGFP.dsRNA.R}142/
SM6B; P{y[+t7.7] v[+t1.8] = 
TRiP.HMS03004}attP2/TM6B

This Paper N/A

D. melanogaster: UAS-Rbf RNAi/
SM6B; Hh-LacZ/TM6B: P{y[+t7.7] 
v[+t1.8] =TRiP.GL01293}attP40/SM6B; 
HH-LacZ/TM6B

This Paper N/A

D. melanogaster: 20XUAS-6XGFP/
SM6B; UAS-Rbf RNAi/TM6B: 
PBac{y[+mDint2] w[+mC] = 
20XUAS-6XGFP}VK00018/
CyO,P{Wee-P.ph0}Bacc[Wee-P20]/
SM6B; P{y[+t7.7] v[+t1.8] = 
TRiP.HMS03004} attP2/TM6B

This Paper N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

D. melanogaster: w; Frt40A; UAS-shg Laboratory of J.P. Vincent (Sanson et al., 
1996)

N/A

D. melanogaster: UAS-Rbf RNAi/
SM6B; UAS-shg/TM6B: P{y[+t7.7] 
v[+t1.8] =TRiP.GL01293}attP40/SM6B; 
UAS-shg/TM6B

This Paper N/A

Software and Algorithms

Fiji (Schindelin et al., 2012) https://www.fiji.sc/

Zeiss LSM Carl Zeiss Microscopy https://www.zeiss.com/microscopy/us/downloads/lsm-5-series.html

Zen Carl Zeiss Microscopy https://www.zeiss.com/microscopy/int/products/microscope-software/zen.html

Imaris version 7.6.5 Bitplane http://www.bitplane.com/imaris/imaris

Prism 6 GraphPad http://www.graphpad.com/scientific-software/prism/

Other

35mm glass-bottom Petri dish with 
10mm microwell MatTek Corporation Cat#: P35G-1.5–10-C

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Erika Matunis (matunis@jhmi.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila stocks and their use in this study—E132Gal4/Y;;TubGal80ts/ 

TubGal80ts (combined from BDSC: 26796 and 7017) – used to drive UAS-transgene 

expression specifically in hub cells in a temporal manner (Figure 1, 2, 3, 4, 5, 6, S1, S3, S5, 

S6, Table 1, S1, and Video S1, S2, S3, S4).

EyaA3Gal4/EyaA3Gal4;TubGal80ts/ TubGal80ts (combined from EyaA3Gal4 from S. 

DiNardo and BDSC: 7017) – used to drive UAS-transgene expression specifically in cyst 

cells in a temporal manner (Figure S4).

;;UAS-GFP RNAi/ UAS-GFP RNAi (BDSC: 9330) – used as a control RNAi in measuring 

hub cell proliferation and ectopic hub formation (Figure 1, 3, 5, S1, S4, S5, S6, and Table 1).

;UAS-Rbf RNAi/CyO; (BDSC: 41863) – used in conjunction with different Gal4 drivers to 

knockdown Rbf in specific cell types (Figure 1, 3, 4, 5, S1, S5, and Table 1).

;;UAS-Rbf RNAi/TM3,Sb (BDSC 36744) - used in conjunction with different Gal4 drivers 

to knockdown Rbf in specific cell types (Figure 1, 3, 4, 5, 6, S1, S4, S5, S6, and Table 1).

;UAS-GTRACE/CyO; (BDSC: 28280) – used for lineage tracing and live imaging in control 

hubs (Figure 2, S3, Table S1, and Video S2).
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;UAS-GTRACE/SM6B; UAS-Rbf RNAi/TM6B (combined from BDSC: 28280 and 36744) 

– used for lineage tracing and live imaging in hubs with Rbf knocked down (Figure 2, S3, 

Table S1, and Video S1, S3).

; GS2295-Gal4/CyO; (BDSC: 40266) and;tub > CD2 > GAL4, UAS-GFP/SM6B; UAS-Flp/

TM6B (combined from hsflp; tub > CD2 > GAL4, UAS-GFP/CyO from B. Ohlstein 

laboratory and BDSC: 4540) – used as an alternative tool to lineage trace control hub cells 

(Figure S2 and Table S1).

; GS2295-Gal4/Sm6B; UAS-Rbf RNAi/TM6B (combined from BDSC: 40266 and BDSC: 

36744) and;tub > CD2 > GAL4, UAS-GFP/ SM6B; UAS-Flp/TM6B (combined from hsflp; 

tub > CD2 > GAL4, UAS-GFP/CyO from B. Ohlstein laboratory and BDSC: 4540) – used 

as an alternative tool to lineage trace hub cells with Rbf knocked down (Figure S2 and Table 

S1).

;;UAS-E2F RNAi / UAS-E2F RNAi (BDSC: 27564) – used to knockdown E2F in a cell 

specific manner (Figure 4, 6, and Table 1).

;UAS-Rbf RNAi/SM6B; UAS-E2F RNAi/TM6B (combined from BDSC: 41863 and 27564) 

– used to knockdown Rbf and E2F simultaneously in cells to test for phenotype rescue 

(Figure 4, 6, and Table 1).

;UAS-Rbf RNAi/SM6B; UAS-GFP RNAi/TM6B (combined from BDSC: 41863 and 9330) 

- used to test the effectiveness of driving two RNAi lines simultaneously by knocking down 

Rbf and GFP simultaneously (Figure 6 and Table 1).

yw hsFlp/Y; UAS-esg/CyO; UAS-LacZ/TM2 (from A. Tomlinson laboratory) – used to 

overexpress Escargot in cells (Figure 4, 6, and Table 1).

;UAS-esg/SM6B; UAS-Rbf RNAi/TM6B (combined from ywhsFlp/Y; UAS-esg/CyO; UAS-

LacZ/TM2 from A. Tomlinson laboratory and BDSC: 36744) – used to overexpress Escargot 

and knockdown Rbf simultaneously to test for phenotype rescue (Figure 4, 6, and Table 1).

;UAS-Rbf RNAi/SM6B; Hh-LacZ/TM6B (combined from BDSC: 41863 and Hh-Lacz/

TM3,Sb from K. Vani laboratory) – used to assess Hedgehog expression in ectopic hubs 

(Figure S5).

;20XUAS-6XGFP/SM6B; UAS-Rbf RNAi/TM6B (combined from BDSC: 52261 and 

36744) – used to measure hub volume in testes in which Rbf has been knocked down. Used 

to image ectopic hub formation in real-time (Figure S1 and Video S4).

w; Frt40A; UAS-shg (from J.P. Vincent laboratory) – used to overexpress E-cadherin in cells 

(Figure 6, and Table 1).

;UAS-Rbf RNAi/SM6B; UAS-shg/TM6B (combined from BDSC: 41863 and UAS-shg from 

J.P. Vincent laboratory) – used to overexpress E-cadherin and knockdown Rbf 

simultaneously to test for phenotype rescue (Figure 6, and Table 1).
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Drosophila husbandry—Flies were raised on a standard yeast/molasses medium 

(1212.5mL water, 14.7mL agar, 20.4g yeast, 81.8g cornmeal, 109.1ml molasses, 10.9mL 

Tegosept, 3.4mL propionic acid, 0.4mL phosphoric acid/ per tray of 100 vials) supplemented 

with dry yeast at 18C unless otherwise indicated. Male flies between 0–5 days of age were 

used for all experiments and subject to different conditions as noted within the text, figures, 

legends, and STAR methods.

METHOD DETAILS

Transgene Induction

Heat induction: Flies containing a temperature sensitive TubGal80 were grown at the 

permissive temperature 18C and shifted to the non-permissive temperature 29C for either 3, 

7, or 14 days as indicated to induce transgene expression of RNAi lines or overexpression 

lines.

Drug induction: RU486 powder was dissolved in 200 proof ethyl alcohol to make a 

50mg/mL stock solution stored at −20°C. For GS2295-Gal4 induction, 0–5 day old flies 

raised at 25°C were placed in vials with filter paper soaked in 125 μL of 2mg/mL of RU486 

in apple juice and 2.5 μL green food coloring. Flies were transferred to fresh drug/apple 

juice vials daily for 3 days at 25°C. Flies were checked for greendyed guts to ensure drug 

consumption, then transferred to a standard yeast/molasses food for 18 days at 25°C prior to 

dissecting, fixing, and immunostaining.

In vivo EdU labeling (Leatherman and Dinardo, 2008): For in vivo labeling of cells 

undergoing S phase, flies were dissected in Schneider’s Drosophila medium then testes still 

in their cuticles transferred to a glass dissection dish with 500 μL of 10 μM EdU in 

Schneider’s Drosophila medium for 20 minutes at room temperature. After soaking, testes 

were immediately transferred to a microtube with fixation solution (4% paraformaldehyde in 

1X PBS with 0.1% Triton X-100) for 25 minutes at room temperature on a nutator. Testes 

were then washed in 1X PBX (1X PBS with 0.1% Triton X-100) followed by incubation in 

250 μL of the ClickIT reaction cocktail (2.5 μL EdU buffer additive diluted in 22.5 μL of 

dH20, 25 μL 10X reaction buffer diluted in 190 μL of dH20 with 10 μL 100mM CuSO4, and 

0.625 μL Alexa fluor azide 555) as per the kit’s instructions for 30 minutes to visualize EdU. 

After the reaction, testes were washed in 1X PBX, blocked, and stained as described below.

Dissection and Immunohistochemistry (Matunis et al., 1997)

Dissection: Flies were anesthetized using CO2 then dissected with the cuticle still 

surrounding the testes in 1X Becker Ringer’s solution (111 mM NaCl, 1.88 mM KCl, 64 μM 

NaH2PO4, 816 μM CaCl2, 2.38 mM NaHCO3) (Ashburner, 1989) and transferred 

immediately to fixation solution (4% paraformaldehyde in 1X PBS with 0.1% Triton X-100) 

for 22 minutes at room temperature on a nutator.

Immunohistochemistry: All washes were conducted using 1X PBX (1X PBS with 0.1% 

Triton X-100) except the final wash before adding mounting media in which 1X PBS was 

used. Testes were blocked overnight at 4°C in 1X PBX with 3% BSA, 0.02% NaN3, and 2% 

goat or donkey serum. Antisera was diluted in 1X PBX with 3% BSA and 0.02% NaN3. 
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Testes were immunostained in primary antisera overnight at 4°C with the exception of 

mouse anti-Eyes Absent which was incubated at 4°C for three days and rabbit anti-STAT92E 

which was incubated at 4°C for one day and room temperature for one day. Secondary 

antibodies were diluted in 1X PBX containing 3% BSA and 0.02% NaN3 and testes 

incubated overnight at 4°C. The nuclear counterstain 4,6-diamidino-2-phenylindole (DAPI) 

(Millapore/Sigma) was added to most secondary antibody dilutions at a final concentration 

of 1 μg/mL. All testes were mounted in Vectashield antifade mounting medium (Vector 

Laboratories).

All polyclonal antibodies were stored in a 1:2 dilution at −20°C, and all monoclonal 

antibodies were stored at 4°C except for mouse anti-phosphohistone H3 and mouse anti-β-

Galactosidase which were stored at −20°C in a 1:2 glycerol dilution. Antisera was used at 

the following final concentrations:

Mouse monoclonal anti-Fasciclin III 1:50

Mouse monoclonal anti-phosphohistone H3 1:400

Guinea Pig polyclonal anti-Traffic Jam 1:20,000

Rabbit polyclonal anti-Vasa 1:200

Mouse monoclonal anti-Rbf 1:10

Chick polyclonal anti-GFP 1:10000

Rabbit polyclonal anti-dsRed 1:1000

Goat polyclonal anti-dsRed 1:500

Mouse monoclonal anti-Discs Large 1:50

Mouse monoclonal anti-Eyes Absent 1:10

Mouse monoclonal anti-Armadillo 1:50

Guniea Pig polyclonal anti-Zfh1 1:1000

Rabbit polyclonal anti-cleaved Drosophila Dcp1 1:200

Mouse monoclonal anti-hu-li tai shao (1B1) 1:50

Mouse monoclonal anti-β-Galactosidase 1:1000

Rabbit polyclonal anti-Stat92E 1:1000

Rat monoclonal anti-DE-cadherin 1:20

Rabbit polyclonal anti-Castor 1:50

Mouse monoclonal anti-Cut 1:20

All Fluor 488 secondary antibodies were used at a final concentration of 1:400. All other 

secondary antibodies were used at a final concentration of 1:200.

Lineage Tracing—In the following genotypes, expression of the Gal4 driver caused 

permanent expression of GFP in hub cells and their descendants. Marked cells were detected 
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by immunostaining. Testes with GFP cells outside the confines of the hub cluster that no 

longer expressed hub markers were considered positive for converting cells. The hub cluster 

was defined as either hub-Gal4 expressing cells marked by RFP for lineage tracing using the 

G-TRACE system, or Fasciclin III positive cells for lineage tracing using the alternative 

marking system. To trace hub cells after Rbf knockdown, E132Gal4/Y; UAS-GTRACE/+; 

TubGal80ts/UAS-Rbf RNAi flies were raised at 18C and 0–5 day old males shifted to 29°C 

for 7 or 14 days as indicated. E132Gal4/Y; UAS-GTRACE/+; TubGal80ts/+ flies lacking 

Rbf RNAi were processed in parallel to control for age and temperature. For the alternative 

lineage tracing method, GS2295-Gal4/ Tub > CD2 > Gal4,UAS-GFP; UAS-Flp/UAS-Rbf 

RNAi flies were raised at 25C and 0–5 day old males fed RU486 for 3 days then allowed to 

recover for 18 days at 25C as described above. GS2295-Gal4/Tub > CD2 > Gal4,UAS-GFP; 

UAS-Flp/+ flies lacking Rbf RNAi were processed in parallel to control for age, 

temperature, and drug consumption.

Extended Live Imaging (Greenspan and Matunis, 2017)—Flies were dissected in 

1X Becker Ringer’s solution (111 mM NaCl, 1.88 mM KCl, 64 μM NaH2PO4, 816 μM 

CaCl2, 2.38 mM NaHCO3) (Ashburner, 1989) and testes completely removed from the 

cuticle and separated from the accessory glands. Testes were mounted on a 35mm glass 

bottom dish with a 10mm microwell (MatTek Corporation). Imaging dishes were coated 

with 200 μL of 1mg/mL of poly-Llysine dissolved in 0.1M Trizma buffer pH 8.5 for at least 

one hour then rinsed with sterile dH20 prior to testis mounting. Testes were cultured in either 

500 μL or 1000 μL of Schneider’s Drosophila medium pH 7 or Shields and Sang M3 Insect 

medium supplemented with 15% fetal bovine serum (v/v), 0.5X penicillin/streptomycin, and 

0.2mg/mL insulin from bovine pancreas dissolved in acidified water. Live images were 

acquired using a Zeiss LSM 780 microscope. Up to nine different positions per dish were 

imaged using a programmable xy stage. Images were acquired in 25 or 10 minutes intervals 

for up to 18 hours. Z stacks ranging 30 μm with 1.25 μm steps were acquired for each time 

point. Only testes that contained a strong fluorescent signal and minimal sample drift in the 

x, y, and z planes throughout the movie were included for analysis. Samples whose hub cells 

were too far away from the coverslip to follow individual cellular behaviors, or those testes 

with a lot of movement due to muscle sheath contraction were excluded. After completion of 

live imaging, culture media was removed from the imaging dish and testes fixed and stained 

directly in the dish as described above.

Microscopy and Image Analysis

Image acquisition: Fixed images were obtained using either a Zeiss LSM 5 Pascal equipped 

with a 63x oil immersion objective, 405nm diode, 488nm ArKr, and 543nm HeNe lasers 

with digital zoom or a Zeiss LSM 700 (JHU SOM microscope facility) equipped with a 63x 

oil immersion objective, 405nm diode, 488nm solid-state, 561nm solid-state, and 639nm 

diode lasers with digital zoom. A Zeiss LSM 780 microscope (JHU SOM microscope 

facility) equipped with a 63x oil immersion objective, 405nm diode, 488nm Ar, 561 solid-

state, and 639 diode lasers with digital zoom was used to acquire all live imaging, fixed 

images taken from those samples imaged in real time, and those used to measure hub 

volume. Images were acquired using either Zeiss LSM or Zen software. All Z stacks through 
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the testis tissue had a step size of 1.25 μm except for Z stack used in ploidy and E-cadherin 

fluorescence measurements in which a 0.5 μm step size was used.

Image processing: Images acquired using Zeiss LSM or Zen software were processed using 

Fiji or IMARIS software. Brightness for individual channels from single confocal slices was 

enhanced using Fiji, then each channel overlaid to form a merged image. All 3D 

reconstructions were created in IMARIS using acquired Z stacks and the volume tool to 

create a composite image. Brightness for individual channels was also enhanced within the 

IMARIS software.

QUANTIFICATION AND STATISTICAL ANALYSIS

Hub cell proliferation quantification—To quantify hub cell divisions, testes were 

subject to EdU labeling to label cells in S phase (as described above) and/or immunostained 

with the mitotic marker phosphohistone H3. Testes with EdU and/or PH3 marked cells 

within the confines of the hub cluster were considered positive for dividing hub cells. The 

hub cluster was defined as those cells marked by the hub membrane marker Fasciclin III. 

Testes that had no EdU incorporation throughout the entire tissue were excluded.

Apoptosis quantification—To quantify dying hub cells, testes were immunostained with 

the apoptotic marker cleaved Drosophila Dcp1, and the hub cluster indicated by the hub 

membrane marker Fasciclin III. Since some Dcp1 labeling could be seen in non-dying cells, 

dying hub cells were considered only those cells within the confines of the hub cluster in 

which Dcp1 labeled the entire cell. These cells tended to be smaller in size due to cell 

shrinking upon apoptosis activation.

Ectopic hub quantification—To quantify ectopic hubs, testes were immunostained with 

the hub membrane marker Fasciclin III. Z stacks were acquired to include the entire hub 

range. Hub clusters whose membranes were no longer connected in any Z planes were 

considered separate hubs. Testes with more than one hub cluster were considered positive 

for ectopic hubs.

Hub volume measurement—To determine hub volume upon Rbf knockdown, Z stacks 

of fixed testes whose hub cells expressed a bright cytosplasmic GFP and Rbf RNAi for 3, 7, 

or 14 days as indicated were acquired to include the entire hub range. Sibling flies that did 

not express Rbf RNAi were used to control for age and temperature. A surface rendering of 

the entire hub was generated using the surface tool with default parameters within IMARIS 

software. To generate the surface rendering, only a segment of the testis with the hub, as 

indicated by the GFP channel, was included. A surface area detail level of 0.25 μm was 

utilized with an absolute intensity that contained at least 10 voxels. The GFP fluorescence 

intensity threshold was adjusted for each surface rendering so that the entire hub was 

included within the object but bounded by Fasciclin III membrane staining. GFP expression 

outside the Fasciclin III bounds was considered to be converting hub cells and was excluded 

from hub volume measurements. Once the surface rendering was created, the volume could 

be automatically measured using the statistics tab.
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Live cell tracking and fluorescence intensity measurements—To track cell 

behavior over the course of the movie, individual hub cells were randomly selected from 5 

GTRACE only control movies and 7 GTRACE; Rbf RNAi movies where flies had been 

shifted to 29°C for 10 days prior to live imaging. Only movies acquired with 16 bits at 

10min time point intervals were utilized for fluorescence quantification and testes that had 

too much sample drift in the x, y, or z planes were excluded. Cells were tracked manually 

using the Spots tool within IMARIS software. Hub cell diameter was set at 4 μm for the XY 

plane and 4 μm for the Z plane. Cells were tracked using the red channel only, by manually 

clicking on the cell at the first and last time point. Fluorescence intensity and the X, Y and Z 

coordinates were automatically measured for the first and last time points using the Spots 

function. For each cell, percent of red fluorescence intensity remaining was calculated using 

the following formula:

% loss = 1 + (fluorescence at last time point – fluorescence at first time point)/ fluorescence 

at first time point. Displacement was calculated using the following formula: 

d = ( x2 − x1
2 + y2 − y1

2 + z2 − z1
2). Since some movies were longer in time than others 

each measurement was calculated for the last common time point T91.

E-cadherin fluorescence intensity measurements—To measure levels of E-

cadherin expression, testes were immunostained with E-cadherin and DAPI. Z stacks with a 

0.5 μm step size were acquired to include the entire hub range. Fluorescence signal was 

acquired at the same gain in the linear range for all samples. Fluorescence intensity was 

measured using FIJI software. All stacks containing the hub were merged into a single 

summed slice and Ecadherin fluorescence intensity was measured by drawing an object 

around the entire hub and using the measure feature. The corrected total cell fluorescence 

(CTCF) was then calculated by taking the integrated density and subtracting the area times 

the mean of 3 fluorescence background readings. The CTCF for E-cadherin fluorescence 

was then normalized over the CTCF for the DAPI channel, which was calculated in the same 

manner. The normalized E-cadherin fluorescence measurements were compared for testes 

expressing Rbf RNAi in their hub cells to those expressing GFP RNAi in their hub cells for 

7 days.

Ploidy Measurements—To determine the normal ploidy of hub cells, CTCF 

measurements were calculated, as described above, for the DAPI channel of control testes 

(testes from flies expressing GFP RNAi in their hub cells for 7 days). The CTCF 

measurement for the entire hub was then divided by the number of hub cells within each hub 

to determine the CTCF DAPI reading per hub cell. CTCF DAPI measurements of hub cells 

were then divided by the mean CTCF DAPI measurement of all sperm cells measured to 

determine ploidy. To measure DAPI fluorescence of sperm cells, seminal vesicles were 

opened up to allow sperm to be mounted on the same slide as testes. Z stacks with a 0.5 μm 

step size were acquired to include many sperm. Stacks containing many sperm were merged 

into a single summed slice. To measure the DAPI fluorescence of multiple sperm at a time a 

ROI map was generated in FIJI with a threshold of 4626 65535. Only entire sperm that were 

in the field of view were measured. CTCF DAPI measurements were then calculated for 

each sperm.
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Statistical Analysis—For all quantifications, n represents the number of testes analyzed. 

Statistical significance was expressed as P values and determined using a Fisher’s exact test 

for most measurements except hub volume and E-cadherin fluorescence measurements in 

which an unpaired t test with Welch’s correction was used. Linear regression analysis was 

used to compare displacement of hub cells over time to the percent of red fluorescence 

remaining. All statistical tests were run using PRISM 6 software. (*) denotes p < 0.05, (**) 

denotes p < 0.01, (***) denotes p < 0.001, and (****) denotes p < 0.0001 and (ns) denotes 

values that were not significant. Error bars represent standard deviation.

Bar graphs and tables indicate the percent of testes with a certain phenotype out of all the 

testes analyzed with that genotype. Scatterplots show raw data of the entire distribution of 

values observed with the average reported as a horizontal black line and bars representing 

the standard deviation above and below the average. XY graph shows individual hub cells 

for each genotype plotted as displacement versus percent red fluorescence remaining. Linear 

regression lines were generated for each genotype based on the calculated R2 values.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Loss of Retinoblastoma in the hub causes hub cell division and conversion to 

CySCs.

• Retinoblastoma acts through E2F to maintain hub quiescence, fate, and niche 

number.

• Extended loss causes ectopic niche formation through fission of the original 

hub.

• Overexpression of Esg or E-cadherin can suppress ectopic niche formation.
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Figure 1. Hub Cells Lose Quiescence upon Rbf Knockdown.
(A) Schematic of the Drosophila testis stem cell niche, which contains a specialized 

microenvironment consisting of somatic hub cells (green) that signal to the attached 

germline stem cells (GSCs; dark gray) and somatic cyst stem cells (CySCs; dark blue). 

Differentiating spermatogonia (light gray) are enveloped by cyst cells (light blue) and are 

displaced from the testis apex.

(B) Bar graph showing the percentage of testes containing dividing hub cells as measured by 

either EdU incorporation indicating cells in S phase (red bars) orPH3 staining indicating 

cells in mitosis(green bars).Two independent Rbf RNAi lines, labeled A and B accordingly, 

were expressed by E132ts to control knockdown of Rbf specifically in the hub. Testes 

expressing either RNAi line showed a significant difference in EdU incorporation and PH3 

staining in hub cells compared with E132ts > GFP RNAi controls.

(C and D) Single confocal sections through the testis apex immunostained for EdU (S phase 

cells; red), Fas III (hub; membranous green), PH3 (mitotic cells; nuclear green), Tj (cyst 

lineage; white), and DAPI (nuclei; blue). Flies were shifted to 29°C for 7 days to induce 

either GFP RNAi (C) or Rbf RNAi (D) knockdown. See also Figure S1.

(C–Cʹʹ) Control testis shows no EdU incorporation or PH3 staining within cells of the hub 

cell cluster (white outline). Merged (C), FasIII and PH3 only (Cʹ), EdU only (Cʹʹ), and Tj 

only (Cʹʹʹ) channels are shown.

(D–Dʹʹʹ) Loss of Rbf in hub cells using Rbf RNAi leads to hub cell divisions as seen by EdU 

incorporation (yellow arrowhead) and PH3 staining (yellow arrow) within the hub (white 

outlines). Merged (D), FasIII and PH3 only (Dʹ), EdU only (Dʹʹ), and Tj only (Dʹʹ) channels 

are shown.
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Figure 2. Hub Cells Convert to Cyst Lineage Cells upon Rbf Knockdown.
(A–F) Single confocal sections through the testis apex of E132ts > G-TRACE control testes 

(A, C, and E) and E132ts > G-TRACE; Rbf RNAi experimental testes (B, D, and F). 

Marking and RNAi induction occurred for 7 days (A–D) or 14 days (E and F) at 29°C. 

Testes are immunostained for dsRed (Gal4-expressing hub cells; red), GFP (hub cells and 

cells derived from hub cells; green), DAPI (nuclei; blue), and either Dlg (cell membranes; 

white, A and B), Tj (cyst lineage; white, C and D), or Fas III and Eya (hub membrane and 

late cyst cells, respectively; white, E and F). Merged and single channels are shown.

(A–Aʹʹʹ) Hub cells (white asterisk) are seen in a confined area at the apical tip of the control 

testis. These cells express the hub-GAL4 driver, allowing continuous expression of both RFP 

and GFP, causing cells to appear yellow. Merged (A), dsRed only (Aʹ), GFP only (Aʹʹ), and 

Dlg only (Aʹʹʹ) channels are shown.

(B–Bʹʹʹ) Rbfknockdown causes hub cellconversion. Cells within the main hub cluster (white 

asterisk) still express the hub-GAL4 driver and appear yellow. Cells originating from the hub 

that have migrated away from the main hub cluster have lost their hub cell identity (yellow 

arrowheads) and appear only green. Merged (B), dsRed only (Bʹ), GFP only (Bʹʹ), and Dlg 

only (Bʹʹʹ) channels are shown.
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(CCʹʹʹ) Cyst lineage cells (Tj; white) do not express either RFP or GFP and thus are not 

derived from converting hub cells in control testes. Merged (C), dsRed only (Cʹ), GFP only 

(Cʹʹ), and Tj only (Cʹʹʹ) channels are shown.

(D–Dʹʹʹ) Upon Rbf knockdown, hub-derived traced cells (RFP−GFP+) express the cyst 

lineage marker Tj (yellow arrowheads), indicating that these cells have changed their cell 

fate. Tj-positive cells not derived from the hub (RFP−GFP−) are also seen (yellow arrow). 

See also Figure S3. Merged (D), dsRed only (Dʹ), GFP only (Dʹʹ), and Tj only (Dʹʹʹ) 

channels are shown.

(E and Eʹ) Late cyst cells are unmarked (RFP−GFP−), express Eya (nuclear white; yellow 

arrow), and are seen far away from the hub (white asterisk) in control testes. Merged (E) and 

Eya and FasII only (Eʹ) channels are shown.

(F and Fʹ) Upon Rbf knockdown, some converted hub cells (RFP−GFP+) that are far away 

from the hub (white asterisk) are seen expressing the late cyst marker Eya (nuclear white; 

yellow arrowheads), indicating that they can progress through cyst lineage differentiation. 

Unmarked (RFP−GFP−) late cyst cells (Eya+) are also seen (yellow arrow). Some marked 

cells (RFP−GFP+) do not express Eya (white arrowhead), suggesting that these cells have 

lost hub fate but have not yet acquired later cyst cell fate. Merged (F) and Eya and FasII only 

(Fʹ) channels are shown.

Scale bars represent 20 μm. See also Figures S2–S4, Table S1, and Videos S1, S2, and S3.
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Figure 3. Rbf Knockdown in the Hub Causes Migration of Converting Hub Cells and Hub Cell 
Death.
(A and B) Still frames from live images of E132ts > G-TRACE; Rbf RNAi testes shifted for 

10 days at 29°C. Testes were imaged live for approximately 15 hr, with images acquired 

every 10 min. Images show red channel only.

(A) Time frame 1 (T1) shows three hub cells marked by gray circles that have already left 

the main hub cluster.

(B) By the last time frame (T91), the hub cell marked 1 has undergone cell death, as seen 

through the condensation of its DNA. The other two marked hub cells (2 and 3) have 

traveled farther from the main hub cluster and have lost red fluorescent expression, 

indicating that they are no longer hub cells.

(C) Dot plot depicting the displacement from T1 to T91 versus the percentage of red 

fluorescence expression remaining at T91 compared with T1. Green dots show individual 

hub cells from control testes expressing G-TRACE only (n = 15), while red dots show 

individual hub cells from testes expressing G-TRACE and Rbf RNAi in the hub (n = 42). 

Linear regression analysis shows a significant correlation (R2 = 0.33, p < 0.0001) between 

the displacement of a hub cell and the amount of fluorescence it loses in testes in which Rbf 

has been knocked down. Control testes show no such correlation (R2= 0.04, ns). See also 

Videos S2 and S3.

(D–F) Single confocal sections through the testis apex of testes fixed and immunostained for 

Dcp1 (dying cells; red), Fas III (hub; membranous green), and DAPI (nuclei; blue). Hubs are 
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outlined in white. E132ts flies expressing either GFP RNAi (D) or Rbf RNAi (E and F) were 

shifted to 29°C for 7 days to induce RNAi knockdown.

(D and Dʹ) Dying cells can be seen within control testes (white arrowhead) but are never 

seen within the hub. Merged (D) and Dcp1 only (Dʹ) channels are shown.

(E–Fʹ) Rbf knockdown in hub cells using two independent RNAi lines denoted A (E and Eʹ) 
and B (F and Fʹ) causes hub cell apoptosis, as indicated by shrinking hub cells that are 

marked with Dcp1 throughout the entire cell (yellow arrowheads). Merged (E and F) and 

Dcp1 only (Eʹ and Fʹ) channels are shown.

Scale bars represent 15 μm (A and B) and 10 μm (D–F).
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Figure 4. E2F Knockdown but Not Esg Overexpression Suppresses Hub Cell Proliferation 
Caused by Rbf Knockdown.
(A–F) Single confocal sections through the testis apex immunostained for Vasa (germ cells; 

red), Fas III (hub; membranous green), PH3 (mitotic cells; nuclear green), and DAPI (nuclei; 

blue). Hubs are outlined in white. Flies were shifted to 29°C for 14 days to induce RNAi 

knockdown using the E132ts driver.

(A and B) Testes with Rbf knocked down in the hub using two independent RNAi lines 

denoted A (A) and B (B) have extensive hub cell proliferation, indicated by PH3-marked 

hub cells (yellow arrows), leading to an enlargement of the hub.

(C and E) Knockdown of E2F (C) or overexpression of Esg (E) individually in the hub does 

not induce hub cell divisions, as indicated by the absence of PH3 in hub cells. Note that the 

hub size also appears normal.

(D) Knockdown of both E2F and Rbf in the hub suppresses hub cell proliferation as 

indicated by an absence of PH3 in the hub. Hub size appears normal. (F) Overexpression of 

Esg in the hub does not suppress the proliferation phenotype caused by Rbf knockdown. An 

enlarged hub with PH3-marked hub cells (yellow arrow) is still detected.

Scale bars represent 20 μm. See also Table 1.
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Figure 5. Loss of Rbf in Hub Cells Causes Ectopic Niche Formation.
(A–F) Single confocal sections through the testis apex of E132ts > GFP RNAi control testes 

(A and D) or E132ts > Rbf RNAi testes (B, C, E, and F). RNAi was induced for 14 days at 

29°C. (A–C) Testes immunostained with Fas III (hub; membranous green), PH3 (mitotic 

cells; nuclear green), and DAPI (nuclei; blue). Control testis (A) contains only a single hub 

(white outline), while those testes expressing either Rbf RNAi A (B) or Rbf RNAi B (C) in 

hub cells contain multiple hubs. (D–F) Testes immunostained with Armadillo (hub; 

membranous white), 1B1 (fusome; white), Zfh1 (CySCs; green), Vasa (germ cells; red), and 

DAPI (nuclei; blue).

(D–Dʹʹ) Control testis with a single hub surrounded by both CySCs (yellow arrows) and 

GSCs represented by red cells with a dot fusome (yellow arrowhead). Merged (D), Zfh1 

only (Dʹ), and 1B1 and Arm only (Dʹʹ) channels are shown.

(E–Fʹʹ) Testes with Rbf knocked down in the hub using two independent RNAi lines 

denoted A (E–Eʹʹ) and B (F–Fʹʹ) contain multiple hubs (white outlines) scattered throughout 
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the testis apex, each with CySCs (yellow arrows) and GSCs (yellow arrowheads). Merged (E 

and F), Zfh1 only (Eʹ and Fʹ), and 1B1 and Arm only (Eʹʹand Fʹʹ) channels are shown.

Scale bars represent 20 μm. See also Figure S5 and Video S4.
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Figure 6. E2F Knockdown, Esg Overexpression, or Ecad Overexpression Suppresses Ectopic 
Hub Formation upon Rbf Knockdown.
(A–H) Single confocal sections through the testis apex immunostained for Vasa (germ cells; 

red), Zfh1 (CySCs; green), Fas III (hub; membranous white), PH3 (mitotic cells; nuclear 

white), and DAPI (nuclei; blue). Hubs are outlined in white. RNAi was induced for 14 days 

at 29°C using the E132ts driver. Only a single hub at the apical end of the testis is detected 

when E2F is knocked down (C), Esg is overexpressed (E), or Ecad is overexpressed (G) 

individually in hub cells. In contrast, induction of Rbf RNAi (A and B) in hub cells can 

induce ectopic hub formation, as indicated by multiple Fas III-positive hub clusters that are 
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not connected (white outlines with yellow arrows). Expression of two RNAis simultaneously 

does not dilute the strength of the knockdown as ectopic hubs are still seen when Rbf and 

GFP are knocked down in conjunction (A). E2F knockdown (D), Esg overexpression (F), or 

Ecad overexpression (H) is sufficient to prevent multiple hubs from forming upon Rbf 

knockdown, as only a single hub (white outline) is seen in these testes. Note that upon Rbf 

knockdown, E2F knockdown in the hub (D) restores normal hub size, while overexpression 

of Esg or Ecad (F and H, respectively) does not. These testes contain a single enlarged hub.

Scale bars represent 20 μm. See also Table 1 and Figure S6.
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Table 1.

Rescue of Rbf Knockdown Phenotypes

Genotype E132Gal4;; % Testes with % Testes with

TubGal80ts PH3+Hub Cells Ectopic Hubs

UAS-GFP RNAi 0% (n = 0/30) 0% (n = 0/61)

UAS-Rbf RNAi (A)
52% (n = 29/56)

a,**** 18% (n = 15/85)
a,***

UAS-Rbf RNAi (A);
UAS-GFP RNAi 27% (n = 4/15)

a,* 26% (n = 5/19)
a,***

UAS-Rbf RNAi (B)
22% (n = 8/83)

a,** 25% (n = 29/117)
a,****

UAS-E2F RNAi
0% (n = 0/53)

a
 (ns) 0% (n = 0/53)

a
 (ns)

UAS-Rbf RNAi (A);UAS-E2F RNAi
0% (n = 0/42)

b,** 0% (n = 0/42)
b,**

UAS-esg; UAS-LacZ
0% (n = 0/35)

a
 (ns) 0% (n = 0/35)

a
 (ns)

UAS-esg; UAS-RbfRNAi (B)
35% (n = 17/48)

c,(ns) 2% (n = 1/48)
c,***

UAS-shg (for Ecad overexpression)
0% (n = 0/98)

a
(ns) 0% (n = 0/98)

a
 (ns)

UAS-Rbf RNAi (A);UAS-shg
26% (n = 19/73)

b
(ns) 3% (n = 2/73)

b,**

Fisher’s Exact Test

*
p < 0.05

**
p < 0.01

***
p < 0.001

****
p < 0.0001, ns, not significant.

a
Compared with UAS-GFP RNAi.

b
Compared with UAS-Rbf RNAi (A); UAS-GFP RNAi.

c
Compared with UAS-Rbf RNAi (B).
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