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Abstract: MAFB is a basic leucine zipper (bZIP) transcription factor specifically expressed in
macrophages. We have previously identified MAFB as a candidate marker for tumor-associated
macrophages (TAMs) in human and mouse models. Here, we analyzed single-cell sequencing data
of patients with lung adenocarcinoma obtained from the GEO database (GSE131907). Analyzed
data showed that general macrophage marker CD68 and macrophage scavenger receptor 1 (CD204)
were expressed in TAM and lung tissue macrophage clusters, while transcription factor MAFB was
expressed specifically in TAM clusters. Clinical records of 120 patients with lung adenocarcinoma
stage I (n = 57), II (n = 21), and III (n = 42) were retrieved from Tsukuba Human Tissue Biobank Center
(THB) in the University of Tsukuba Hospital, Japan. Tumor tissues from these patients were extracted
and stained with anti-human MAFB antibody, and then MAFB-positive cells relative to the tissue
area (MAFB+ cells/tissue area) were morphometrically quantified. Our results indicated that higher
numbers of MAFB+ cells significantly correlated to increased local lymph node metastasis (nodal
involvement), high recurrence rate, poor pathological stage, increased lymphatic permeation, higher
vascular invasion, and pleural infiltration. Moreover, increased amounts of MAFB+ cells were related
to poor overall survival and disease-free survival, especially in smokers. These data indicate that
MAFB may be a suitable prognostic biomarker for smoker lung cancer patients.

Keywords: biomarker; cancer severity; cancer prognosis; MAFB; tumor-associated macrophages

1. Introduction

V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) belongs to
the large Maf transcription factor family and is a bzip transcription factor that regulates
target gene expression [1]. Mafb is expressed in several tissues and is associated with the
differentiation of various cell types, such as kidney podocytes [2], keratinocytes [3], and
pancreatic α-cells and β-cells [3,4].
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In the hematopoietic cell lineage, a transcriptome analysis using multi-dendritic cell
(DC) and macrophage subsets showed that the expression of Mafb is associated specifically
with monocyte-macrophage lineage and not DC lineage [5]. An increase in Mafb expression
was observed in anti-inflammatory M2-type macrophages in vitro [6]. Moreover, MAFB in
macrophages plays an essential role in resolving inflammation in ischemic conditions, effe-
rocytosis preventing autoimmunity, and inhibiting macrophage apoptosis in atherogenic
conditions [7–9], indicating that MAFB regulates the homeostatic function of macrophages.
Lung alveolar macrophages (AM) express a low level of MAFB [5]; however, exposure to
cigarette smoke progressively increased the expression of Mafb in a mouse model [10]. Even
though patients with chronic obstructive pulmonary disease also exhibit increased Mafb
expression [11], the relationship between exposure to cigarette smoke, Mafb expression,
and lung cancer remains largely unidentified.

Tumor-associated macrophages (TAM) are the major cell populations of the tumor
microenvironment (TME) and promote tumor progression, metastasis, angiogenesis, and
resistance to therapy [12]. A higher infiltration of TAMs is often associated with a high
mortality rate in various cancers [13]. M2 macrophage markers such as CD163, CD68,
CD206, and CD204 are TAM markers that are widely used to assess cancer progression [14].
However, distinguishing M1 and M2 macrophages within the TAM in vivo remains chal-
lenging [15]. Consistent with this, CD163 and CD206 are reported to be expressed on
M1-like TAMs or DCs that stimulate T cell activity in gastrointestinal tumors and ovar-
ian ascites [16,17]. CD204 is also expressed in dendritic cells [18] in angioblastic T cell
lymphoma (AITL); however, CD204 was not expressed in TAM [19]. Even though CD68,
CD163, and CD204 have been widely used to assess the severity and outcome of human
cancers [14,20], opinion on what constitutes the definitive TAM marker remains controversial.

We have previously reported Mafb expression in M2-type TAMs in a mouse tumor
model of Lewis lung carcinoma. Furthermore, we have shown a significant upregulation of
MAFB in human lung carcinomas (stage I and stage III) [21]. However, the lack of expres-
sion of Mafb in AM, along with its cigarette smoke-induced increase in expression [5,10],
led us to hypothesize that MAFB could be a potential TAM marker for lung cancer. Here,
we analyzed the single-cell RNA sequence (scRNA-seq) data of human lung cancer pre-
viously reported to exhibit a lack of MAFB expression in AM but expressed specifically
in another macrophage lineage. Further, the lung tissue of 120 patients with lung cancer
was immunostained using an anti-MAFB antibody, and the association between MAFB and
cancer-related parameters was analyzed. Our results indicated that Mafb is highly specific
for TAM and is a potential prognostic marker. Moreover, MAFB was also identified as a
prognostic marker that can predict the risk of mortality among smoker patients.

2. Results
2.1. MAFB Is Specifically Expressed in Monocytes/Macrophages but Not Alveolar Macrophages in
Both Normal and Cancerous Tissue

It has been shown that in a mouse model, Mafb is not expressed in AM [5]. Expecting
the same for humans, MAFB may be a more specific TAM marker in lung cancer than
other M2 macrophage markers. Therefore, we compared the distribution of MAFB and
other macrophage markers, CD68 and CD204, using scRNA sequencing data of lung cancer
patients, including normal lung, tumor tissue (stage I and III, n = 7), and advanced tumor
tissue (stage IV, n = 4), as reported by Kim et al. (GSE131907) [22]. There were 34 clusters in
all samples (Figure S2A). The myeloid series was extracted and analyzed using myeloid
markers, LYZ, MARCO, CD68, and FCGR3A (Figure S2B). The extracted myeloid population
had 18 (labeled 0–17) clusters, which were classified according to the expression of marker
genes into AM, (cluster 0, 4, 10, 15), ML (cluster 2, 3, 5, 6, 9, 11, 13, 16), Mo (cluster 1, 8), and
DC (cluster 7, 12, 14, 17) (Figures 1A and S3A). Interestingly, all macrophage populations
were identified in normal lung, tumor, and advanced tumor samples. AM was found in
cancer tissue; however, the number of AM decreased with advancement in cancer stage
(Figure 1B).
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Figure 1. Single-cell RNA sequencing (scRNA-seq) analysis obtained from 44 patients with treatment-
naive lung adenocarcinoma. Single-cell RNA raw data included normal lung tissue (n = 11), tumor
tissue (stage I and III, n = 7), and advanced tumor tissue (stage IV, n = 4). Raw data were downloaded
and processed using sctransform function in Seurat (v3). (A) Identified 17 clusters of the myeloid
population. (B) monocytes (Mo), alveolar macrophages (AM), macrophages lineage (ML), and
dendritic cells (DC) cluster distribution in normal lung tissues, tumors, and advanced tumors.
(C,D) CD68 expression pattern in normal lung tissues, tumor, and advanced tumor. (E,F) CD204
expression pattern in normal lung tissues, tumor, and advanced tumor. (G,H) MAFB expression
pattern in normal lung tissues, tumor, and advanced tumor. (I) Heatmap analysis of the expression
of MAFB, CD68, and CD204 in AM. (J) Heatmap analysis of the expression of MAFB, CD68, and
CD204 in monocytes. (K) Heatmap analysis of the expression of MAFB, CD68, and CD204 in
macrophage lineage.
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We further analyzed the expression patterns of CD68 and CD204 in normal lung
and cancer tissues. Our results showed that CD68 was expressed in ML and Mo clus-
ters in normal lung and cancer tissues; however, strongly expressed in AM clusters
(Figure 1C,D). CD204 was also expressed in the ML clusters in tumor tissues and the
AM clusters (Figure 1E,F). Compared to CD68 and CD204, MAFB was markedly less ex-
pressed in AM and specifically expressed in ML and Mo in all data from normal lung and
cancer tissues (Figure 1G,H). A heatmap analysis confirmed MAFB expression in myeloid
clusters, and the results showed lower MAFB expression in all the AM clusters (0, 4, 10, 15)
compared with expression levels of CD68 and CD204 (Figure 1I). A higher level of MAFB
expression was observed in the Mo cluster, than CD68 and CD204, suggesting that MAFB
is expressed in infiltrating monocytes (Figure 1J). Consistently, the expression pattern of
CCR2, a chemokine receptor for monocytes, was similar to that of MAFB in the monocyte
clusters (Figure S3B). In the ML, MAFB, CD68, and CD204 were all expressed in clusters
2, 5, and 6 of the stage I samples, while cluster 9 showed strong expression of MAFB. As
for cluster 13, CD68 was strongly expressed in stage I and CD204 in the advanced tumor,
but MAFB was not expressed (Figure 1K). These results indicate that MAFB, CD68, and
CD204 could be identified as markers of TAM but have different expression patterns among
subsets of human macrophages.

2.2. Higher MAFB+ Cell Density May Be Associated with Poor Clinical Prognosis among Lung
Cancer Patients

Cancer diagnostic TAM markers, CD68, CD204, CD206, and CD163, are expressed
on lung tissue AM (Figures 1 and S3C); however, the poor MAFB expression on AM
might significantly impact the assessment of cancer progression using TAM as an indicator.
Therefore, to investigate whether the density of MAFB-positive cells is related to the clinical
features of the tumor, we collected and analyzed cancer tissues from 120 patients with lung
adenocarcinoma with or without nodal involvement (stage I, II, and III) admitted to the
Tsukuba University Hospital between 2010 and 2019 (Table S1). The cancer tissues were
immunostained using an anti-MAFB antibody, and the number of MAFB-positive cells
relative to the tissue area was counted. The patients were ranked according to the MAFB+

cell density into low (25%) (low-MAFB+ group; n = 30, MAFB+ density ≤ 0.005), mid (49%)
(mid MAFB+ group; n = 59, MAFB+ density = 0.006–0.016), and the higher (26%) (high-
MAFB+ group; n = 31, MAFB+ density ≥ 0.017). The signals of MAFB staining differed
significantly in each group (Figure 2A,B). Moreover, the high-MAFB+ group presented
with significantly large tumors (Figure 2C). The correlation between the three groups, low-,
mid-, and high- MAFB+ cell density with the recorded clinical features of the patients was
analyzed using Fisher’s exact test (Table 1).

The patients did not differ significantly in age < 70 years versus ≥ 70 years (p = 0.22),
or smoking status (p-value = 0.30). The female-to-male ratios were significantly different
in the mid-MAFB+ group (male: female, 21:38) and the high-MAFB+ group (male:female,
20:11, p < 0.03). No significant association between smoking habits and the MAFB cell
population was identified; however, patients with smoking habits tended to cluster more
in the high-MAFB+ group (never: former/current, 8:23). Most of the patients with stage
I adenocarcinoma were grouped into the low-MAFB+ (stage I: stage III, 24:6), while a
significant number of patients with stage III adenocarcinoma were grouped into the high-
MAFB+ group (stage I:stage III, 3:28, p < 0.01). Similarly, clinical characteristics related
to cancer recurrence, including nodal involvement, lymphatic permeation, and vessel
invasion, were lower in tissues with low-MAFB+, while the high-MAFB+ group showed a
significant correlation. Most of the tissues with low-MAFB+ showed no pleural infiltration.
These findings suggest that higher MAFB+ cell density may be associated with poor clinical
prognosis among patients with stages I, II, and III lung adenocarcinoma.
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Figure 2. Grouping non-metastatic lung adenocarcinoma tissue according to MAFB+ cells density.
(A) Representative data of immunohistochemical analysis of human lung adenocarcinomas with
anti-human MAFB. Arrows point out the MAFB-positive cells. (B) MAFB-positive area relative to
tissue area (MAFB/tissue area) was morphometrically quantified. Tissue samples were grouped
into top 25% (high-MAFB+ group, MAFB expression area/tissue area = 0–0.005 (n = 30)), 25–50%
(mid-MAFB+ group, MAFB expression area/tissue area = 0.006–0.016 (n = 59)), and bottom 25%
(low-MAFB+ group, MAFB expression area/tissue area = 0.017–0.121 (n = 31)). (C) MAFB expression
in three groups was tested for correlation to tumor sizes. Data are presented as means ± SEM; data is
considered significant at * p < 0.05, ** p< 0.01.

Table 1. Correlation between MAFB+ cell density and the clinicopathological factors in non-metastatic
lung adenocarcinoma.

Low-MAFB+ (≤0.005) Mid-MAFB+ (0.006–0.016) High-MAFB+ (≥0.017) p-Value of
Fisher’s Exact TestVariables No of Case n = 30 (25%) No of Case n = 59 (49%) No of Case n = 31 (26%)

Age (y)

<70 20 (67%) 39 (66%) 15 (48%)

0.2249≥70 10 (33%) 20 (34%) 16 (52%)

Gender

Male 15 (50%) 21 (36%) * 20 (65%) *

0.0302Female 15 (50%) 38 (64%) * 11 (35%) *

Smoking history

Never 12 (40%) 25 (42%) 8 (26%)

0.3046Former or current 18 (60%) 34 (58%) 23 (74%)

Clinical Stage

I (n = 57) 24 (42%) *** 30 (53%) 3 (5%) ***
<0.001

II + III (n = 63) 6 (10%) *** 29 (46%) 28 (44%) ***
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Table 1. Cont.

Low-MAFB+ (≤0.005) Mid-MAFB+ (0.006–0.016) High-MAFB+ (≥0.017) p-Value of
Fisher’s Exact TestVariables No of Case n = 30 (25%) No of Case n = 59 (49%) No of Case n = 31 (26%)

Cancer Recurrence

Negative 22 (73%) * 33 (56%) 10 (32%) *

0.006Positive 8 (27%) * 26 (44%) 21 (68%) *

Nodal involvement

Negative (N−) 24 (80%) *** 32 (54%) 4 (13%) ***

<0.0001Positive (N+) 6 (20%) *** 27 (46%) 27 (87%) ***

Lymphatic permeation

Ly(–) 26 (87%) *** 34 (58%) 12 (39%) **

<0.001Ly(+) 4 (13%) *** 25 (42%) 19 (61%) **

Vessel invasion

V(–) 23 (77%) *** 26 (44%) 5 (16%) ***

<0.0001V(+) 7 (23%) *** 33 (56%) 26 (84%) ***

Pleural infiltration

PL(–) 23 (77%) * 31 (53%) 13 (42%)
0.019

PL(+) 7 (23%) * 28 (47%) 18 (58%)

According to density of cells expressing MAFB, 120 lung adenocarcinoma patients with stages I, II, and III were
grouped into low-MAFB+, mid-MAFB+, and high-MAFB+ cell density groups. Correlation between MAFB
expression and clinical factors among groups was recorded and statistically analyzed using Fisher’s exact test,
* p < 0.05, ** p < 0.001, *** p < 0.0001.

2.3. High-MAFB+ Cell Density Indicated a Higher Mortality Risk

Many studies have shown that TAM markers are associated with survival in lung
cancer patients [13]. Therefore, we analyzed whether the MAFB+ cell density was associated
with survival rates of the patients with non-metastatic (Stage I to III) lung adenocarcinoma.
Figure 3A,B show the OS and DFS of low- (black line), mid- (green line), and high- (red line)
MAFB+ cell density groups. The curves indicate that high-MAFB+ cell density indicated
a higher mortality risk as the mean survival time (MST) for the low-, mid-, and high-
MAFB+ groups were 114.7 months, 104.4 months, and 75.5 months (p < 0.001, log-rank test),
respectively (Figure 3A).

In terms of DFS, the MST in the low-, mid-, and high-MAFB+ group was 96.4 months,
78.6 months, and 39.9 months (p < 0.001, log-rank test), respectively (Figure 3B). Compared
with the MST of nodal involvement; negative (−) with an OS of 109.0 months and positive
(+) with an OS of 92.4 months; the low-MAFB+ patients showed longer OS than patients
with (−) nodal involvement and high-MAFB+ patients showed a 17 month shorter OS than
patients with nodal involvement (Figures S4 and 3A,B).

Furthermore, Pearson correlation analysis showed that MAFB+ cell density was nega-
tively correlated with OS or DFS (Figure 3C, R score: −0.37, p < 0.001, D, R score: −0.38,
p < 0.001). Consistently, the univariate analysis using the Cox hazard test disclosed that the
OS (low vs. Mid, p = 0.0791, low vs. high, p = 0.0011) and DFS (low vs. mid, p = 0.0828,
low vs. high, p = 0.0018) was associated with MAFB expression and other factors except
for sex and age (Table 2).

On the other hand, multivariate analysis suggested that MAFB expression was less
influential than smoking history and nodal involvement. (Table 2).

These results suggest that grouping by the degree of MAFB expression allows a more
detailed examination of hazard and mortality risk in patients with stage I to stage III lung
adenocarcinoma. Thus, MAFB+ cell density may be an ideal predictor of the hazard ratio
and DFS in these patients after surgery.
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Figure 3. OS and DFS of low-, mid-, and high- in MAFB+ cells Kaplan–Meier analysis of (A) overall
survival and (B) disease-free survival of the three groups: low-MAFB+, mid-MAFB+, and high-
MAFB+. Difference in survival was compared using log-rank test. Pearson correlation analysis was
performed between MAFB expression and (C) survival time (R score: −0.366, p = 0.000043) and
(D) disease-free survival (R score: −0.378, p = 0.000023). Data are presented as means ± SEM; data is
considered significant at * p < 0.05; ** p < 0.01.

2.4. MAFB Could Be a Prognostic TAM Marker for Patients with Smoking Habits with Lung
Adenocarcinoma

Univariate and multivariate analyses have revealed that smoking history and MAFB
expression affect survival (Table 2). A previous study showed that cigarette smoke induces
MAFB expression in lung macrophages in a mouse model [10]. Therefore, we decided to
analyze whether there is any relationship between smoking and MAFB expression. We
first checked the correlation between MAFB expression level and smoking index, but no
association was observed (Figure S5). Next, we decided to ascertain whether the intensity
of MAFB expression is related to survival in smokers and non-smokers. Our results showed
that the OS rates of smokers (n = 75) were significantly lower compared to non-smokers
(n = 45) (Figure S6A). Furthermore, we examined OS and DFS of low, mid, and high-MAFB+

in both smoking and non-smoking patients and found that the survival was significantly
lower in the high-MAFB+ group only in smokers (Figure 4A).

The effects of cigarette smoking on men and women have long been a subject of
controversy [19]. The samples included female smoker n = 24, female non-smoker n = 40,
male smoker n = 51, and male non-smoker n = 5. Our results showed that female smokers
had significantly lower OS rates (Figure S5B). In men, an accurate comparative analysis
could not be performed as the number of non-smokers was only about 10% of smokers
(Figure S6C). For women, we separately compared the survival curves for MAFB expression
intensity for non-smokers and smokers. The results showed no significant difference in
survival by MAFB expression intensity in the non-smoker group, but a dramatic difference
in OS and DFS was observed in the smoker group. Since most of the men were smokers,
we could not obtain data on survival curves for non-smokers; however, smokers showed a
significant difference in DFS according to the intensity of MAFB (Figure 4C). These data



Int. J. Mol. Sci. 2022, 23, 9945 8 of 14

indicate that MAFB could be a prognostic TAM marker for patients with smoking habits
with lung adenocarcinoma.

Figure 4. OS and DFS analysis in smokers and non-smoker patients. Kaplan–Meier analysis of (A) the
overall survival and disease-free survival of the low-MAFB+, mid-MAFB+, and high-MAFB+ in the
total smoking and non-smoking patients; (B) the overall survival and disease-free survival of the
low-MAFB+, mid-MAFB+, and high-MAFB+ in female smoker and non-smoker groups; and (C) the
overall survival and disease-free survival of the low-MAFB+, mid-MAFB+, and high-MAFB+ in male
smoker and non-smoker groups. Difference in survival was compared using log-rank test. *, p < 0.05;
**, p < 0.01.
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Table 2. Univariate analysis of disease-free survival and overall survival in non-metastatic lung
adenocarcinoma stages.

Univariate Analysis Multivariate Analysis

Disease-Free Survival Overall Survival Disease-Free Survival Overall Survival

Hr (95% Ci) p Value Hr (95% Ci) p Value Hr (95% Ci) p Value Hr (95% Ci) p Value

MAFB
(low versus mid)

2.998
(0.9882–12.95) 0.0828 3.039

(1.001–13.13) 0.079 1.665
(0.5008–7.565) 0.4468 1.966

(0.5985–8.859) 0.3086
MAFB

(low versus high)
7.423

(2.393–32.44) 0.0018 8.105
(2.620–35.36) 0.0011 1.773

(0.4873–8.669) 0.4230 2.001
(0.5587–9.646) 0.3263

Gender
(male versus female)

1.856
(0.9236–3.847) 0.0861 1.826

(0.9081–3.790) 0.095

Smoking
(Yes versus No)

3.115
(1.369–8.376) 0.0122 0.3208 3.117

(1.368–8.390) 0.0123 3.106
(1290–8.724) 0.0182 2.989

(1.231–8.437) 0.0235

Age (<70 versus ≥70) 1.010
(0.9697–1.058) 0.6397 1.013

(0.9715–1.062) 0.5578

Pstage (I versus II + III) 7.500
(3.194–20.72) <0.0001 8.464

(3.614–23.24) <0.0001
Nodal involvement

(Yes versus No)
6.497

(2.880–16.71) <0.0001 7.723
(3.411–19.85) <0.0001 4.382

(1.555–13.88) 0.0078 5.304
(1.845–17.12) 0.0032

Lymphatic invasion
(Yes versus No)

3.072
(1.522–6.398) 0.002 3.294

(1.626–6.887) 0.0011 1.049
(0.4812–2.384) 0.9064 1.094

(0.4918–2.522) 0.8285

Vessel invasion
(Yes versus No)

5.444
(2.377–14.71) 0.0002 4.875

(2.136–13.14) 0.0005 1.843
(0.6468–5.939) 0.2753 1.370

(0.4730–4.458) 0.5786

Pleural infiltration
(Yes versus No)

2.740
(1.350–5.803) 0.0062 2.644

(1.306–5.585) 0.008 1.228
(0.5665–2.793) 0.6108 1.216

(0.5498–2.805) 0.6363

Statistically significant differences between groups were determined using Cox proportional hazard model
(p < 0.05). HR, hazard ratio; CI, confidence interval.

3. Discussion

TAMs and AMs are thought to coexist in the lung tissues from the early stages of
cancer [22]. However, the cell-specific expression of MAFB remains largely unidentified.
In our previous report, tumor samples from patients with lung adenocarcinoma showed
MAFB expression in locations comparable to CD68- and CD204-positive TAMs and were
abundant in severe stages of cancer [21]. In this study, the scRNA-seq analysis of patients
with lung cancer showed MAFB expression in monocytes of tumor and advanced tumor
tissue, while no other markers (CD204, CD68, CD206) were expressed (Figure 1J). In
particular, in myeloid cluster 8, MAFB expression increased in tumors and advanced
tumors. Similar expression patterns for CCR2 were observed in Figure S3B. CCR2 is the
receptor for CCL2 which induces monocyte infiltration in tumors including lung cancer [23];
therefore, MAFB may be a potential indicator for monocyte infiltration. Although it is
difficult to measure the actual percentage of monocyte infiltration, the CCR2-expressing
cells in this analyzed data accounted for approximately 3% of the total cells in normal lung
tissue and increased to 6% or 11% in tumors or advanced tumors, respectively (Figure S3B).
This may indicate that TAM infiltration increases as the tumor stage advances, but it is
difficult to clearly measure the extent of TAM infiltration considering conditions such as
tumor removal site, sample preparation method, and individual differences. Further study
is required to analyze whether MAFB can be established as a marker of invasion.

Moreover, unlike other TAM markers, MAFB was not expressed in AM. Our re-
sults were consistent with previous reports stating that Mafb was highly expressed in
macrophage-colony stimulating factor (M-CSF)-derived macrophages but not expressed
in the alveolar granulocyte macrophage-colony stimulating factor (GM-CSF)-derived
macrophages. Since MAFB inhibits the self-renewal of macrophages, AMs have self-
renewal ability [24]. Hence, our study suggests that MAFB shows a higher specificity to
the macrophage/monocyte cell population than other cancer markers studied and could
be used to identify patients with early stages of lung adenocarcinoma.

Previous studies have identified CD204+ TAMs as prognostic markers in non-small
cell lung carcinoma (NSCLC), especially in lung adenocarcinoma [25], and the combined
use of CD47 and CD68 was reported to predict the survival of eastern-Asian patients with
NSCLC [26]. Further, CD68+CD163+ or CD68+CD206+ markers were used to identify M2-
polarized TAMs in lung adenocarcinoma. The levels of M2 macrophages (CD68+CD206+)
were positively associated with peritumoral lymphatic microvessel density, but nega-
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tively associated with the patient’s prognosis [27]. Moreover, the accumulation of CD163+

macrophages is closely correlated with a poor prognosis in lung cancer, and the increased
density of CD68+CD163+ macrophages in tumor nests and stroma was associated with
lymph node metastases [27]. However, no such association was observed with recurrence-
free survival, OS, and TNM stages [14,28]. Similarly, CD68+CD163+M2 were also correlated
with OS and DFS in NSCLC. A higher correlation was observed between increased in-
filtration of macrophages and clinical characteristics, including LUSC, EGFR status, and
smoking habits [29]. However, the use of MAFB as a predictive marker for the survival
of patients with non-metastatic lung adenocarcinoma remains unidentified. Our results
showed that MAFB+ cell density correlated with clinicopathological characteristics in pa-
tients with stage I, II, and III lung adenocarcinoma. A higher MAFB+ cell density correlated
with poor clinical outcomes, including poor pathologic stage, higher recurrence rate, nodal
involvement, lymphatic permeation, and vessel invasion. An association with high hazards
rate, poor OS, and DFS was also observed among these patients.

Smoking habits or sex differences did not show significant differences in their correla-
tion with the OS and DFS in MAFB+ cells. However, one of the limitations of our study
was the relatively small sample size of non-smoking males. Even though only Japanese
patients were included in this study, our results were consistent with previous reports
where the risk of lung cancer was comparable in both women and men exposed to tobacco
smoke in patients from Germany and Italy [30]. Compared to squamous cells or small
cell carcinomas, adenocarcinoma was reported to have a weak association with tobacco
smoking in women from France [19]. Interestingly, smoking was significantly correlated
with a higher density of CD68- and CD204-positive macrophages in tumor stroma [25,31].
It has also been reported that Mafb expression is upregulated in macrophages following
exposure to cigarette smoke in a mouse model [10]. However, whether the increase in
MAFB expression was observed in resident or infiltrating macrophages remained unclear.
Our results indicate that MAFB was expressed in the monocyte-derived macrophages,
but not tissue-resident macrophages, suggesting higher specificity of MAFB expression in
TAMs than other markers, CD68 and CD204. Moreover, all patients with smoking habits
showed higher MAFB+ cell density and were at risk of poor OS and DFS, suggesting that
MAFB could be a prognostic TAM marker in smoking patients with early-stage lung ade-
nocarcinomas. We suggest that the correlation between MAFB+ cells density with OS and
DFS in smokers and/or non-smokers patients did not seem to be a sex-related relationship.

Our results suggest that MAFB+ cells could be a suitable predictor for severity and
a prognostic marker for hazard rate, OS, and DFS in patients with non-metastatic lung
adenocarcinoma. Moreover, we suggest that a higher MAFB+ cell density in patients
with smoking habits could also be associated with poor overall and disease-free survival;
however, this association is not sex-related.

4. Material and Methods
4.1. Single-Cell RNA Sequencing (scRNA-seq) Analysis

The single cell RNA-seq recently generated from 44 patients with treatment-naïve
lung adenocarcinoma were analyzed (GEO database accession GSE131907). Single-cell
RNA raw data included normal lung tissue (n = 11), tumor tissue (stage I and III, n = 7),
and advanced tumor tissue (stage IV, n = 4).

The raw data was downloaded, and we used Scanpy (v1.7.2) for the following analyses.
The initial cell number and gene number were 208,506 and 29,634, respectively. We extracted
highly variable genes using “scanpy.pp.highly_variable_genes” function, and 2243 genes
were extracted. We conducted dimension reduction with PCA using the “scanpy.tl.pca”
function and UMAP using the “scanpy.pp.neighbors” function and the “scanpy.tl.umap”
function. By clustering with the Leiden Method using the “sc.tl.leiden” function, cells
were divided into 34 clusters and six clusters which contained myeloid cells (41,726 cells)
were extracted. Dimension reduction and clustering were conducted on these extracted
cells using the same method for all cells. For information about the parameters for these
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analyses, please refer to our GitHub pages (https://github.com/Teppei-Nishino/TAM,
accessed on 30 August 2022)).

We clustered myeloid cell lineages, Alveolar Macrophages (AM), Dendritic cells (DC),
Macrophage Lineage (ML), and Monocytes (Mo), and the analysis was performed using
only these clusters. Statistical analysis and visualization were performed using functions
from Scanpy.

4.2. Immunostaining of Human Cancer Tissues

We analyzed the cancerous tissues of patients with lung adenocarcinoma (n = 120)
from the Tsukuba Human Tissue Biobank Center (THB) at the University of Tsukuba
Hospital. Frozen human lung tumor tissues were sectioned (5 µm), stained, and visualized,
as previously described [21], using 1:50 anti-MAFB (clone OTI2A6; Lifespans Biosciences,
Seattle, WA, USA). Means of three positively stained field areas relative to the tissue area
(MAFB+ cells/tissue area) were morphometrically quantified (Supplementary Figure S1)
using a BZ-X800 analyzer (Keyence, Itasca, IL, USA).

4.3. Evaluation of Clinicopathological Features

The clinical characteristics of patients with lung adenocarcinoma (n = 120) were
retrieved from the clinical records of the University of Tsukuba. The following clinicopatho-
logical factors were considered: age (<70 years versus ≥70 years), sex (female vs. male),
smoking history (non-smokers versus smokers), local metastasis to lymph nodes (nodal
involvement; N0 versus N1), recurrence (positive vs. negative), pathological stage (I, II,
and III), lymphatic permeation (present vs. absent), vascular invasion (present vs. absent),
and pleural infiltration (present vs. absent). The UICC TNM staging system (The Union for
International Cancer Control staging system for tumor size, lymphatic involvement, and
metastasis) was used to classify the severity and extent of the cancer stage.

4.4. Statistical Analysis

Data are expressed as the mean ± SEM and analyzed using Welch’s t-test. The
correlations between the grade of MAFB+ cells density and the clinicopathological factors
were evaluated through Fisher’s exact test. The Kaplan–Meier method was used to estimate
the overall survival time and the disease-free survival, while the difference in survival
was compared using the log-rank test, the two paired groups using the Wilcoxon test,
and the different survival distributions using the Tarone–Ware test. In survival analysis,
we used Dunn–Šidák correction to adjust the p-value, and the curve comparisons were
calculated using the Cox hazard test. The following variables were considered, MAFB+ cells
density, sex, age, smoking, cancer recurrence, tumor stage, nodal involvement, lymphatic
permeation, vessel invasion, and pleural infiltration. The correlation between MAFB+ cell
density and overall survival (OS) or disease-free survival (DFS) was evaluated using the
Pearson correlation test. Differences were considered statistically significant at p < 0.05.
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