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Abstract

Today, many MRI reconstruction techniques exist for undersampled MRI data. Regularization-based techniques inspired by
compressed sensing allow for the reconstruction of undersampled data that would lead to an ill-posed reconstruction
problem. Parallel imaging enables the reconstruction of MRI images from undersampled multi-coil data that leads to a well-
posed reconstruction problem. Autocalibrating pMRI techniques encompass pMRI techniques where no explicit knowledge
of the coil sensivities is required. A first purpose of this paper is to derive a novel autocalibration approach for pMRI that
allows for the estimation and use of smooth, but high-bandwidth coil profiles instead of a compactly supported kernel.
These high-bandwidth models adhere more accurately to the physics of an antenna system. The second purpose of this
paper is to demonstrate the feasibility of a parameter-free reconstruction algorithm that combines autocalibrating pMRI and
compressed sensing. Therefore, we present several techniques for automatic parameter estimation in MRI reconstruction.
Experiments show that a higher reconstruction accuracy can be had using high-bandwidth coil models and that the
automatic parameter choices yield an acceptable result.
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Introduction

In this paper, a novel MRI reconstruction algorithm is

presented. The current state of the art in MRI reconstruction

consists of many excellent algorithms, but these algorithms require

manual intervention for one or more parameter settings, which

can be a significant downside. Parameters encompass things such

as denoising vs datafit strength, calibration region selection,

restrictive k-space trajectory input, pMRI autocalibration kernel

size, etc. They arise because reconstruction algorithms attempt to

tackle important problems that are associated with different types

of MRI acquisition and reconstruction. Many different algorithms

exist to cope with different MRI reconstruction problems, but few

approaches exist that attempt to jointly solve as many MRI

reconstruction problems as possible, fewer still exist that can do

this without user parameter tuning.

Automatic MRI reconstruction
The first goal of this paper is to present a single reconstruction

technique that tackles a very wide scope of typical reconstruction

problems jointly and automatically: Problems associated with

advanced MRI reconstruction are sub-Nyquist sampling (Section

1.1), non-uniform sampling (Section 1.2), noise (Section 1.3) and

(autocalibrating) parallel imaging (Section 1.4). The current

solutions to these problems entail respectively compressed sensing

reconstruction (including but not limited to [1,2]), regridded

reconstruction (including but not limited to [2,3]), (image-domain)

noise estimation [4] and different pMRI techniques [5].

A new autocalibration formulation
The second goal of this paper is to present a new autocalibrating

pMRI formulation. Current autocalibrating pMRI techniques [5–

9] focus on finding a calibration kernel, which is necessarily of a

very limited support. This necessity arises from the need to solve a

well-determined linear system to obtain the calibration kernel. We

will demonstrate how the large support kernels are a better model

for the physics of an MRI acquisition coil system than limited

support kernels, which has a detrimental impact on image

reconstruction quality. We will also demonstrate how calibration

kernels in many current pMRI techniques correspond to ratios of

coil sensitivity profiles (or even ratios between coil sensitivity

profiles) in the spatial domain, which makes a limited support

approximation (or a smoothness assumption) even less accurate.

Another class of existing pMRI autocalibration techniques such as

[10,11] focuses on solving the problem of joint estimation of both

image and coil sensitivity profiles in image domain. However, this

leads to an inherent non-convex optimization problem, i.e. no

guarantees can be given on the quality or optimality of the result.

In contrast, we developed a new formulation, that allows for the

estimation of calibration kernels with a larger support, because of

the inclusion of a regularization term. We directly relate these to

the final image, in order to avoid the problem of having to enlarge
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the allowed support because of the need to consider ratios of coil

profiles. On top of that, our new formulation leads to a convex

optimization problem, that yields best effort results consistently,

without user intervention. We will show that this results in

improved autocalibration and as a result, better image quality.

Paper organization
In short, we aim to design an MRI reconstruction algorithm

that is able to cope with pMRI data, that was acquired on a non-

uniform grid in an arbitrary trajectory, in a sub-Nyquist way,

which can do autocalibration and which automatically tunes all

required parameters without user intervention.

This paper is organized as follows: in Section 1, we discuss the

aforementioned hurdles in MRI reconstruction, the solution to

which will be the focus of this paper. In Section 2, we discuss

previous work and existing MRI reconstruction techniques. The

proposed MRI reconstruction technique is detailed in Section 3,

which consists of an image reconstruction technique (Section 3.1),

a pMRI autocalibration technique (Section 3.2) and various

techniques to estimate parameters such as autocalibration area,

noise level and even field of view (Section 3.3). We demonstrate

the proposed algorithm in Section 3.3.

Methods

1 Difficulties in MRI reconstruction
In this section, we highlight the different challenges and current

limitations in the field of MRI reconstruction. We will then

propose a solution to these problems in a unified method in

Section 3. We solve the Nyquist limit problem by using a

regularized MRI reconstruction akin to the compressed sensing

MRI literature, described in Section 3.1 with a non-uniform

Fourier transform operator, to account for possible Non-uniform

sampling patterns. We solve the problem of noise by doing both an

estimation of the noise level, described in Section 3.3, and an

automatic regularization with a strength based on this estimate,

described in Section 3.1. Finally, we solve the problem of

calibrating parallel imaging, by supporting both explicit knowl-

edge of coil profiles (as in SENSE) and by proposing a novel

autocalibration technique in case this knowledge is missing in

Section 3.2. The flowchart of this method is shown in Figure 1.

1.1 The Nyquist limit. The Nyquist limit is a cornerstone

concept in sampling theory. It governs the requirement for any

continuous signal to be representable in a discrete space without

ambiguity. This makes it vital for digital processing of continuous

(acoustic, electric, etc.) signals. In MRI, a radio-frequency (RF)

electrical signal is sampled and further processed by a digital

reconstruction algorithm. For such a reconstruction to unambig-

uously represents the continuous signal, there are two basic

requirements. The signal field of view (FOV) must be finite in

length (i.e. periodic repetitions of a finite-length signal), as

computers do not have infinite memory. The equivalent result in

terms of Fourier space (k-space) is that it suffices to sample this

Fourier space in discrete steps, this is the famous Fourier series.

Because of symmetry in Fourier transform formulas it is then

conversely required that the bandwidth of a signal (i.e. the ‘length’

in Fourier space) is limited, so as to enable a sampling of image

space in discrete steps. As such, there are two limitations on MRI

sampling. Expressed in terms of k-space sampling, these are:

1. A length limitation (i.e. the MRI image is a 2D/3D signal with

finite signal bandwidth).

2. A discretization step limitation (i.e. the assumption of the MRI

image as representing an object that fits in a finite FOV).

These are called the Nyquist limits. If the discretization step is

too large, the aliasing artifact appears inside the FOV. If the length

(the width) of the k-space is too small, the image will appear blurry.

1.2 Non-uniform sampling. As long as a k-space sampling

discretization follows the Nyquist limits, the reconstruction

constitutes a well-posed problem. In order to simplify reconstruc-

tion, a Cartesian sampling is often used. Even if the discretization

of this Cartesian grid is non-uniform, useable images could be

reconstructed by reweighing the coefficients in a 2D DFT

algorithm. However, Cartesian sampling limits the inherent

flexibility (and with it the achievable quality) of an MRI scanner,

as Cartesian trajectories are only a subset of the space of possible

trajectories. It is well known that the best performing trajectories

do not belong to the subset of Cartesian trajectories [12,13]. So, in

Figure 1. Block schematic of the proposed autocalibrating MRI reconstruction technique.
doi:10.1371/journal.pone.0098937.g001
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order to be able to reconstruct the full range of possible k-space

trajectories, a reconstruction algorithm needs to be able to deal

with non-uniform sampling.

1.3 Noise. Noise in MRI arises mainly from thermal noise in

the quadrature RF receiver of the system. As such, it has been

accurately modeled by a complex Gaussian distribution on the k-

space measurements [14]. The dynamic range of a k-space MRI

signal is heavily dependent of the type of acquisition, so is the

signal-to-noise ratio (SNR). Because of the large variety of SNR in

practical MRI, automatic noise estimation algorithms are desired,

while most algorithms still rely on time-consuming and labor-

intensive manual tuning of a regularization parameter, which is

not particularly optimal and biased towards a particular user.

1.4 Parallel imaging calibration. In MRI, the acquisition

time is mainly governed by the repetition time (TR). For each TR

cycle, a path in k-space is measured. Therefore, if less points in k-

space are measured, then less cycles are needed, so the acquisition

time is shorter. In parallel MR imaging (pMRI), an insufficiently

densely sampled k-space is deliberately acquired, in order to

shorten acquisition time. As explained in Section 1.1 this violates

the Nyquist limit and would normally cause the aliasing artifact.

However, in pMRI reconstruction data is combined from multiple

receiver antenna coils (instead of one) in order to reconstruct an

aliasing-free image. Algebraically, the ill-posedness that is respon-

sible for the ambiguity, i.e. the aliasing, is avoided due to the

addition of multiple linearly independent data acquisitions.

Solving such a system of linear equations requires knowledge

about the exact nature of the system, therefore it is necessary to

know the sensitivity profile of the receiver antenna coils in the

system. There are two basic ways to achieve this goal: first is by

actually measuring the profiles of the different receiver antenna

coils (SENSE type), second is by extracting a rough estimate from

the available data, using a small calibration area in the data

(autocalibration, GRAPPA type). An automatic algorithm should

be able to deal with both techniques.

2 Previous work
Since the early 90 s, the goal of accelerated MRI acquisition has

led to the development of different pMRI methods [5]. These

include SENSE [15,16] and variants, the most modern of which

bring this line of research into the realm of compressed sensing

[17,18]. Other methods [7–9,19] attempt the harder problem of

autocalibrating MRI, in methods that can be better described as

marrying GRAPPA [5] to CS MRI [1]. These have the advantage

of not needing explicit knowledge of the coil sensitivity profiles as

SENSE-based techniques do. They solve this by extracting

knowledge of so-called interpolation or calibration kernels from

a fixed region of k-space known as a calibration region. Still other

techniques, try to marry autocalibration to SENSE and CS MRI,

by introducing a joint optimization of both the image and the coil

sensitivity profiles in image domain [10,11].

2.1 K-space (auto)calibration and deconvolution. The

calibration problem is severely ill-posed, multiple image-sized coil

sensitivity profiles need to be estimated from one single,

incomplete number of measurements in k-space. The only way

to solve this is to regularize this sufficiently, so as to turn the

problem into a well-posed problem. The main drawback of

calibrating a k-space kernel is the lack of an efficient way to encode

prior knowledge about images, we know a lot about images (with

models such as [20–25]), but less about what k-space should look

like. The result is that [5,7–9,19] resort to impose prior knowledge

in a hard way, i.e. by fixing the bandwidth, i.e. the kernel size, of a

k-space interpolation kernel to a very small size. This conditions

the problem such that a solution can be reached when sufficient

calibration data is available. In classic k-space autocalibration, an

image is typically treated as being linked to coil images c by the

equation

c~

W1

W2

. . .

Wn{1

Wn

26666664

37777775
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

W

, ð1Þ

with W a block diagonal matrix encoding the coil sensitivity

profiles. A calibration matrix in a technique such as GRAPPA [6]

and SPIRIT [7] or ESPIRIT [9] attempts not at reconstructing

the imaged object , but rather all the images, as seen from the

antenna coils c, where the final reconstruction is made using a

sum of squares. In these techniques, a matrix of the form:

c~G c~

I
W1
W2

. . .
W1

Wn{1

W1
Wn

W2
W1

I . . .
W2

Wn{1

W2
Wn

. . . . . . . . . . . . . . .
Wn{1

W1

Wn{1
W2

. . . I
Wn{1

Wn

Wn
W1

Wn
W2

. . . Wn
Wn{1

I

2666666664

3777777775
c: ð2Þ

is considered, where we used the notation of the division of

matrices to signify element-wise division because the matrices W i

are diagonal and to show that the off-diagonal elements in G
constitute pixelwise divisions. Then, in classic k-space autocalibra-

tion, the difficult problem of finding the large number of entries for

the diagonal matrices W i is replaced by the estimation of a small

kernel in k-space. The trick is that a (block) Fourier matrix Fc

changes the submatrices in G into circulant matrices:

c~G c~F{1
c CFc c ð3Þ

The assumption in classic k-space autocalibration is that the

kernel matrix C contains many circulant submatrices, where the

row(s) of this matrix contain a lot of zero elements, such that the

calibration kernels can be considered bandlimited. Once these

assumptions are made, the kernel matrix contains C so few

independent entries, that these can be estimated using a

predefined set of calibration data. Such a matrix C can be used

to condition the pMRI reconstruction problem in such a way as to

yield good (in the sense of calibration-consistency) image

reconstruction. This calibration of C and how C is used to find

c is the difference between the different conventional k-space

autocalibration techniques [6,7,9]. The difference with the

proposed method, is that we are estimating the coil profiles in

W directly, without imposing bandwidth restrictions. The next

section explains why.

2.2 Limits to classical k-space autocalibration. The

quantities W i in (1) and (2) are actual spatial sensitivities of a

given receiver antenna coil with index i to a pixel (voxel) position.

These adhere to Maxwell laws of electromagnetics, but are not

trivially found because of the near-field nature of the coils in an

MRI system with respect to the object in the scanner. However,

we can say a few things about them: they are generally smooth,

Automatic Calibration and Reconstruction of Arbitrarily Sampled pMRI
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because the coil size is limited in terms of electrical length. This

smoothness is the reason why the bandlimited approximation of

profiles from classic k-space autocalibration (Section 2.1) works in

the first place.

However, even if it would be possible to model coils as the

simplest antenna possible, i.e. a dipole antenna, the sensitivity

profile would decay radially in a
1

r2
fashion, with r the radial

distance from the antenna center. Even this simple
1

r2
sensitivity

profile can not be described as a bandlimited signal (the Fourier

transform of a
1

r2
signal is actually a slow linearly decaying

function in terms of frequency), it cannot be accurately described

using a 3|3 or 5|5 or indeed any kernel of compact support.

Instead, we propose to model these profiles as smooth, but not

strictly band-limited. On top of that, note how the formulation of

G involves pixelwise division of these profiles, which is related to a

convolution in Fourier space, enlarging the bandwidth again. We

show an illustration of these principles in Figure 2. The top row

shows two coil profile estimates (magnitude is shown here) that

were taken from a SENSE dataset, and their pointwise division

was made, to emulate the behavior of (2). The bottom row shows

the cropped k-space magnitude of these images, shown on a

logarithmic intensity scale. Although they are indeed smooth, and

can be cropped significantly, it can be seen that it is inaccurate to

crop these to a very small value such as 5|5 or 7|7. In Section

3.2, we attempt to give a different solution to this problem of

autocalibrating MRI with the aim of increasing kernel support size

(or rather bandwidth of the spatial domain sensitivity profiles)

significantly and with it accuracy.

2.3 Image domain autocalibration. In [10], the coil

sensitivity profiles are parametrized to polynomials of low degree.

We propose to view this as an implementation of the ‘‘smooth, but

not bandlimited’’ model for calibration kernels that we proposed

in Section 2.2. However, in this method, there is no distinction

between autocalibration data and subsampled data, and the

reconstruction is simply formulated as:

,af g~ arg min
,a

W að Þ {yk k2: ð4Þ

with a the small set of polynomial coefficients used to model the

coil sensitivity matrix W and y the vector listing the k-space

measurements (the input data). Note that (4) is a highly non-

convex optimization problem. Therefore, no guarantees can be

given on the convergence to a global optimum. A constraint, to

force the solution to a desirable one, is made by tuning the allowed

degree of the polynomials used for modeling. However, non-

Cartesian MRI can vary greatly in subsampling percentage,

sampling density variations and noise levels (see Section 1), and

since the method does not automatically find an autocalibration

region or tune to noise level estimation, aliasing will always

interfere with the estimation and the tuning becomes non-trivial

and will have to be done by hand. Our proposed method attempts

to deal with both problems.

3 Proposed technique
An outline for the proposed technique is shown in Figure 1.We

will now proceed with a breakdown of this algorithm in a block per

block fashion. We will assume knowledge of just the k-space

coordinates k, and their corresponding data y.

3.1 pMRI image reconstruction formulation. For the

image reconstruction process, we will adopt a regularized SENSE-

like approach [16–18]. We use this terminology to emphasize that

we first want to find image-domain representations of our coil

sensitivity profiles and then reconstruct an image with this explicit

knowledge. The regularization in this approach is reminiscent of

compressive sensing MRI [1,2,7,17]. It is formulated as an

optimization problem:

b~ arg min
y{FWk k2

2

2s2
z

Sk k1

b
: ð5Þ

with S some sparsifying image transformation, or more correctly

the basis vectors in S constitute a frame (i.e. it can be a

‘‘collection’’ of multiple image transformations that can jointly

Figure 2. Bandwidth of a spatial sensitivity profiles and calibration kernels. Top row: two coils profiles and their (regularized) pointwise
division. Bottom row: corresponding operations in Fourier/k-space. The images were taken from a SENSE dataset. Note how the Fourier domain
support size of the division is both larger than that of the typical calibration kernel and larger than the support size of the Fourier domain support of
both coil profiles.
doi:10.1371/journal.pone.0098937.g002
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make one Parseval frame) that allows to concentrate image energy

such that the resulting coefficients are uncorrelated and marginal

statistics are well approximated by a Laplacian distribution. This

allows for powerful regularization of natural images [26,27]. W is

a block matrix that consists of diagonal matrices to model the

pixel-wise multiplication with a coil sensitivity profile. If the coil

sensitivity profiles are known (i.e. it is a SENSE experiment) the

algorithm simply entails the solution to (5), if they are not known,

autocalibration is needed which is the topic of Section 3.2. F is a

block diagonal matrix of non-uniform Fourier transforms (NUFT)

[28] that transforms each coil image into k-space data corre-

sponding to measurements from that coil, as such they encode the

k-space coordinates k. The use of the NUFT is motivated by the

desire to also support non-uniformly sampled k-space acquisitions,

Section 1.2.

Instead of using a single regularization constant, which is the

common practice, we chose a formulation with both a noise level s
and b. The implication is that (5) is a Maximum a Posteriori

(MAP) estimator as a log-likelihood maximization of a Gaussian

distribution on the measurement data, which is a known accurate

model for MRI noise, and Laplacian prior distribution on the

individual transform coefficients, which is known to be very

effective in image restoration. The reason we chose this

interpretation is that now, we have an idea about estimating the

regularization parameter, which is the goal in Section 3.3.

3.2 Autocalibration formulation. In contrast to most

autocalibration techniques (see Section 2.1), we do not propose

to calibrate a kernel on k-space. In short, strictly bandlimited

models are not desirable as a model for calibration kernels because

they impose prior knowledge of smoothness in a hard way.

Estimating the coil sensitivity profiles: Instead of the

standard approach of compact (strictly bandlimited) calibration

kernels, we propose to estimate the image space multiplication

maps W i, in relation to the original image , and at a high(er)

resolution. We thereby avoid the problem of non-convexity using

regularization. This enforces smoothness in a soft way, rather than

using the hard, strict bandlimited approximation of existing

techniques. The resulting calibration formulation is:

ŴW i~ arg min Wi[D
X

r[ x,y,zf g
Drdiag W ið Þk k2

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
regularization

z l i{W ik k2
2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

datafit

:

ð6Þ

with D the space of diagonal matrices and Dr the finite differences

operator in 3 dimensions. This introduces a parameter l, which

we chose via continuation in an L-curve technique [29]. This is

possible because the estimate of the noise level in Section 3.3

allows to estimate the expected error in the datafit term of (6).

Finding a preliminary estimate for the image: The

remaining problem is the estimation of and i, which results in a

chicken-and-egg conundrum, because in order to reach this goal,

the weights W i are needed in the first place. The difficulty is two-

fold, firstly the overall scaling of the image in contrast to the coil

images i is unknown. There is no real solution to this problem, so

we propose the same assumption as in other pMRI reconstruction

techniques [6,7], namely that reconstruction is made through the

sum of squares (sos) of the coil images so that for a pixel with index

p, we sum over the coils i:

bp~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

�
i;p i;p

r
: ð7Þ

The implicit assumption is that the sum of squares of the coil

sensitivity profiles W i is constant. The advantage of the

assumption (7) is that is optimal with respect to maximizing

SNR of the end result [30]. Secondly, in the impossibility of a joint

(pMRI) reconstruction, any reconstruction of i (and as a result )

will be corrupted by the spatial aliasing artifact.

Finding a preliminary estimate for the coil images:
The remaining problem is to find an estimate for the images i.

We cannot estimate these by straightforward LS-NUFT ([3])

reconstruction, as this would lead to spatial aliasing because of the

possible sub-Nyquist sampling of the k-space. We propose to avoid

the spatial aliasing artifact by only reconstructing the part of the

image k-space that is fully sampled. In a way, this is an automatic

method for detecting data on which calibration is possible. The

details of this technique are given in Section 3.3. The coil images

c are obtained through least-squares estimation from the k-space

data using:

bi~ arg min
i

LH F i{yið Þk k2
2zE ik k2

2: ð8Þ

with E a small constant to avoid ill-posedness and LH the

operator that isolates the set of k-space data points H that make up

a fully sampled region as given by the technique in Section 3.3.

Finally, in the unlikely case that there are insufficient points in H
to obtain aliasing-free coil images with reasonable resolution, we

resort to a failsafe ‘‘L1 regularized’’ reconstruction mode, which

uses a classic CS formulation [2] to avoid spatial aliasing:

bi~ arg min
i

LH F i{yið Þk k2
2zE S ik k1: ð9Þ

Note that this is similar in goal to the technique proposed in

[31], where Thikonov regularization was used regularizing wavelet

coefficients, while we use L1 regularization on shearlet coefficients.

The choice for approximate perfect data-fit here, is motivated by

the high SNR nature of these low frequency k-space points. The

decision on using (9) instead of (8) is made when the estimated

FOV/resolution from the method in Section 3.3 is smaller than

the user-defined FOV/resolution.
3.3 Parameter estimation. Ideally, we would recommend

to optimize the parameters in (5), in order to minimize the mean

squared error with the ground truth. In the absence of ground

truth (i.e. in a realistic application), an excellent alternative is to

minimize the Stein unbiased risk estimate (SURE) [32]. However,

this require iterative evaluation of the reconstruction algorithm in

order to properly estimate the SURE, which can be time-

consuming. In this work, we seek to optimize the result for a single

run of the reconstruction algorithm, note that this output could be

used as an initialization for a SURE-based parameter estimation

algorithm. We seek to do this through interpretation of the

parameters s2 and b in (5) as respectively ‘noise level’ and ‘signal

level’.

Noise level estimation: The ‘noise level’ or rather the

parameter as defined in our estimator (5) as s2, is a measure for the

noise variance in the k-space data. MRI noise can be considered

complex Gaussian [14]. Commonly, noise samples are also treated

Automatic Calibration and Reconstruction of Arbitrarily Sampled pMRI
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as being uncorrelated. We’ve put the whiteness assumption to the

test. The autocorrelation matrices of a repetition experiment is

shown in Figure 3. We can draw several conclusions from this, the

first is that the noise variance is quite stable as k-space is traversed.

Nonetheless, there seems to be an increase in the estimated noise

variance for the points in k-space closest to the center (seen in

Figure 3(b)), we attribute this to an inconsequentially small non-

linearity in the receiver system, because of the huge dynamic range

of low-frequency k-space points. Another conclusion is that the

noise within one acquisition sequence can safely be assumed to

white, this is shown by the correlation matrix between samples

within one acquisition sequence, Figure 3(e). We therefore do not

deviate from the common model of white noise. We do pose one

caveat here, it seems that the as the timescale of acquisition grows

larger, the difference between two acqusitions (the error) becomes

larger, we attribute this to heating, compare the short timescale,

Figure 3(c) with the large timescale, Figure 3(d). Therefore, it is

prudent to estimate the noise for each acquired dataset, which we

will do in this work. However, the presence of a signal component

to the data will still hinder accurate noise estimation. Therefore,

we do not simply use the sample variance estimator, we choose a

different approach, akin to image denoising literature, where it is a

common practice to estimate noise levels in a robust way using the

median absolute deviation (MAD) measure [33]. In (multiresolu-

tion) image denoising, an image transformed by a sparsifying

transform has many coefficients that tend to zero in a noisefree

environment, which means that a robust estimator will consider

the sparse large coefficients as outliers and a good estimate of the

noise variance can be obtained. Similarly, the Fourier transform

can be considered as a(n) (somewhat less) effective sparsifying

transform, so the k-space data is quite sparse. Again, since the

noise model in MRI is white and complex-valued Gaussian on the

k-space data, a robust estimator will get us a reasonable estimate of

the noise variance s2. Furthermore, we know that the highest

signal energy is concentrated in the center of k-space [34],

conversely the lowest signal energy can be found in the periphery

of k-space. Therefore in the proposed algorithm, we perform this

MAD estimate on the 5% of k-space points that have the highest

radial frequency.

Figure 3. Results from noise measurements on 10 000 repeated acquisitions of a 2 shot spiral: the trajectory (a) box plot of per 100
measurement variance estimates on each k-space point (b) the absolute error matrix between two sets of 100 measurements over a
short timescale (c) the absolute error matrix between two sets of 100 measurements on a longer timescale (d) the crosscorrelation
matrix between k-space points overall (e).
doi:10.1371/journal.pone.0098937.g003
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ŝs~
Median DyhMedian(yh)Dð Þ

0:6745
: ð10Þ

where yh~fyi ViDDki DwTg with the threshold T chosen to

correspond to the 95% fractile value of the radial values of the k-

space coordinates, in other words the 5% of points that are furthest

from the k-space center. We show this 5% fraction of k-space

points on two sub-Nyquist sampled trajectories in Figure 4.

Signal level estimation: In order to run the estimator (5),

not only the noise variance is needed, which is estimated according

to Section 3.3, but also the parameter b. This parameter is

interpreted as equivalent to the variance of the Laplacian

distribution that is used as a model for the coefficients of the

image transform that is applied to the image. If the noise and

corruption-free image is known, this can be easily estimated,

however in general this is not known. However, it is known that

the there is a linear dependency between the b and a hypothetical

multiplication factor applied to the image. This is because the

image transformation is linear, and the relation between the signal

variance s2
s and b is known to be s2

s ~2b2. Therefore, any signal

that represents an imaged object can be normalized with respect to

its average gray value and its associated b parameter will be

rescaled with the same factor. If we consider the broad class of

MRI images to have the same level of relative contrast with respect

to this average gray value, we can consider this a parameter that is

fixed for many different MRI modalities. We propose the

following model:

b̂b~gc: ð11Þ

where c is a signal-independent value that is applicable to all MRI

modalities (i.e. the relative signal value, or rather the relative edge

strength in a typical MRI image) and g is a signal-dependent

average gray level for the MRI image under reconstruction. In

order to estimate this g parameter, we look at a preliminary LS-

NUFT (sum of squares) reconstruction [3], this will potentially

have a significant spatial aliasing artifacts, but as the center of k-

space is always fully sampled, these will only consist of high-pass

signal components. However, depending on the FOV with respect

to the size of the image object, the average gray value is influenced

by the large number of background pixels. Therefore, we use an

image segmentation technique based on a mixtures of Gaussians

model. We fit a double Gaussian model to the histogram of voxel

intensity values, where the Gaussian with the lowest mean, will be

centered around 0 as it contains the background pixels. The other

Gaussian will then have a mean that corresponds to the ‘‘signal

level’’ g that is of interest here. A demonstration is shown in

Figure 5.This approximation allows for a fairly accurate automatic

parameter estimate, that can subsequently be tuned manually for

extra accuracy.

Field of view estimation: As k-space sampling density

governs aliasing artifact, explained in Section 1.1, the density is the

defining factor for the maximum possible field of view without

introduction of aliasing artifacts. Of course, in a non-uniform

trajectory, this density varies. We propose the following technique,

that is reminiscent of some regridding heuristics [35], to estimate a

local density measure: Firstly, a Voronoi diagram is made from the

grid defined by the k-space coordinates, this process is shown in

Figure 6. The complexity for such an algorithm can be

O N log Nð Þ, an algorithm called Fortune’s algorithm [36]. The

center
1

8
|

1

8
|

1

8

� �
part of k-space is considered to be fully

sampled (unless otherwise specified by the user), due to the

observation reported by many authors [34,37,38] that the lowpass

part of an MRI image needs to be fully sampled for acceptable

reconstruction to be possible, as it can not be sparsified. So in any

useable MRI scan, (at least) this part will be fully sampled. Within

this region, the largest Chebychev distance from a k-space point to

a Voronoi grid point is considered as the limiting FOV factor for

this image (see Section 1.1 for a discussion about the relation

between FOV and discretization step). We chose the Chebychev

distance D(a,b)~ a{bk k? as this is consistent with the way FOV

is interpreted on a Cartesian sampled grid: We know that for a

Nyquist sampled Cartesian grid, the following holds:

Figure 4. K-space points considered for noise level estimation indicated in red. Left: Subsampled spiral, Right: pMRI GRAPPA sequence.
doi:10.1371/journal.pone.0098937.g004
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min
i=j

D ki,kj

� �
~

1

N
: ð12Þ

with N the size of the image in any direction (if the image can be

considered as a cube) and the convention is used that the

frequency space is scaled such that the Nyquist bandwidth is the

unit bandwidth. In a Cartesian grid, the minimum Chebychev

distance to a Voronoi grid point is then exactly
1

2N
. So we

propose to use our Voronoi technique to find the largest

Chebychev distance to a Voronoi grid point, among the k-space

samples inside the center
1

8
|

1

8
|

1

8

� �
bandwidth (the set of

which we call V) and equate this to
1

2N
. This yields the following

estimate for the FOV N:

N~
1

2 maxi[V, j D ki,vi,j

� � : ð13Þ

where V is the set of k-space points that are within the

aforementioned region and vi,j is the j-th Voronoi grid point

associated with k-space coordinate i. For non-square images, this

procedure can be extended trivially.

Calibration area estimation: Once the field of view/

resolution N is found using the procedure in Section 3.3 or given by

user input, an estimate can be made of the autocalibration area. By

autocalibration area, we mean the area (or rather the set of k-space

coordinates H) on which autocalibration can be performed by the

algorithm described in Section 3.2 in the case of pMRI. The relation

between sampling density, field of view and spatial aliasing was

described in Section 1.1. As the k-space sampling density fully

defines the (Chebychev) distance between k-space points, (13)

constrains the allowable FOV. The proposed algorithm for

Figure 5. Demonstration of how the signal level g is estimated. A crude reconstruction is made (left), which can contain aliasing, then a
histogram is made of its pixel values and a mixture of 2 Gaussian distributions is fit to its histogram (right).
doi:10.1371/journal.pone.0098937.g005

Figure 6. Left, a 2D grid of k-space sampling coordinates, Right, its Voronoi tesselation.
doi:10.1371/journal.pone.0098937.g006
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autocalibration requires aliasing-free images, so we will look for the

largest area of k-space around the center, that is sufficiently densely

sampled to satisfy (13), in order to generate spatial aliasing-free

calibration images of the highest signal bandwidth. Again, we

propose a Voronoi tesselation based technique to find this area. The

procedure is illustrated in Figure 7: The set of autocalibration data is

built up in a greedy way, gradually adding points to a whitelist.

Starting from the center k-space point i~0ð Þ and radially moving

out, it is checked whether the following holds:

max
j

D ki,vi, j

� �
ƒ

1

2N
: ð14Þ

If the condition (14) is violated, then the conflicting Voronoi grid

points vi,j are blacklisted and any k-space points ki that has a

blacklisted Voronoi grid point vi,j and is not yet on the whitelist will

be omitted from consideration into the autocalibrating data set H,

with its remaining voronoi grid points also blacklisted vi,j . This

algorithm is run as long as there are still eligible points to be

included into the autocalibration set. The result is a set of k-space

points that corresponds to a spatial aliasing-free low-pass approx-

imation of the coil images, ideal to estimate the coil profiles from. An

illustration is shown in Figure 8, where a 25% subsampled

Archimedean spiral is shown. The distance between two loops of

the spiral is 1:32|
1

N
. The points in red are the autocalibration set

H as created by the procedure detailed in this section.

Experiments and Results

We intend to show two things in this result section: Firstly the

increase in accuracy for pMRI reconstruction due to the novel

pMRI autocalibration framework, and then secondly, the versa-

tility of our automatic reconstruction algorithm, both with respect

to noise robustness and (3D) k-space trajectory. To show the

accuracy of pMRI reconstruction, we did several experiments:

autocalibrated pMRI in both non-Cartesian and Cartesian setting.

To show the effect of noise robustness, we did similar experiments,

adding noise to both Cartesian and non-Cartesian acquisitions.

Finally, we emphasized the k-space trajectory versatility, by

Figure 7. Detail of the Voronoi tesselation in Figure 6 showing the principle of the density estimation.
doi:10.1371/journal.pone.0098937.g007

Figure 8. A 25% subsampled Spiral trajectory for a 2566256
image. The blue points are all the data points, the red portion of points
signifies the automatically detected autocalibration region.
doi:10.1371/journal.pone.0098937.g008

Figure 9. PSNR, in function of acceleration factor, with respect
to the reconstruction at acceleration factor 1. The distinction
between realistic and perfect calibration is with respect to the data
used for calibrating the pMRI reconstruction. Realistic calibration uses
only the undersampled dataset, perfect calibration uses the fully
sampled dataset, before the simulated undersampling.
doi:10.1371/journal.pone.0098937.g009
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including the aforementioned non-Cartesian acquisition recon-

structions, as well as a spiral reconstruction.

4 Non-Cartesian autocalibrating pMRI
In a first experiment, we make the comparison to the SPIRIT

method from [39] and ESPIRIT from [9], the code of which is

publicly available at http://www.eecs.berkeley.edu/,mlustig/

Software.html. We replicated the experiment detailed in the code:

A spirally acquired hardware phantom, with a fully Cartesian

sampled center, is simulated to have been acquired in an

accelerated fashion, by decimating the data. The original

acquisition was described in [39]: A cardiac antenna coil was

used with four channels, the trajectory had 60 interleaves, and

0.75 mm in-plane resolution for a 30 cm FOV. The readout time

was at 5 ms, to avoid off-resonance effects. The phantom was

scanned on a GE Signa-Excite 1.5-T scanner. The acceleration

( = decimation) factor was varied between 1 (no acceleration) and

20. A comparison of peak signal to noise ratio (PSNR) in function

of acceleration factor is shown in Figure 9. PSNR is a quality

measure that is equivalent to the mean squared error, it is defined

as

PSNR~10 log10

max b1ð Þ2b1{ba

�� ��2

 !
:

with ba the reconstruction for acceleration factor a, with a~1
corresponding to the fully sampled reconstruction. We repeated

the experiment while shifting the subsampling lattice to check the

stability of the reconstruction algorithms. We make a distinction

between SPIRIT with ‘‘perfect calibration’’ and SPIRIT with

‘‘realistic calibration’’. The calibration kernel for the SPIRIT

algorithm is calculated on fully sampled data, since our algorithm

only uses subsampled data (i.e. with automatic detection of

sufficiently densely sampled bandwidth), we made a comparison

with a modification of the SPIRIT code that also only uses

Figure 10. Visual comparison between ‘perfect calibration’ SPIRIT, ‘realistic calibration’ SPIRIT, ESPIRIT and the proposed method
for reconstruction of some of the datapoints that make up_ Figure 9 the acceleration factor (AF) is shown on the left.
doi:10.1371/journal.pone.0098937.g0010
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subsampled data. For this we varied the calibration kernel size and

the training data size and kept the best result. This is shown as the

‘‘realistic calibration’’ option in contrast to the original code which

we call ‘‘perfect calibration’’. For a visual comparison of the results

from this experiment for different acceleration factors (AF), we

refer to Figure 10. This experiment shows that the proposed

algorithm suffers from slower and less quality loss as the

acceleration factor increases. This can be seen in the spiral

artifacts, that are less severe, but also in the spatial aliasing of the

comb structure indicated by the arrows, which appears at higher

AF and is less severe for the proposed method. Also, the proposed

method retains some notion of the dart structure, even at AF 10.

5 Noise-robust Non-Cartesian autocalibrating pMRI
In this experiment, we have repeated the experiment from

Section 4, but we added a high amount of white Gaussian noise to

the k-space data (s = 40). Since there is no ground truth data with

respect to the image that corresponds to this data sequence, we

calculated the PSNR, using the reconstruction for each algorithm

given a fully sampled dataset (acceleration = 1) as reference image.

The aim is not to show denoising performance, but rather relative

Figure 11. PSNR, in function of acceleration factor, with respect
to the reconstruction at acceleration factor 1. The dashed line is
the proposed method, the full line is SPIRIT with fully sampled
knowledge of calibration data.
doi:10.1371/journal.pone.0098937.g011

Figure 12. pMRI reconstruction results for the GE hardware phantom: a visual comparison between proposed reconstruction and
‘perfect calibration’ SPIRIT reconstruction for some of the graph points that make up the graph in Figure 11, for AF = 1 and AF = 4.
doi:10.1371/journal.pone.0098937.g012

Figure 13. Contrast enhanced reconstruction from GRAPPA experiment. For both the high SNR and the low SNR case the contrast was
adjusted for maximal visibility. Top: reference GRAPPA reconstruction, Bottom: Proposed.
doi:10.1371/journal.pone.0098937.g013
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degradation in reconstruction performance as the acquisition

acceleration increases in a low SNR environment. The PSNR

curve in function of AF is shown in Figure 11. Although the

proposed algorithm suffers fails to deliver an acceptable recon-

struction (we consider ‘acceptable’ as PSNR &35dB) as the

acceleration factor increases beyond 4, it can be seen how the

proposed algorithm maintains a high(er) PSNR due to its inherent

noise-aware reconstruction. Figure 12 shows two data points from

this curve, with AF = 1 and AF = 4, where the effect of automatic

tuning to the noise level can be seen. It can be seen that the

general shapes of the objects is better preserved by the proposed

algorithm, where e.g. the outline of the cylinder on the right is not

discernible due to noise in the SPIRIT case with AF = 4. Of

course, the algorithm can be tuned to any amount of denoising

action, as the denoising parameter can still be adjusted manually.

6 Noise-robust Cartesian pMRI
Another experiment is the comparison between the reconstruc-

tion from a Bruker GRAPPA acquisition. As usual for GRAPPA,

lines were evenly removed from a fully sampled Cartesian grid to

result in a sub-Nyquist k-space trajectory that was acquired using 4

receiver coils. The center 10% of the k-space was fully sampled to

allow for autocalibration, the remainder was subsampled to 50%.

It can be seen in Figure 13 that the reconstruction result from the

proposed method is of higher contrast and lower noise level when

compared to GRAPPA. This is attributed to the inherent

automatic regularization and improved autocalibration model in

the proposed method. We should not expect large visual

differences here because a pure GRAPPA experiment is well-

posed reconstruction, apart from the noise. We then performed an

experiment where we added extra noise to the k-space data. Again,

the result is shown in Figure 13. It can be seen that the noise

robustness is retained, and that some structures, such as the

appendage in the top right is clearly visible, while it is barely

distinguishable in the reference GRAPPA reconstruction. From

this experiment, another interesting observation can be made. We

show a crop from this low SNR experiment in Figure 14. It can be

seen how the classic GRAPPA reconstruction produces a ‘noise

halo’ around the object. We changed the visualization for this to a

high-contrast indexed colormap, in order to improve visibility of

this halo in print. The halo effect can be attributed to spatial

differences in coil sensitivity, but can just as well be explained

through incorrect estimation of the coil sensitivity profile, due to

the inaccurate small kernel size assumption of classic GRAPPA

(Section 2). Note how the proposed method does not produce this

‘noise halo’. We added the estimated coil profile for one of the four

Figure 14. Illustration of an estimated coil sensivity profile. Top left: a crop from the noisy GRAPPA reconstruction, in high contrast indexed
colormap Top right: a crop from proposed reconstruction, in high contrast indexed colormap Bottom left: estimated coil profile from coil 1, Bottom
right: logarithmically scale power spectral density of the coil profile in the bottom left.
doi:10.1371/journal.pone.0098937.g014
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coils as an illustration, it is far more complex than could be

expressed through limited size kernels, as clearly visible in the

power spectral density of this coil profile signal, where the slow

spectral decay can clearly be observed, which is more consistent

with electromagnetic physics.

7 Cartesian subsampled phase encoding k-space
autocalibrating pMRI

In this section, we perform 2 subsampled simulation experi-

ments for a GRAPPA acquisition: 8 coils were simulated to

acquire a software phantom image on a subsampled Cartesian

grid. By subsampling the phase encoding direction, the same lines

were randomly removed to reduce the dataset to a 34% Nyquist

sampled set, where the center 6% was fully sampled. The result of

the reconstruction experiments are shown in Figure 15. Next, we

did a more difficult reconstruction experiment where the same

lines were randomly removed to reduce the set to a 20% sampled

Nyquist set, here the center 12% was fully sampled. The result of

these reconstruction experiments are shown in Figure 16.

Although the reconstruction algorithms start from different

assumptions with respect to autocalibration, all techniques yield

comparable qualitative results in this experiments, although it

should not surprise that spurious artifacts appear in different places

due to the different way of autocalibrating. The strength of the

proposed algorithm again lies in its versatility, in that the

autocalibration area was estimated automatically and that it is

applicable beyond the application of MRI reconstruction of

Cartesian acquisitions with subsampled phase encoding directions.

8 Arbitrarily sampled k-space autocalibrating pMRI
Another experiment is a simulation on a software phantom of a

human head. This phantom was made by taking the central slice

from a 256|256|176 voxel reconstruction from an MPRAGE

sequence [40] and simulating non-Cartesian acquisition on it using

NUFT software. It was acquired on a simulated Archimedean

spiral, with the distance between two loops of the spiral being

1:32 times the Nyquist limit and sampled at even angular spacing

such that the total number of samples is 25% the Nyquist rate. The

data was simulated as an acquisition using 8 coils with coil profiles

taken from a different SENSE experiment. Since in this setup

there is no calibration-capable area, i.e. no bandwidth around the

origin of k-space where the data is sufficiently densely sampled, the

proposed algorithm automatically switches to the l1-regularized

calibration algorithm (9). The only reference algorithm we can

compare to is a sum of squares from ML reconstructed images.

This is because no GRAPPA or SPIRIT kernels can be trained, as

a k-space point pattern is never repeated and, strictly spoken, no

autocalibration region exists. We can see in the result shown in

Figure 17 that even this regularized calibration approach succeeds

Figure 15. Reconstruction experiment for a simulated random
subsampling of phase encoding lines to 34% of the Nyquist
rate. GRAPPA, SPIRIT and the proposed method use autocalibration.
The COMPASS method uses exact knowledge of the simulated coil
profiles.
doi:10.1371/journal.pone.0098937.g015

Figure 16. Reconstruction experiment for a simulated random
subsampling of phase encoding lines to 20% of the Nyquist
rate.
doi:10.1371/journal.pone.0098937.g016
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in avoiding the severe aliasing artifacts that arise with the reference

algorithm, while still achieving great contrast and sharpness.

9 Arbitrarily sampled 3D k-space autocalibrating pMRI
The proposed approach is very versatile and is suitable to work

with non-uniform k-space, as we explained in Section 3.1 and

demonstrated in experiments. Similarly, the method can be

extended trivially to support 3D sampling patterns. As an

illustration, we add the result of a 3D autocalibrated pMRI

reconstruction experiment. We used the same 3D MPRAGE-

based phantom from the previous section. The simulated image

acquisition and reconstruction was for a grid of the size

128|128|64 voxels and it was acquired on an irregular stack

of radial lines. Two projections of these k-space coordinates, along

with depictions of the automatically detected autocalibration

region, are shown in Figure 18. The results of the reconstruction

experiments are shown in Figure 19. The comparison between

COMPASS and the proposed method is interesting because the

COMPASS technique [17] is SENSE-like in that it takes complete

knowledge of the coil sensitivity profiles as an input. As such, the

COMPASS and the proposed method can be used to assess the

autocalibration model. The simulation experiment was set up to

make this comparison possible, by simulating 8 coils that combine

into a uniform profile, when performing a sum of squares

reconstruction. The results show that the autocalibration tech-

nique succeeds in automatically finding the proper coil profiles,

without user intervention, in order to yield a result that is

indistinguishable from a reconstruction that starts with full

knowledge of the coil profiles.

10 Discussion
These experiments have demonstrated that the proposed

technique for autocalibration outperforms the existing state-of-

the-art techniques with respect to calibration accuracy for non-

Cartesian trajectories. This was demonstrated with reconstruction

experiments for various acceleration factors in Section 4. It was

Figure 17. Reconstruction from a simulated subsampled Archimedean spiral pMRI acquisition. (left) Ground truth, (middle left)
maximum likelihood sum of squares reconstruction (19.2dB), (middle right) proposed method (21.9dB), (right) k-space sampling pattern detail, notice
the spiral arms being too distant to allow for conventional autocalibration.
doi:10.1371/journal.pone.0098937.g017

Figure 18. K-space trajectory used in the 3D stack of spiral experiment. The red points constitute the automatically detected autocalibration
area. Left: side view, Right: top view.
doi:10.1371/journal.pone.0098937.g018
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found that, as the AF increases, the proposed algorithm suffers

from slower and less quality loss with respect to the fully sampled

reconstruction in comparison to the state of the art. We attribute

this to our improved model for and estimation of coil sensitivity

profiles, one of which is illustrated in Figure 14.

Furthermore, the proposed technique’s image reconstruction

was demonstrated to possess (automatically tuned) noise robust-

ness, which was demonstrated both for the non-Cartesian (in

Section 5) and the Cartesian (in Section 6) pMRI case. It was also

demonstrated how this noise robustness results in significantly

better results, in terms of mean squared error as well as some

qualitative detail recovery, in comparison to conventional

techniques, because these techniques are typically oblivious of

noise levels.

Lastly, the versatility of the proposed technique was further

illustrated by different experiments, both Cartesian and arbitrarily

sampled non-Cartesian, 2D and 3D pMRI reconstruction in

Section 7, Section 8 and Section 9. Reconstruction in all this cases

is automatic, i.e. without user input. Estimation of calibration area,

noise level, calibration kernel, desired FOV or resolution, etc. is all

done automatically following the procedures outlined in this

paper.

The computation cost for this algorithm is similar to that of

other iterative MRI reconstruction algorithms, and it scales

linearly with the number of data points. Take the simulation in

Section 7 as an example, the total reconstruction time is 170 s for

an image of 256|256. 20 seconds (*12%) of this is taken up by

the autocalibration algorithm and 150 s by the reconstruction

algorithm. Note that the time taken up by the autocalibration is

low, this is defined by the size of the autocalibration region, which

depends on the k-space trajectory and is estimated automatically

by the algorithm. In the example, the proposed algorithm detects

3694 points out of 29440 trajectory points (*12%) as autocali-

bration region. This explains the speed of the autocalibration

algorithm, as usually less datapoints have to be considered for the

autocalibration part. Conversely, if the autocalibration area is

found to be large, the autocalibration algorithm will take more

time and this scales linearly with the number of autocalibration

datapoints. The parameter estimation algorithms for noise and

signal level are of lower complexity and their influence on the

computation time is negligible.

Conclusions

The goal of this paper was twofold: to propose different

techniques for automation of MRI reconstruction and to develop a

novel, improved autocalibration formulation for pMRI recon-

struction. These goals were achieved in a single reconstruction

algorithm. Firstly, the proposed algorithm was shown to benefit

from the large degree of automation. An example is the the novel

k-space noise level estimation results in a noise-robust reconstruc-

tion that outperforms noise-oblivious reconstruction techniques

both qualitatively and quantitatively. Another example is that this

is the first method (to the authors knowledge) for automatic

detection of an autocalibration region and compatibility with

arbitrarily sampled non-Cartesian trajectories. Automation not

only facilitates in reducing the time and manpower needed to

achieve a good reconstruction for a given dataset, but it also

enables in automatically providing a best effort reconstruction for

a given dataset without being biased by the taste of a specific user.

This conclusion holds even for datasets that, to the knowledge of

the author, no other algorithms succeed in providing a

reconstruction for. This is because of the second novelty in this

paper: a novel framework for autocalibrating pMRI, which is

Figure 19. Reconstruction experiments from an autocalibrated 3D stack of spirals reconstruction. Top row: saggital view of slice 32.
Middle row: saggital view of slice 16. Bottom row: coronal view of slice 64.
doi:10.1371/journal.pone.0098937.g019
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shown to be more robust against noise, due to regularization, more

versatile, in the sense of k-space trajectory requirements and more

accurate, in the sense of the underlying model, than other pMRI

techniques. We demonstrated the algorithm in several examples,

including an example where there is insufficiently sampled

calibration data for proper autocalibrated pMRI. The code for

the proposed algorithm is available upon request with the author.
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