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Abstract. Diet‑induced obesity is associated with systemic 
inflammation, which is considered to originate predominantly 
from the adipose tissue. Quercetin and resveratrol are two 
dietary polyphenols that exhibit anti‑inflammatory properties 
and anti‑insulin resistance when administered in isolation 
or combination (CQR). It remains unknown whether CQR 
reduces high fat diet (HFD)‑induced obesity and inflammation 
in rats. In the current study, 46 male Wistar rats were divided 
into two groups, one of which was fed a normal diet (ND, 
5.4% fat, w/w) and one of which was fed a HFD (45% fat, w/w) 
for 3 weeks. Following removal of the 12 most obesity‑resistant 
rats from the HFD group, the remaining rats were divided 
into two sub‑groups: A HFD group and a HFD+CQR group 
(administered 120 mg/kg/day resveratrol and 240 mg/kg/day 
quercetin). The results revealed that the HFD+CQR group had 
significantly lower body weights at 11 weeks compared with 
the HFD group and had significantly reduced visceral adipose 
tissue weights and adipocyte sizes. Serum lipid profiles were 
also significantly ameliorated in the HFD+CQR group. CQR 

attenuated the expression of systemic proinflammatory adipo-
kines, including leptin, tumor necrosis factor‑α, monocyte 
chemoattractant protein‑1 and interleukin‑6. It also reduced 
the recruitment of mast cells to the epididyotic adipose 
tissue (EAT). Furthermore, CQR reversed the HFD‑induced 
suppression of 5'‑adenosine monophosphate‑activated protein 
kinase α1 (AMPKα1) phosphorylation and sirtuin 1 (SIRT1) 
expression in EAT. In conclusion, CQR may suppress obesity 
and associated inf lammation via the AMPKα1/SIRT1 
signaling pathway in rats fed a HFD.

Introduction

Obesity‑induced systemic inflammation originates in adipose 
tissue prior to hepatic tissue (1,2). The human body contains 
various fat deposits, which can be divided into white and 
brown fat. White adipose tissue (WAT) is a multifunctional 
organ that stores nutrients in the form of fat droplets. In addi-
tion, WAT secretes cytokines that affect the body's metabolic 
state, thus it is sometimes regarded as the largest endocrine 
organ in the body (3). Excessive energy intake induces adipo-
cyte hypertrophy and hyperplasia, which may lead to the 
development of high fat diet‑induced obesity. Hypertrophic 
adipocytes release chemokines and proinflammatory cyto-
kines to activate and attract inflammatory cells into WAT. 
This contributes to systemic insulin resistance and ultimately, 
a state of chronic low‑grade adipose tissue inflammation (4). 
Polyphenol intake is positively associated with a decrease in 
the incidence of metabolic and obesity‑associated disorders. 
Quercetin is a polyphenolic flavonoid compound present in 
a variety of fruits and vegetables, including onions, broc-
coli, tomatoes, apples and berries. It has a wide range of 
biological activities and health‑promoting effects, including 
anti‑carcinogenic  (5), antiviral  (6), antioxidant  (7), anti-
diabetic  (8), anti‑inflammatory  (9), anti‑aging  (10) and 
angioprotective properties (11). Furthermore, it has recently 
been suggested that quercetin exerts anti‑obesity activity via 
the mitogen‑activated protein kinase (MAPK) and 5'‑adenine 
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monophosphate‑activated protein kinase α1 (AMPKα1) 
signaling pathways (12). Resveratrol, a phytoalexin found in 
the skin and seeds of grapes and in red wine, may also protect 
against diet‑induced obesity and metabolic diseases including 
hepatic steatosis and insulin resistance (13). In the present 
study, the effect of combination treatment with quercetin and 
resveratrol (CQR) was investigated in rats fed a HFD. The 
impact on CQR on HFD‑induced fat accumulation, insulin 
resistance, proinflammatory cytokine levels, mast infiltration 
and AMPKα1/sirtuin 1 (SIRT1) signaling in adipose tissues 
was assessed.

Materials and methods

Animals. The present study was approved by the Institutional 
Animal Care and Use Committee of Shanghai University 
of Traditional Chinese Medicine (Shanghai, China), and all 
procedures were performed in accordance with the National 
Institute of Health's guidelines  (14). A total of 46 male 
8‑week‑old Wistar rats with a mean weight of 200±10 g were 
provided by the Shanghai SLAC Laboratory Animal Co., Ltd. 
(Shanghai, China). Rats were raised in an environment of 
22±0.5˚C and 40‑70% relative humidity under a 12 h light/dark 
cycle, with food and water freely available. Following 1‑week 
habituation, the rats were randomly divided into 2 groups. 
The normal diet (ND) group, (n=10) were fed a regular chow 
diet containing 5.4% fat and the HFD group, (n=36) were fed 
a HFD containing 45% fat. After 3 weeks, rats in the HFD 
group were ranked according to weight gain, and rats in 
the lower third (n=12) were excluded from the study as they 
were deemed to be obesity resistant. The remaining 24 rats 
in the HFD group were randomly divided into 2 sub‑groups: 
i) A HFD group (n=12); and ii) a HFD+CQR (n=12) group. 
CQR treatment consisted of 120  mg/kg/day resveratrol 
(purity, ≥98%; Hangzhou Great Forest Biomedical Co., Ltd., 
Hangzhou, China) and 240 mg/kg/day quercetin (purity ≥98; 
Nanjing Zelang Medical Technology Co., Ltd., Nanjing, China) 
The body weight and food intake of the rats was recorded each 
week. After 11 weeks, rats were anesthetized with isoflurane 
and sacrificed following a 12 h fast. Blood was extracted 
from the abdominal aorta and centrifuged at 5,000 x g for 
15 min at 4˚C. The serum was separated and stored at ‑80˚C 
prior to analysis. Following blood collection, subcutaneous 
adipose tissues (SATs), epididymis adipose tissues (EATs) and 
perinephric adipose tissues were promptly removed, rinsed, 
weighed on ice and then snap frozen in liquid nitrogen and 
stored at ‑80˚C.

Biochemical parameters. Total cholesterol (C), triglycerides 
(TG), high‑density lipoprotein‑C (HDL‑C) and low‑density 
lipoprotein‑C (LDL‑C) in the serum were measured and quan-
tified using a Hitachi 7600 automatic biochemical analyzer 
(Hitachi, Ltd., Tokyo, Japan) with the corresponding kits as 
follows: Quick Auto Neo T‑CHOLII assay reagent and Quick 
Auto Neo TGII assay reagent, manufactured by Shino‑Test 
Corporation (Tokyo, Japan); L‑type HDL‑C reagent 1 (cat 
no. 998‑09011), reagent 2 (cat no. 994‑09111); and L‑type 
LDL‑C reagent 1 (cat no.  997‑39893) and reagent  2, (cat 
no.  993‑39993), manufactured by Wako Pure Chemical 
Industries, Ltd. (Osaka, Japan).

Cytokine quantification. Levels of leptin, adiponectin, insulin, 
interleukin-6 (IL‑6), tumor necrosis factor‑α (TNF‑α) and 
monocyte chemotactic protein‑1 (MCP‑1) in the serum were 
quantified using the corresponding commercial rat ELISA kits 
as follows: Rat leptin, LEP ELISA kit (cat no. CSB‑E07433r); 
rat adiponectin, ADP ELISA kit, (cat no.  CSB‑E07271r); 
rat insulin, INS ELISA kit (CSB‑E05070r); rat IL‑6, IL‑6 
ELISA kit (cat no.  CSB‑E04640r); rat TNF‑α ELISA kit 
(cat no.  CSB‑E11987r); and rat MCP‑1/monocyte chemo-
tactic and activating factor, MCP‑1/MCAF ELISA kit (cat 
no. CSB‑E07429r; Cusabio Biotech Co., Ltd., Wuhan, China) 
according to the manufacturer's protocols.

Histopathology. Adipose tissues were collected at 11 weeks and 
fixed in 4% formalin at room temperature for 24 h, embedded 
in paraffin and sliced serially into sections 5‑µm thick. To 
determine adipocyte size, hematoxylin and eosin staining 
was conducted on EATs at room temperature for 30 min. Five 
visual fields were randomly selected from each section with 
an Olympus BX51 light microscope (Olympus Corporation, 
Tokyo, Japan) and examined using Image‑Pro Plus version 6.0 
(Media Cybernetics, Inc., Rockville, MD, USA) to determine 
the average adipocyte diameter. Toluidine blue staining was also 
performed on EATs for 1 h by briefly submerging tissue sections 
in 0.1% aqueous toluidine blue (Sigma‑Aldrich; Merck KGaA, 
Darmstadt, Germany) at room temperature, the histological 
images were used to quantify the number of mast cells present, as 
previously described (15). Mast cell numbers were counted using 
a light microscope and were presented as cell numbers/mm2.

Protein extraction and western blot analysis. Plasma 
membrane proteins were extracted from adipose tissues using 
a radioimmunoprecipitation assay lysis buffer (cat no. 89900, 
Pierce; Thermo Fisher Scientific, Inc., Waltham, MA, USA), 
total protease inhibitor and phosphatase inhibitor, as described 
previously (16). Protein concentration was measured using a 
commercial bicinchoninic acid assay kit and a microplate 
reader at 570 nm. Subsequently protein (40 µg/lane) was sepa-
rated by 10% SDS‑PAGE and transferred to a polyvinylidene 
difluoride membrane (Bio‑Rad Laboratories, Inc., Hercules, 
CA, USA). The membranes were blocked with 2% bovine 
serum albumin (cat no. K720; Ameresco, Inc., Framingham, 
MA, USA) at room temperature and TBS with Tween‑20 for 
1 h, then incubated overnight at 4˚C with AMPKα1 antibody 
(cat no.  2795), phosphorylated (p)‑AMPKα1 (Thr172; cat 
no. 2535), or SIRT1 rabbit monoclonal antibodies (cat no 3931). 
Membranes were also incubated with monoclonal mouse 
anti‑human β‑actin antibody (cat no. 4967; all 1:1,000 dilu-
tion; all from Cell Signalling Technology, Inc., Danvers, MA, 
USA) as the loading control. Following extensive washing 
in Tween‑PBS, membranes were incubated with horseradish 
peroxidase‑conjugated goat anti‑rabbit immunoglobulin G 
antibody (1:4,000; cat no. sc‑2030; Santa Cruz Biotechnology, 
Inc., Dallas, TX, USA) for 1 h. Bands were visualized using 
LightShift™ Chemiluminescent electrophoretic mobility shift 
assay kit (cat no. 20148; Thermo Fisher Scientific, Inc.) and the 
ImageQuant™ LAS 4000 Mini, quantified using ImageQuant 
TL 7.0 software (both from GE Healthcare, Chicago, IL, USA) 
and expressed as the ratio of pAMPKα1 to AMPKα1 or SIRT1 
to β‑actin.
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Statistical analysis. All data are presented as the 
mean ± standard error of the mean. For multiple comparisons, 
differences were analyzed using one‑way analysis of variance 
followed by Tukey's multiple comparison test. P<0.05 was 
considered to indicate a statistically significant difference. 
All statistics were analyzed using Graphpad Prism version 6.0 
(GraphPad Software, Inc., La Jolla, CA, USA).

Results

Treatment with CQR results in a lower body and visceral 
adipose tissue weight in an HFD‑rat model. After 3 weeks, 
at the point of CQR intervention, the body weight of rats in 
the HFD group was significantly higher than those in the ND 
group (Fig. 1A). The body weight increase was alleviated by 
CQR between weeks 8 and 11 and following 11 weeks inter-
vention; HFD+CQR rats had a significantly lower body weight 

than HFD rats (Fig. 1A). Food intake was significantly lower 
in HFD rats compared with ND rats (Fig. 1B), however energy 
intake was significantly higher (Fig. 1C). CQR did not exert a 
marked effect on food and energy intake. At the end of week 11, 
HFD+CQR rats had a notably lower visceral (epididymal 
and perirenal) adipose tissue weight (Fig. 1D) and a signifi-
cantly smaller adipose cell diameter compared with the HFD 
group (Fig. 1E and F). Subcutaneous adipose tissue weight did 
not differ significantly across all groups (Fig. 1D). These results 
suggest that CQR treatment may inhibit HFD‑induced obesity.

CQR treatment affects lipid levels in the serum. The HFD 
group exhibited significantly higher levels of total C, TG and 
LDL‑C in the serum compared with the ND group (Table I). 
CQR significantly attenuated these lipid levels compared with 
the HFD. However, CQR did not reverse the decrease in serum 
HDL‑C induced by HFD (Table I).

Figure 1. Treatment with CQR reduces the body and visceral fat weights of rats fed a HFD. Rats were fed a ND, a HFD or a HFD+CQR for a period of 11 weeks. 
Subsequently (A) body weight, (B) food intake, (C) energy intake and (D) white adipose tissue weights were measured. (E) EAT morphology was observed 
using a light microscope at a magnification of x200 and the (F) adipocyte diameters in EAT were measured. Data are expressed as the mean ± standard 
error of mean. *P<0.05, **P<0.01 and ***P<0.001 vs. ND. #P<0.05 and ###P<0.001 vs. HFD. CQR, combination of quercetin and resveratrol; HFD, high fat diet; 
ND, normal diet; EAT, epididymal adipose tissues.
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CQR treatment reduces insulin and leptin levels in serum. 
HFD significantly elevated serum insulin and leptin levels 
but lowered the serum adipinectin levels compared with the 
ND (Table  I). CQR significantly decreased serum insulin 
and leptin levels but exhibited no significant effect on serum 
adipinectin compared with the HFD group.

CQR suppresses the clustering of mast cells in adipose tissue. 
During the formation of HFD induced‑obesity and exacerba-
tion of adipose tissue inflammation or insulin resistance, a 
large amount of mast cells infiltrate the adipose tissue (17). 
It was reported that HFD induced mast cell clustering in 
WAT and promoted obesity and insulin resistance (18), while 
quercetin suppresses the release of cytokines from mast cells 
in vitro and obesity mice (16,19). The number of mast cells in 
EAT was calculated to evaluate the effects of CQR on mast 
cell in adipose tissue of HFD‑induced rats (Fig. 2). The results 
demonstrated that HFD significantly promoted the transition 
of mast cells into EATs, while CQR significantly reversed this 
effect (both P<0.05).

CQR suppresses proinflammatory cytokines. A variety of 
proinflammatory cytokines are secreted by hypertrophic 
adipocytes and cause inflammatory cell infiltration during the 
development and progression of obesity (20). Several impor-
tant proinflammatory cytokines involved in insulin resistance 
were detected in this study; results from ELISA determined 
that levels of the proinflammatory cytokines TNF‑α, IL‑6 and 
MCP‑1, which increased in rats on a HFD, were significantly 
suppressed by CQR (Table I). These results suggest that CQR 
may relieve systematic inflammation induced by obesity.

CQR upregulates the AMPKα1/SIRT1 signalling pathway. 
AMPKα1 and SIRT1 are two key nutrient sensors linking 
nutrient metabolism and inflammation  (21‑22). AMPKα1 
negatively regulates lipid‑induced inflammation, which acts 
through SIRT1 to protect against obesity, inflammation and 
insulin resistance (23). It has been demonstrated that quercetin 

alleviates obesity‑associated adipose tissue macrophage infil-
tration and inflammation in mice via the AMPKα1/SIRT1 
signaling pathway (16). Resveratrol also induces beneficial 
effects on obesity and metabolic disturbances by activating 
the AMPKα1/SIRT1 signaling pathway (24). Consistent with 
previous studies, AMPKα1 phosphorylation (Fig. 3A) and 
SIRT1 expression (Fig. 3B) in the EAT of rats fed a HFD were 
significantly suppressed. Treatment with CQR significantly 

Figure 2. Treatment with CQR reduces the clustering of mast cells in 
the epididymal adipose tissue (EAT). At 11 weeks, tissue samples were 
collected and (A) epididymal white adipose tissue was observed using a 
light microscope (small box: magnification, x200, big box: magnification, 
x100) following toluidine blue staining of the mast cells indicated by the 
blue stain. Pink plaques are erythrocytes and leukocytes in the blood vessels 
of EAT. Erythrocytes are cells without a nucleus, while leukocytes are cells 
with a nucleus. (B) Quantification of mast cells in the indicated groups was 
performed by observing the slides, n=8 per group. *P<0.05 and #P<0.05. All 
data are presented as the mean ± standard error of mean. CQR, combination 
of quercetin and resveratrol; HFD, high fat diet; ND, normal diet.

Table I. CQR normalizes the concentrations of serum constituents in HFD fed rats.

Parameter	 ND	 HFD	 HFD+CQR

Serum total C (µmol/l)	 1536±101.5a	 1987±100.6	 1587±70.36a

Serum TG (µmol/l)	 685.8±89.93c	 1366±129.3	 746.4±80.98c

Serum HDL‑C (µmol/l)	 1010±24.72b	 778.3±30.79	 901.7±23.09
Serum LDL‑C (µmol/l)	 275.0±13.76b	 462.5±29.39	 305.0±31.66b

Serum insulin (IU/ml)	 66.66±4.422a	 84.65±4.917	 68.16±3.454a

Serum leptin (pg/ml)	 542.5±27.07c	 904.2±47.88	 667.7±36.90c

Serum adiponectin (pg/ml)	 68.78±4.889a	 38.74±3.740	 60.70±3.934
Serum TNF‑α (pg/ml)	 41.50±6.000b	 71.28±3.545	 50.34±5.403a

Serum IL‑6 (pg/ml)	 1.141±0.0871b	 2.063±0.2744	 1.131±0.0842b

Serum MCP‑1 (pg/ml)	 47.56±5.594a	 72.47±3.848	 49.01±4.671a

Statistical differences between groups were identified using a one‑way ANOVA test followed by Tukey's multiple comparison test, n=12 
per group. All data in the table are presented as the mean ± standard error of mean. aP<0.05, bP<0.01 and cP<0.001, vs. the HFD model 
group. C, cholesterol; TG, triglycerides; HDL, high‑density lipoprotein; LDL, low‑density lipoprotein; TNF‑α, tumor necrosis factor‑α; IL‑6, 
interleukin‑6; MCP‑1, monocyte chemotactic protein‑1; ND, normal diet; HFD, high fat diet; CQR, combination of quercetin and resveratrol.
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reversed the suppression of AMPKα1 phosphorylation in a rat 
model (Fig. 3A).

Discussion

Quercetin and resveratrol are two types of dietary poly-
phenols, which may have beneficial effects on metabolic 
syndrome (25‑33). It has also been reported that quercetin and 
resveratrol have a therapeutic effect on triacylglycerol metabo-
lism in WAT (25). The results of the present study suggest 
that the combination of quercetin and resveratrol ameliorate 
insulin resistance and adipose tissue inflammation in obese 
rats. Furthermore, CQR treatment was able to reverse the 
changes in AMPKα1 phosphorylation and SIRT1 expression 
that occur in adipose tissues. To the best of our knowledge, the 
current study is the first to demonstrate that CQR has synergic 
effects on body fat accumulation and adipose inflammation by 
activating the AMPKα1/SIRT1 signaling pathway.

Previous studies have demonstrated that resveratrol 
and quercetin may reduce body fat accumulation in animal 
models  (26‑31). In our previous study, CQR exhibited 
synergistic effects on a HFD‑induced metabolic phenotype 
in mice (32). Since polyphenols are efficient, particularly at 
higher doses  (33), doses of 120 mg/kg/day resveratrol and 
240 mg/kg/day quercetin were used in the current study. These 
are similar to the doses used in other comparable studies 
performed in rodents (31,34‑36). The recommended dosage 
of quercetin and resveratrol in obesity or insulin‑resistance 
studies remains controversial and it was reported that treat-
ment with lower doses of resveratrol may activate SIRT1, 

whereas higher doses activate AMPK in a SIRT1‑independent 
manner (37). The doses of quercetin and resveratrol used in 
some studies are 30 mg/kg/day and 15 mg/kg/day, respec-
tively (26,38). In addition, quercetin is considered to be safe as 
it does not induce carcinogenicity and genotoxicity following 
oral administration at high doses (up to 2,000 mg/kg) (39). 
Lagouge et al (31) demonstrated that dietary treatment with 
200 or 400 mg/kg/day resveratrol, delivered in either chow 
or a HFD, significantly increased the aerobic capacity and 
resistance to HFD induced‑obesity in mice.

The anti‑obesity effects of quercetin and resveratrol 
on HFD‑induced body weight gain remain controversial 
and negative results have been reported by several research 
groups (40‑42). Similar to previous studies (24,26,29,32,43), the 
results of the present study demonstrated that the body weight 
gain between weeks 9 and 11 in rats fed a HFD and treated 
with CQR was significantly attenuated compared with rats fed 
a HFD alone. Treatment with CQR also reduced the weights of 
renal adipose tissues and EATs, however it did not affect SAT 
weight or food and energy intake. CQR therefore appears to 
have a mild weight‑reducing and visceral fat‑reducing effect. 
Visceral adipose tissue is a proinflammatory endocrine tissue 
and may be responsible for the increased cardiometabolic 
risk that occurs as body mass index rises  (44). Regardless 
of adiposity status, visceral adiposity is associated with an 
adverse cardiometabolic profile, including inflammation, 
insulin resistance and myocardial dysfunction, all of which are 
hallmarks of an ‘obese’ phenotype (44). In addition the current 
study demonstrated that, HFD‑induced dyslipidemia caused 
an increase in total C, TGs and LDL‑C and a decrease in 
HDL‑C in the blood. Chaudhari et al (45) also reported that a 
HFD induced significant increases in total C, TG and LDL‑C 
in the rat serum, whereas it reduced HDL‑C in rat serum (41). 

In the present study, CQR treatment increased serum HDL‑C 
and decreased serum TC, TG and LDL‑C, demonstrating that 
CQR is able to reduce the effects of a HFD in a rat model of 
obesity, which is consistent with previous reports (12,46‑48).

Chronic low‑grade adipose tissue inflammation serves an 
important role in the development of HFD‑induced obesity 
and insulin resistance  (4,49,50). The proinflammatory or 
anti‑inflammatory molecules abnormally secreted from obese 
adipose tissue are called adipokines and provide evidence 
that there is a direct association between obesity and systemic 
inflammation (51). The adipose tissue of obese individuals 
exhibits increased expression of proinflammatory adipokines, 
including TNF‑α, MCP‑1 and IL‑6 but a reduced expression of 
adiponectin (52). Systemic leptin is increased in animals fed a 
HFD or with inflammation and/or infection states and directly 
affects cytokine production (53); thus it was hypothesized 
that CQR may ameliorate the inflammation in adipose tissue 
induced by a HFD. The results of the current study demon-
strated that CQR attenuates adipocyte growth in EAT and 
mast cell clustering into adipose tissues. In the serum, CQR 
treatment reduced leptin, as well as TNF‑α, MCP‑1 and IL‑6 
levels.

To reveal the molecular mechanisms by which CQR 
attenuates obesity associated adipose tissue inflamma-
tion, two important nutrient sensors and inflammatory 
regulators in EAT were assessed in the current study; 
AMPKα1 and SIRT1 (54,55). CQR significantly increased 

Figure 3. Treatment with CQR increases AMPKα1 phosphorylation and 
SIRT1 expression in the EAT of rats fed a HFD. After 11 weeks, tissue 
samples were obtained from each group and the (A) protein and phosphory-
lation levels of AMPKα1 and (B) the protein expression of SIRT1 in EATs, 
were measured. Quantification of AMPKα1 activity and SIRT1 expression 
was presented as the ratio of pAMPKα1 to total AMPKα1 and SIRT1 to 
β‑actin, respectively. Statistical differences between groups were identified 
using a one‑way ANOVA test followed by Tukey's multiple comparison test 
(n=8 per group). All data are presented as the mean ± standard error of mean. 
***P<0.001 and #P<0.05. AMPKα1, 5'‑adenosine monophosphate‑activated 
protein kinase α1; SIRT1, sirtuin 1; EAT, epididymal adipose tissue; 
HFD, high fat diet; ND, normal diet; CQR, combination of quercetin and 
resveratrol; p, phosphorylated.
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HFD‑suppressed AMPKα1 phosphorylation and mark-
edly increased SIRT1 expression in EATs, suggesting that 
CQR influences the AMPKα1/SIRT1 signaling pathway in 
adipose tissues. The AMPKα1/SIRT1 signaling pathway 
may be a novel cellular target due to its anti‑inflammatory 
effects in adipocytes (24,56). AMPKα1 activates SIRT1 and 
inhibits inflammation in macrophages  (57); furthermore, 
AMPKα1 may inhibit the activation of the nuclear factor‑κB 
system, a key regulator of innate immunity and inflamma-
tion (55). Activation of AMPKα1 may suppress the synthesis 
of pro‑inflammatory cytokines, such as IL‑6 and IL‑8, in 
adipocytes (58). Aminoimidazole‑4‑carboxami‑deriboside, a 
pharmacological activator of AMPKα1, may inhibit inflam-
matory responses via AMPKα1‑independent pathways, and 
reverse lipopolysaccharide and HFD‑induced inflamma-
tion (55‑59). Reduction of EAT SIRT1 expression may induce 
ectopic inflammatory gene expression and the overexpression 
of SIRT1 inhibits HFD‑induced increases in inflammation in 
adipose tissue (60). Dong et al (16) reported that dietary quer-
cetin suppressed adipose tissue macrophage infiltration and 
inflammation via the AMPKα1/SIRT1 pathway in mice fed 
a HFD. Furthermore, Bitterman and Chung (61) reported that 
the AMPKα1/SIRT1 signaling pathway is the primary target 
for the metabolic effects of resveratrol.

In conclusion, the results of the present study suggest that 
CQR ameliorates not only excessive body weight gain and 
dyslipidemia, but also adipose tissue inflammation in rats with 
HFD‑induced obesity. The anti‑obese effect of CQR is associ-
ated with a reduction in body weight gain, adipocyte diameter, 
adipose tissue weight and an improvement of dyslipidemia 
in serum. Its anti‑obese effect is closely associated with its 
anti‑inflammation effects by which it reduces adipokine secre-
tion and activates the AMPKα1/SIRT1 signaling pathway. 
These results indicate that CQR has the potential to reduce 
HFD‑induced obesity and inflammation.
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