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Abstract

Whole genome sequencing of matched tumor-normal sample pairs is becoming routine in cancer research. However,
analysis of somatic copy-number changes from sequencing data is still challenging because of insufficient sequencing
coverage, unknown tumor sample purity and subclonal heterogeneity. Here we describe a computational framework,
named SomatiCA, which explicitly accounts for tumor purity and subclonality in the analysis of somatic copy-number
profiles. Taking read depths (RD) and lesser allele frequencies (LAF) as input, SomatiCA will output 1) admixture rate for each
tumor sample, 2) somatic allelic copy-number for each genomic segment, 3) fraction of tumor cells with subclonal change in
each somatic copy number aberration (SCNA), and 4) a list of substantial genomic aberration events including gain, loss and
LOH. SomatiCA is available as a Bioconductor R package at http://www.bioconductor.org/packages/2.13/bioc/html/
SomatiCA.html.
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Introduction

During carcinogenesis, there are often alterations of the dosage

and/or structure of tumor suppressor genes or oncogenes in

cancer cells through somatic chromosomal alterations. Identifying

genomic regions with recurrent copy number alterations (gains

and losses) in tumor genomes is an efficient way to find cancer

driver genes [1]. Ideally, such characterization should include both

the precise identification of the chromosomal breakpoints of each

alteration and the absolute estimation of copy numbers in each

chromosomal segment. Earlier studies used oligonucleotide

microarrays to infer genome-wide copy-number changes. Recent

advances in massively parallel sequencing provide a powerful

alternative to DNA microarrays for detecting copy-number

alterations [2]. The advantages of sequencing-based approaches

include its comprehensive and unbiased survey of all genomic

variations [3] and ability to detect both copy number aberrations

(CNAs) and single nucleotide variations (SNVs) simultaneously in

each sample, which offers critical information for our understand-

ing of cancer genome evolution.

Many algorithms have been developed to detect copy number

variations (CNVs) from whole genome or exome sequencing data,

such as methods using raw read-depth [2–5], read-pair alignment

[6,7], split-read mapping [8,9] and assembly-based (AS) methods

[10,11]. However, these methods are not well suited to infer

absolute somatic copy-number because they are developed to

analyze data from normal instead of tumor samples. Compared to

normal samples, tumor samples have some unique features

including: (i) an unknown fraction of normal cells (admixture rate)

that are nearly always intermixed with cancer cells; and (ii) the

heterogeneity of cancer cell population owing to ongoing subclonal

evolution. Although some methods have been developed for

Somatic CNA (SCNA) identification in whole cancer genome

sequencing, most of them do not explicitly model tumor purity

[12,13]. For those accounting for tumor purity, ExomeCNV [14]

estimates the admixture rate based on the largest Loss of

Heterozygosity (LOH) region in a genome, which likely produces

a biased estimation. A more commonly used option in Exo-

meCNV is a default setting of 0.3 for the admixture rate. Control-

FREEC [15] requires a prior specification of the normal

contamination level or a pre-specified ploidy to estimate the

normal contamination through the median shift of copy number in

altered regions towards the normal baseline. Both methods have

low tolerance to contamination. Algorithms developed on

arrayCGH data, such as ASCAT [16] and ABSOLUTE [17],

are specialized to estimate tumor purity but do not provide a

comprehensive framework for subclonality identification or

segment calling.

Here we present SomatiCA, a novel framework that is capable

of identifying, characterizing and quantifying SCNAs from cancer

genome sequencing (Figure 1). By directly accounting for tumor

purity and subclonality, SomatiCA was specially developed to

analyze tumor samples with contamination and/or heterogeneity.

First, SomatiCA segments the genome and identifies candidate
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CNAs utilizing both read depths (RD) and lesser allele frequencies

(LAF) from mapped reads. Second, SomatiCA estimates the

admixture rate from the relative copy-number ratios of a tumor-

normal pair by a Bayesian finite mixture model, which has high

tolerance on contamination from normal cells. Finally, SomatiCA

quantifies somatic copy-number and subclonality for each

genomic segment to guide its characterization. Results from

SomatiCA can be further integrated with SNVs from the same

sequencing experiment to gain a better understanding of tumor

evolution.

Results

Segmentation strategy in SomatiCA
Although next generation sequencing (NGS) technology gener-

ates data with higher resolution than SNP arrays and array

comparative genomic hybridization (aCGH), the signal is compli-

cated by mappability, GC-content, alignment bias and other issues

[15]. This makes the analysis of NGS data not just a direct

adaptation of existing methodologies on aCGH but an extension

requiring extra care on many factors affecting data analysis and

interpretation. For example, after quality control and de-noising,

many existing NGS CNV calling tools directly apply methods

developed for aCGH data [14]. However when we applied CBS

[18], a commonly used method for aCGH data, we found it was

very sensitive to fluctuation in NGS signals and reported change

points likely to be false positive (see simulation results).

In contrast, SomatiCA implements a smoothing-based de-

noising step to reduce the effects of outliers from input LAF (Figure

S1). Given the initial change points detected by CBS, we

implemented a variable selection procedure to remove change

points that are likely to be false positives. This is accomplished in

SomatiCA by using CBS detected change points as the predictors

for the input LAF and then performing variable selection via

Bayesian Information Criterion (BIC) based on a LARS [19]

solution path. For the selected change points, SomatiCA further

assesses whether they capture the changes in somatic copy-

numbers. To quantify these changes, we define somatic ratio as the

RD ratio of the tumor to the paired normal in a segment (with

identical coverage in the tumor and normal sample assumed).

SomatiCA derives a Maximum Likelihood Estimate (MLE) of the

somatic ratio for each segment using RD information from all

paired SNPs in that segment. Two adjacent segments are merged

if the difference in the somatic ratios is less than T, which is a

tuning parameter in the implementation with a default value of

0.05, equivalent to 5% change in somatic copy-number without

normal contamination. The MLEs of the somatic ratio for the

refined segments are recalculated. This refinement procedure is

applied repeatedly until no adjacent segments have somatic ratio

difference less than T. In SomatiCA, information from both

germline heterozygous and homozygous SNPs are utilized. LAF

on heterozygous sites are used in the initial segmentation. RD on

heterozygous and homozygous sites are used to calculate the

somatic ratios.

Simulation Strategy
We perform simulations to evaluate the statistical power of

SomatiCA and for comparisons with other methods. In the

absence of validated biological datasets, such simulation studies

may yield insights on the pros and cons of different methods.

However, because of the complexity of the genome and the

sequencing process, e.g., the non-uniform distribution of RD

across the genome in NGS, it is non-trivial to simulate cancer

sequencing data that capture the complexity in real NGS data.

Figure 1. Overview of SomatiCA framework. First, SomatiCA segments the genome and identifies candidate CNAs utilizing both read depths
(RD) and lesser allele frequencies (LAF) from mapped reads. Second, SomatiCA estimates the admixture rate from the relative copy-number ratios of a
tumor-normal pair by a Bayesian finite mixture model, which has high tolerance on contamination from normal cells. Finally, SomatiCA quantifies
somatic copy-number and subclonality for each genomic segment to guide its characterization.
doi:10.1371/journal.pone.0078143.g001
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Inspired by Ivakhno et al [12], we utilized a normal sample

(denote as GLI-N1, unpublished data) to simulate the cancer

sequencing data as follows (scripts in Text S1):

1) Duplicate the RD and lesser allele counts from the GLI-N1

sample.

2) For each 10 kb genomic window, estimate the median and

standard deviation of RD of all sites and lesser allele counts of

all heterozygous sites.

3) At predetermined positions, place SCNA events ranging from

10 kb to a whole chromosome, with varying magnitudes of

changes including double deletions, LOH, 1 and 2 copy

number gains (as well as different subclonalities including 20%

and 40%). Each aberration contains at least 5 heterozygous

sites.

4) Simulate SCNA events by altering the medians in corre-

sponded windows.

5) Simulate RD and lesser allele counts in SCNA events

windows through normal distributions with means equal to

the altered medians resulted from step 4) and standard

deviation equal to the estimates from step 2).

6) Admix pseudo cancer counts and normal counts with a

gradient of the admixture rate, 0.2, 0.4 and 0.6.

7) In addition to the actual RD reported in GLI-N1 (,606),

simulate read depths of 406and 206by randomly removing

a proportion of reads.

In total, we simulated 90 cancer genomes (3 admixture rates* 3

coverage*10) and each of them contained 40 SCNAs.

SomatiCA effectively reduces false positive rate in the
segmentation

We applied SomatiCA to these simulated data to evaluate the

performance for SCNA detection under different scenarios. We

compared its performance with CBS and cumSeg [20], a similar

segmentation method using model selection to identify change

points with a different initial over-detection step. For fair

comparisons, we applied the same smoothing and refinement

procedure as implemented in SomatiCA for both CBS and

cumSeg. Considering that CBS and cumSeg do not adjust for

admixture rate, we used a lenient criterion to determine whether a

SCNA call was a positive discovery. If the somatic ratio was less

than 0.8 or greater than 1.2, the corresponding segment was

reported as an genomic region with somatic gain or loss. For a true

positive SCNA call, we required the detected breakpoints within

100 kb of true ones.

Overall, CBS and SomatiCA outperformed cumSeg in sensi-

tivity at detecting SCNAs larger than 1 Mb (Figure 2). However,

CBS had 30% false positive calls whereas SomatiCA achieved

higher precision. Moreover, CBS tended to over-detect break-

points on the same alteration. On average CBS reported 1.82

segments for a ,1 Mb event and 3.15 segments for a ,10 Mb

events. In contrast, SomatiCA and cumSeg reported 1.01 and 1.07

segments for the SCNAs larger than 1 Mb. This improvement is

due to the model selection step for change points that removes

those showing small fluctuations, which more likely result from the

same aberration.

For SCNAs smaller than 1 Mb, CBS still maintained a high

sensitivity of 98% but over 60% of CBS calls were false positives.

Both SomatiCA and cumSeg used model selection to effectively

reduce the false positive rate with some compromise on sensitivity.

SomatiCA detected 83% simulated SCNAs whereas cumSeg only

captured 10%. We note that penalization through model selection

is only one of many reasons for the lower sensitivity in smaller

SCNAs identification. Because SomatiCA segments the genome

only based on LAF from heterozygous sites, it may overlook the

aberrations with fewer heterozygous sites. On chromosomes 3 to

15 in the GLI-N1 sample, which we used as the template for

simulation, the distances between adjacent heterozygous sites

ranged from 5 bp (1% quantile) to 17,036 bp (99% quantile) with

a median of 453 bp. The number of heterozygous sites within the

undetected SCNAs ranged from 6 to 76 with a median of 22.

Strong dependency on the number of heterozygous sites is a major

drawback of all approaches using LAF (or BAF) in chromosome

segmentation. The nonuniform coverage and errors signal in

sequencing data makes it challenging to make inference with only

a few markers. In practice, we suggest to use RD based methods as

complementary approaches to cover a wider range of SCNA

events (as elaborated more in the discussion).

When the contamination from normal cells increased over 50%

(admixture rate = 0.6), all three methods suffered in power and

precision on detecting copy loss or gain. For example, when the

admixture rate is 0.6, the expected somatic ratio for one copy loss

and one copy gain is 0.8 and 1.2. Thus the cutoff values used in

the previous comparisons may be too stringent to identify SCNA

events. This suggests the importance of adjusting parameters for

the admixture rate in SCNA calling.

Explicit modeling of admixture rate
As we mentioned, an unknown fraction of normal cells and the

heterogeneity of cancer cell population are two factors requiring

special attention in the analyses of tumor samples. We begin by

explaining how the admixture rate would affect SCNAs calling

using a hypothetical example. For a tumor sample with 0, 1, 3 and

4 copies at different chromosomal segments is intermixed with

40% of a paired normal sample with 2 copies, the expected

somatic ratios are 0.4, 0.7, 1.3, and 1.6, respectively. Without any

adjustment for the admixture rate, the inferred copy-numbers

would be 1, 2 (or 1), 2 (or 3), and 3, respectively. In this case,

double deletions would be mistakenly called as LOHs, whereas

true LOHs would be nearly undetectable resulting in inaccurate

inference on copy numbers. One key observation here is that there

is an overall shift of the expected somatic ratios from the ones

without any contamination, and this general shift could be utilized

to infer the admixture rate. However, there are two complications

to capitalize on this observation: first, the types of SCNAs are

unknown (e.g. there are 4 types in our hypothetical example);

second, the presence of subclonal SCNAs may further complicate

the somatic ratio profile and consequently affect the copy number.

To address these issues in a coherent manner, we have developed

a probabilistic model under a full Bayesian framework as detailed

below.

The basic idea behind admixture rate estimation in SomatiCA

is that the somatic ratios of clonal segments are centered around a

certain discrete level whereas those of subclonal segments have no

constraints. Therefore based on its somatic ratio, each genomic

segment can be either assigned an integer copy-number or

classified as a subclonal event. The proportion of intermixed

normal cells can be estimated from the shift of somatic ratios of

clonal SCNAs from their expectations in the pure and homoge-

neous tumor samples. To accomplish this, we first estimated the

most likely number of components from the input somatic ratio

distribution, then fitted a Bayesian finite mixture model to assign

copy number to each segment based on the corresponding

posterior probability, and finally we estimated the admixture rate

by an optimal solution contributed by explanation of the copy

number shift of all clonal segments from integer levels.

Analyzing Somatic Copy Number Aberrations
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Our model is similar to ABSOLUTE [17], a Gaussian mixture

model to identify tumor purity and ploidy on arrayCGH or low-

pass sequencing data, with the major differences on assumptions

being: 1) ABSOLUTE assumes a uniform distribution on

subclonal events; in SomatiCA, subclonal events are identified

based on the posterior probabilities, i.e., the departure from

integer copy numbers; 2) ABSOLUTE constrains the genomic

mass allocated to each copy-state while SomatiCA not. Moreover,

these two methods take different quantities as input. ABSOLUTE

takes the copy-ratio as input, a quantity measures the local DNA

dosage conditioning on the aneuploidy of the tumor, whereas

SomatiCA uses the somatic ratio, which is an absolute measure

between normal and tumor samples without conditioning on the

global measure of tumor ploidy (identical coverage for two

libraries is assumed). The usage of the somatic ratio frees

SomatiCA from the estimation of ploidy. Instead of searching all

feasible combinations of ploidy and admixture rate, SomatiCA

only searches for a solution of admixture rate with the somatic

ratio of 1 corresponding to the integer copy number of 2.

We evaluated the performance of our method using 90

simulated cancer genomes. SomatiCA generated accurate estima-

tion of the admixture rate even when the coverage was as low as

206. As a comparison, we also estimated the admixture rate by

ABSOLUTE and a variant of ASCAT. ASCAT uses BAF and

logR ratio (conditioning on the aneuploidy of the tumor) to

estimate tumor ploidy and purity, which is not directly applicable

to our data. In our comparisons, we used a variant of ASCAT

algorithm that maintained its main features: we calculated the total

distance to an allelic integer copy number solution for each

segment and summed over all segments; then we searched for a

solution of the admixture rate that minimized the total distance.

For ABSOLUTE, among top five possible combinations of

Figure 2. Precision Vs. Sensitivity comparison of three segmentation methods. Summary of precision and sensitivity over 90 simulated
cancer genomes with different admixture rates and coverage. CBS and SomatiCA outperformed cumSeg in sensitivity at detecting SCNAs larger than
1 Mb. However, CBS had 30% false positive calls whereas SomatiCA achieved higher precision. For SCNAs smaller than 1 Mb, CBS still maintained a
high sensitivity of 98% but over 60% of CBS calls were false positives. Both SomatiCA and cumSeg used model selection to effectively reduce the false
positive rate with some compromise on sensitivity.
doi:10.1371/journal.pone.0078143.g002
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admixture rate and ploidy (by likelihood), we selected the one with

the copy ratio of 1 corresponding to the integer copy number of 2

as the final solution. The results summarized in Figure 3 show that

SomatiCA has a comparable performance with ABSOLUTE and

outperforms ASCAT.

We think two reasons contributed to the better performance of

SomatiCA compared to ASCAT-variant. First, ASCAT estimates

the integer copy number for each segment using the integer closest

to the observed somatic allelic copy. When the admixture rate is

high, this approximation is problematic. For example, when the

admixture rate is 0.6, the somatic copy of double deletion is 1.2.

The integer copy number for this double deletion event is assigned

as 1 instead of 0. In contrast, SomatiCA pre-calculates the number

of possible discrete levels from the histogram of the somatic ratios

and assigns the integer copy number based on the order of its

discrete level using the level of 2 copy as a reference. Hence, it is

still capable of estimating the absolute copy number well with high

accuracy when the admixture rate is high. Second, ASCAT

optimizes over all the SNPs, whereas SomatiCA takes into account

the influence of intra-tumor subclonal heterogeneity and only

optimizes over clonal events. This approach compensates for the

underestimation from the optimization with all segments.

Moreover, SomatiCA achieves comparable performance as

ABSOLUTE with few constraints and less computational burden.

SomatiCA does not constrain the genomic mass allocated to each

copy-state, or the relative proportion of subclones. Potential

subclones, identified by low posterior probabilities, are excluded

from admixture rate estimation. With the assumption of copy ratio

of 1 corresponding to the integer copy number of 2, SomatiCA

only optimizes over one parameter — admixture rate, which

reduces the burden of simultaneous estimation of admixture rate

and ploidy. The average CPU running time for the admixture rate

estimation in SomatiCA is 27.5 seconds (5000 MCMC steps)

whereas that for ABSOLUTE (ploidy ranged from 0.95 to 4) is

450 seconds. In SomatiCA, the ploidy could be estimated by

averaging copy-number over the genome after adjusting for the

admixture rate.

We further looked into the simulated genomes with high

normal contaminations where the admixture rate was 0.6. We

inferred the copy number for SCNAs detected from these

simulated genomes with adjustment using estimated admixture

rate from SomatiCA, and compared the results with the copy

number inferred without any adjustment, and those with

adjustment using an admixture rate of 0.2 and those using

0.4. As shown in Figure S2, the estimation from SomatiCA

helped to increase the accuracy of the inferred copy number

inference for SCNAs compared to setting admixture rate at pre-

specified (and incorrect) levels.

Figure 3. Boxplot of the admixture rate estimation using SomatiCA, ABSOLUTE and ASCAT-variant. Both SomatiCA and ABSOLUTE
outperforms ASCAT-variant. SomatiCA achieves comparable performance as ABSOLUTE with few constraints and less computational burden.
doi:10.1371/journal.pone.0078143.g003
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Subclonality characterization
The presence of genetic diversity within tumor samples, that is,

subclonality, offers important clues to tumor evolution. Accurate

inference of copy number status through adjustment of admixture

rate provides opportunities for SomatiCA to identify subclonal

alterations against the background of the predominant ones.

SomatiCA characterizes the subclonality for each segment through

performing hypothesis testing. It first calculates the copy number

for each segment in the control normal sample nC . Then it tests

whether copy number change in the corresponding tumor sample

can result in a change of exactly one copy of one allele. In our

simulation study, we placed 4,5 SCNAs (larger than 10 Mb,

subclonal percentage of 0.2 or 0.4) on chromosome 12 to 15 in

each simulated cancer genome. In total, for each combination of

admixture rate and coverage, there are 46 true positive subclonal

events across ten simulated cancer genomes. The subclonal calls

from other chromosomes are false positives, resulting from either

an underestimation of clonal events or a misclassification of copy

number neutral event. When the admixture rate is 0.2 or 0.4,

SomatiCA recovered 87% of true subclonal events (40 out of 46)

and reported 8 false positives on average. When the admixture

rate is 0.6, SomatiCA was still able to recover 84% of true

subclonal events but reported 20 false positives. 95% of false

positives subclonal events are misclassified from copy number

neutral events. This result indicates that SomatiCA achieves high

precision on detecting clonal events. However when the admixture

rate gets higher, more false positive calls would emerge from

misclassification of copy number neutral events.

Application to TCGA benchmark 4 data
We used the TCGA mutation calling benchmark 4 datasets to

evaluate the performance of SomatiCA and others on real data.

This whole genome sequencing benchmark dataset is ideal for

such an evaluation because it consists of artificially mixed samples

with the proportion of tumor samples in a gradient from 20% to

95%. We focused our analysis on 7 mixed HCC1143 samples

sequenced at 306 (Table 1). For each mixed sample, we first

performed segmentation implemented in SomatiCA and calculat-

ed the somatic ratios using HCC1143 306 normal sample as a

matched pair. We adjust the median of tumor library so that the

medians of two were the same. Then we input somatic ratios to

SomatiCA, ASCAT-variant and ABSOLUTE. For each sample,

ABSOLUTE output 19 feasible combinations of admixture rate

and ploidy (the allowed range of ploidy set to be 0.95 to 4) that

covered a broad range. Take sample HCC1143.n60t40 as an

example (60% normal cells mixed with 40% tumor cells), the

estimated admixture rate is ranged from 0.32 to 0.84. To match

the underlying assumption in SomatiCA, we manually selected

ABSOLUTE solutions with the copy ratio of 1 corresponding to

the integer copy number of 2 (or 2N). However we note that

selected ABSOLUTE solutions under such criteria are more

precise than solutions with top SCNA-fit log-likelihood score. We

summarize the described estimations in Table 1. Overall,

SomatiCA has a comparable performance to ABSOLUTE. Both

outperform ASCAT-variant. In three replicate samples with 25%

contamination from normal cells (though different spike-in SNVs

introduced), SomatiCA produced more precise and stable

estimations. This result suggests that the correspondence of 1 to

integer copy number of 2 may be a fair assumption to make in

cancer sequencing data with a paired normal sample sequenced at

a comparable depth.

After adjusting for estimated admixture rate, we used SomatiCA

to call SCNAs for these samples. Figure 4 shows the somatic copy

number and subclonality characterized for 7 samples we analyzed.

The result is consistent across samples with different mixing

proportion of normal cells, which demonstrates the robustness of

SomatiCA to different extent of contamination. However, due to

the potential model overfitting and unavoidable identifiability

issue, SomatiCA does not report any admixture rate over 80%.

For TCGA benchmark 4 sample HCC1143.n80t20 and

HCC1143.n95t5 (mixed with 80% and 95% normal cells),

SomatiCA only reported segmentation results without adjusting

for admixture rate.

Application of SomatiCA to a GBM sample
We applied SomatiCA to the whole genome sequencing data on

the Complete Genomics platform of a patient with diagnosed

primary glioblastoma (GBM) (unpublished data). In Figure S3 and

S4, we show the segmentation from SomatiCA and its comparison

with CBS and cumSeg using chromosomes 7 and 10 respectively.

The estimated admixture rate for this sample was 37.1%. After

adjusting for the admixture rate, we identified 121 SCNAs with

sizes ranging from 3428 bp to a whole chromosome. These

SCNAs included one copy gain on whole chromosome 7, one copy

gain for whole chromosome 9, and both LOHs and copy-neutral

LOHs on chromosome 10. We further compared these SCNAs

with 20 known GBM drivers listed in [21] and found that these

SCNAs showed overlap with 15 out of 20 known GBM drivers.

Among these, the amplification on CDK6, EGFR and MET, and

the deletion on NF1 are clonal whereas other events are subclonal.

Discussion

In this article, we have described a novel computational

framework, SomatiCA, to identify SCNAs from cancer sequencing

data. It was developed to address contamination and heterogeneity

in tumor samples, two major challenges in cancer genome analysis.

Extensive simulations have demonstrated the better performance

of our methods over the existing ones.

SomatiCA has been implemented as four functional modules in

R: initial segmentation, estimation of somatic ratio with segmen-

tation refinement, adjusting for admixture rate and subclonality

characterization. Each module in SomatiCA can be called

independently. It is straightforward to implement customized

Table 1. Admixture Rate Estimation for the TCGA benchmark
data.

Normal
Mixing
Fraction Subclone* SomatiCA ABSOLUTE

ASCAT-
variant

0.05 0 0.18 (0.020) 0.22 0.09

0.2 0 0.24 (0.015) 0.28 0.12

0.4 0 0.34 (0.026) 0.39,0.46 0.17

0.6 0 0.54 (0.017) 0.52,0.62 0.30

0.25 0.05 0.23 (0.019) 0.43 0.14

0.25 0.1 0.26 (0.028) 0.17,0.36 0.12

0.25 0.4 0.23 (0.021) 0.37 0.17

This table shows the estimated admixture rate for a series of artificial mixed
HCC1143 samples from SomatiCA, ABSOLUTE and ASCAT-variant. For SomatiCA,
the estimate is the mean from five independent MCMC runs with standard
deviation shown in parenthesis. For ABSOLUTE, the solution with the copy ratio
of 1 corresponding to or around the integer copy number of 2 (or 2N) is shown.
If the solution is not unique, a range for possible solutions is shown.
*Subclones are only introduced as SNV (or SV) not CNA.
doi:10.1371/journal.pone.0078143.t001
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procedure incorporating one or all modules from SomatiCA.

Although the data motivating the development of SomatiCA were

generated from the Complete Genomic platform, the input to

SomatiCA is the RD and LAF for all the paired SNP sites, making

it generally applicable to analyze the data from other platforms.

SomatiCA is also scalable because the segmentation on different

chromosomes can be paralleled (See Text S2 for a manual of

SomtiCA package).

Despite many advantages, we do note that there are several

caveats for using SomatiCA.

First of all, SomatiCA requires mapping to a reference genome

and genotype calling as pre-processing steps. It has been shown

that mappability, GC-content bias and quality control measure of

reads all affect read depths thus CNV calling [22]. Although the

impacts of these issues may be reduced in SCNA calling with

paired normal-tumor samples to some extent, special cautions are

still needed regarding to the choice of aligners, mapping quality

filters and genotype callers. Sequencing depth may also affect the

performance of SomatiCA. SomatiCA was developed on the

sequencing data with a decent coverage of 306or higher. For low

coverage samples (for example, 0.01–0.56), we recommend

specialized methods such as BIC-seq [23] and CNAnorm [24].

Secondly, the segmentation in SomatiCA relies upon the change

points detected by CBS. In a recent study, Cai et al [25] reported

that CBS had deficiency in the detection of sparse and short

segments with interval lengths less than 40 data points. It has also

been shown in our simulation studies that segments with only a few

markers tend to be overlooked by CBS and thus by SomatiCA.

Low sensitivity on short segments is further exacerbated by the

usage of the diluted signal from heterozygous sites. Therefore,

SomatiCA, as currently implemented, may not be suitable for

sparse and short segment discovery in cancer sequencing data.

This is a common issue for the methods using BAF (LAF).

According to a survey of 3131 cancer samples, the median length

of focal SCNAs was reported to be 1.8 Mb (range of 0.5 kb–

85 Mb). To identify a wide range of SCNAs from several hundred

base pairs to even a chromosome, we recommend to consider

complementary approaches in practice. The segmentation method

in SomatiCA falls into the category of global approaches, which

call break points through testing against the background of an

entire chromosome. Local approaches, which refer to those

methods that aim to identify SCNAs by comparing the RD in

the tumor genome with that of the matched normal genome at

each genomic position (or window), such as BIC-seq [23], CNVseg

[12] or SegSeq [2], may help to identify short segments by

scanning the genome with a small window size. However as we

mentioned earlier, these methods are limited in not being able to

account for tumor purity and heterogeneity. It is worthwhile to

incorporate alternative segmentation methods into the SomatiCA

framework to identify SCNAs covering a much wider size

distribution.

Thirdly, SomatiCA only supports subclonality characteriza-

tion on one copy loss or gain because of the identifiability issue

when subclonality and multiple-copy aberration coexists. This

can be illustrated with the following toy example. Suppose there

is a subclonal SCNA with 5 copies present in 30% of the cancer

cells, then the expected somatic ratio (after adjusting for

admixture rate) is 1.45. However, a SCNA with 4 copies

present in 45% of the cancer cells and a SCNA with 3 copies

present in 90% of the cancer cells all have exactly the same

expected somatic ratio. Thus the testing only based on the

somatic ratio can not make accurate inference about subclon-

ality on multiple-copy aberrations. However, the copy number

status for subclonal multiple-copy SCNAs may be estimated via

a mixture component model on BAF. Subclonality character-

ization on multiple-copy SCNAs is another future direction to

extend the SomatiCA framework.

Finally, in SomatiCA, tumor purity is estimated from copy

number changes. In real applications, we suggest to compare the

estimation from alternative approaches, such as PurityEst [26] and

PurBayes [27], which estimate tumor purity based on the somatic

single nucleotide aberrations. Moreover, SomatiCA assumes a

single clonal cancer population and defines subclonality respect to

the identified clonal cancer population. This assumption may be

violated when there are multiple clonal cancer genomes within a

sequencing profile. Here we note a method recently developed to

address this problem, THetA [28], which supports deconvolution

of the tumor genome mixture to a normal genome and any

Figure 4. Somatic copy number and subclonality characterization for TCGA benchmark HCC1143 samples. The calling result is
consistent across samples with different mixing proportion of normal cells, which demonstrates the robustness of SomatiCA to different extent of
contamination.
doi:10.1371/journal.pone.0078143.g004
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number of cancer genomes. However, the deconvolution results

need to be interpreted with special caution to avoid overfitting.

Materials and Methods

Data preprocessing and GC bias correction
The BAM files of HCC1143 samples from TCGA benchmark 4

datasets were downloaded from https://cg hub.ucsc.edu/

benchmark_download.html. In this study, we used 7 artificially

mixed samples sequenced at 306 and 1 normal sample with the

same coverage to compare against. Samtools [29] were used to call

the genotypes from BAM files and filter out calls with quality score

less than 10. Then we extracted RD information from corre-

sponding VCF files and calculated LAF for each SNP. For the

GLI-N1 sample, DNA extracted from a patient with diagnosed

primary glioblastoma (GBM) was sequenced by Complete

Genomics platform (unpublished data). RD was extracted directly

from the MasterVarBeta file generated from Complete Genomics

analysis pipeline and LAF was calculated by mirroring the BAF at

0.5.

SomatiCA corrects GC bias on RD using a linear regression

model proposed by Diskin at el [30]. More specifically, SomatiCA

selects SNPs whose RD ratio (RD/median of the library) as

response variables based on the following criteria: 1) autosome

SNPs only, 2) at least 1 Mb from each other to eliminate potential

local dependence, 3) LAF greater than 0.4, read count ratio

greater than 0.8 and less than 1.25 in both tumor and control

samples to exclude the confounding of copy number on regression

coefficients. The corrected RD ratio is the residual from the

regression model.

Signal smoothing to reduce the effects of outliers
Denote the observed LAF sequence as Xi, where i~1,:::,n and

n is total number of observed data points. The smoothing region

for each i is given by fi{R,:::,i,:::,izRg, where the default R
value is 30. When the bounds as defined are out of range, the

smoothing region is given by f1,2,:::,izRg when iƒR and the

smoothing region is fi{R,i{Rz1,:::,ng for i§n{Rz1. Let t̂t
be the sample standard deviation of data in the smoothing region

and let m̂m be the sample mean. If Xiwm̂mzt � t̂t or Xivm̂m{t � t̂t, we

replace Xi with median of that region. The default value for t is 2.

CBS followed by LARS path based model selection
We used the CBS algorithm implemented in DNAcopy package

[18] to segment the input LAF. We modified the original CBS

segmentation procedure because the unsatisfied segmentation

results on chromosomes without obvious change points. For an

observed sequence X~fXi : i~1,:::,ng, we add ½n=5� pseudo

points fYj : j~1,:::,½n=5�g at the two ends of the sequence as a

control for variation, where each Yj follows N(m,s2) with

m~0:5{median(X) and s~0:5 � std(X). We first infer change

points from the prolonged sequences then we removed pseudo

segments and their associated change points.

After segmentation on the prolonged sequence, we apply a

variable selection procedure to refine the inferred change points.

More specifically, we model the input LAF as a piecewise constant

regression model with Kz1 segments. LAF at position i in the

segment k can be presented as a summation over mean shift levels

before kz1-th segment and a noise component ei :

Xi~b0zb1I(i§w1)z:::zbkI(i§wk)z:::zbK I(i§wK )zei,

where wk is the position for the k-th change point, b0 is the mean

level for Xi before the first change point, bk is the mean shift

between the k-th and the kz1-th segment and I(:) is the indicator

function. Taking summation on both sides, we get the cumulative

version of the above equation [20]:

Zj~b0w1zb1I(j§w1)(w2{w1)z:::zbK I(j§wK )(wK{wK{1)zgj

Where Zj~S
j
i~1Xi. Given the input LAF sequence and K

change points from initial segmentation w1:K , we use the step-

wise regression implemented in LARS package [19] to estimate

b1:K . The LARS solution path provides an order for b1:K with

each one’s correlation with the residual increased. We select the

first k change points in the path as optimal change points via

BIC, defined as BIC(k)~log(ŝs2)zk � log(n)=n � Cn, where

ŝs2 is residual variance, k~1z2 �#fchange pointsg and

Cn~log log n [20].

Somatic ratio based on paired read depths
For each segment, we infer its associated somatic ratio based on

RD of all paired SNPs (both heterozygous and homozygous sites)

in that segment. From now on, we use the symbols X ,Y ,Z,m as

new notations in this part. Let Xi be the RD at the i-th position of

that segment in the tumor sample, Yi be the RD at this position of

that segment in the normal sample. The distributions for each Xi

and Yi are believed to be Poisson distributed. For convenience of

inference, we approximately model them by Xi*N(m1,m1) and

Yi*N(m2,m2). Let the ratio be Zi~Xi=Yi, and then the Geary -

Hinkley transformation

ti~
m2 � Zi{m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � Z2

i zm1

q

approximately follows a standard normal distribution. Let

r~m1=m2 be the true somatic ratio in this segment, and we

estimate r by the MLE

r̂r~arg min
r

Xn

i~1

(
(Zi{r)2

Z2
i zr

):

This problem can be solved by searching the optimum in (0,10).
In the implementation, we exclude SNPs with Zi lower than the 5-

th percentile or larger than the 95-th percentile on each segment.

SomatiCA also implements two alternative approaches to

estimating the somatic ratio. One is accomplished by calculating

the geometric mean of the RD ratios of all pairs in that segment.

The other is accomplished by first calculating the MLE of m1 and

m2, then r̂r is estimated by m̂m1=m̂m2. When the coverage from the two

sequencing libraries is different, we provide an option for

adjustment where RD from the tumor sample is adjusted so that

the median RD values from the two libraries are identical.

Admixture rate estimation by a Bayesian Finite Mixture
model

SomatiCA models the somatic ratios of all segments using a

Bayesian Finite Mixture model, with components centered at the

discrete levels. Under a Bayesian framework, each segment is

assigned with a discrete level based on the corresponding posterior

probability. Segments with higher posterior probabilities are more

likely to be clonal aberrations. Segments with ambiguous

assignments, i.e, lower posterior probabilities, are classified as

candidate subclonal events and excluded from admixture rate
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inference. The admixture rate is estimated by an optimal solution

contributed by explanation of the copy number shift of clonal

aberrations from integer levels.

Let us assume that the somatic copy levels (somatic ratio*2)

consist of N segments fxi : i~1,:::,Ng. Each xi is assumed to

have arisen from one of the n integer copy number states in the set

S. We define fGi : i~1,:::,Ng as indicators of copy number states.

For each i, we model Gi by

Gi Dh*Multinom(h),

where h~fhsgs[S specify the expected fraction allocation to each

copy-state. We use the conjugate prior of multinomial distribution,

Dirichlet prior Dir(1=n,:::,1=n) on h, which means the allocation

of the copy-states is mainly driven by the input data. Given Gi~s,

we model xi by

xi D(Gi~s,ms)*N(ms,s
2),

where ms follows the prior

ms*N(s,t2):

The number of components n is estimated from the histogram of

the somatic copy levels by the Akaike Information Criterion

implemented in the REBMIX algorithm [31]. To avoid over-

fitting, we require the centers of the components have a distance of

at least 0.2 (corresponding to 80% normal contamination). The

minimum number of components is set to 3 (a scenario with no

change, one copy loss and one copy gain).

Under the above model, the posterior probability of ms is given by:

msDfxig,fGig*N(
s2 � szt2 �

P
i:Gi~s xi

s2z#fi : Gi~sgt2
,

s2t2

s2z#fi : Gi~sgt2
):

The posterior distribution of h given observations follows

Dir(1=nz#fGi~1g,:::,1=nz#fGi~sg). We set hyperpara-

meters s2 and t2 equal to 0.01, i.e., we allow the copy level of

clonal events shifting from integer levels at about 0.1. For example,

the segment with somatic copy level of 1.85 has high probability been

assigned with integer copy number of 2. However, the segment with

that of 1.5 could be assigned with integer copy number of 1 or 2 since

its shift from integer levels are much greater than 0.1. This ambiguous

assignment could be reflected as a low posterior probability with

integer copy number of 1or 2. It will be classified as potential

subclonal events and excluded from the estimation of admixture rate.

We have implemented a Metropolis-Hasting algorithm to infer

the allocation of copy-states. We use 10,000 iterations with the first

2000 as burn-in to calculate the posterior probabilities. The xi’s

with lower posterior probabilities in the copy-states allocation are

denoted as candidate subclonal segments. Denote the set of these

candidate subclonal segments by E. Then we use segments not in

E to estimate the admixture rate by

ĉc~arg min
c

X
i=[E

((1{c) � Gi=2{czxi=2)2:

Hypothesis testing based subclonality characterization
Based on GC corrected read count ratio (R), SomatiCA

calculates allelic copy number for each segment in the normal

sample. Define nA and nB to be the copy numbers for two alleles in

that segment,

nB~q2 � R � gLÂAF
� �

r

nA~q 2 � R � 1{gLÂAF
� �� �

r

where gLÂAF is the median germline LAF on that segment. Given

nB and nA in a normal sample, SomatiCA tests whether copy

number change in the corresponding tumor sample can result in a

change of exactly one copy of one allele.

If the somatic ratio r̂r (corrected by admixture rate) in the

corresponding tumor sample is greater than 1, SomatiCA tests for

one copy gain with theoretical clonal copy number ratio

r�~ nBznAz1
nBznA

; otherwise it tests for one copy loss with

r�~ nBznA{1
nBznA

. With the null hypothesis that clonal copy number

ratio follows a normal distribution N(r�,0:01), p-value is calculated

for each segment as the probability of obtaining a copy number ratio

at least as extreme as the one that was actually observed r̂r. Segments

with p-value less than 0.05 are classified as subclonal. The percentage

of tumor cells with subclonal change can be further calculated by

D1{r̂rD � (nBznA)=DnBznA{nB,tumor{nA,tumorD

where integer allelic copy numbers in tumor sample nB,tumor and

nA,tumor are estimated as

nB,tumor~q 2 � Rtumor � LÂAFtumor

� �
{ 1{ĉcð Þ

� �.
ĉcr

nA,tumor~q 2 � Rtumor � 1{LÂAFtumor

� �
{ 1{ĉcð Þ

� �.
ĉcr

and LÂAFtumor is the median LAF on that segment in the tumor

sample.
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Figure S2 The estimation from SomatiCA helped to
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rate at pre-specified (and incorrect) levels.
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(PDF)
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