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Abstract

The concerted action of DNA replication and cell division has been extensively investigated

in eukaryotes. Well demarcated checkpoints have been identified in the cell cycle, which

provides the correct DNA stoichiometry and appropriate growth in the progeny. In bacteria,

which grow faster and less concerted than eukaryotes, the linkages between cell elongation

and DNA synthesis are unclear. dTTP, one of the canonical nucleotide-building blocks of

DNA, is also used for cell wall biosynthesis in mycobacteria. We hypothesize that the inter-

connection between DNA and cell wall biosynthesis through dTTP may require synchroniza-

tion of these processes by regulating dTTP availability. We investigated growth,

morphology, cellular dNTP pool, and possible signs of stress in Mycobacterium smegmatis

upon perturbation of rhamnose biosynthesis by the overexpression of RmlA. RmlA is a cell

wall synthetic enzyme that uses dTTP as the precursor for cross-linking the peptidoglycan

with the arabinogalactan layers by a phosphodiester bond in the mycobacterial cell wall. We

found that RmlA overexpression results in changes in cell morphology, causing cell elonga-

tion and disruption of the cylindrical cell shape. We also found that the cellular dTTP pool is

reduced by half in RmlA overexpressing cells and that this reduced dTTP availability does

not restrict cell growth. We observed 2-6-fold increases in the gene expression of replication

and cell wall biosynthesis stress factors upon RmlA overexpression. Using super-resolution

microscopy, we found that RmlA, acting to crosslink the nascent layers of the cell wall, local-

izes throughout the whole cell length in a helical pattern in addition to the cellular pole.
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Introduction

The unique intricate cell wall impermeable for most antibiotics is a specific hallmark of myco-

bacteria. This cell wall makes infections caused by pathogenic mycobacteria extremely difficult

to treat [1, 2]. Mycobacterium tuberculosis (M. tuberculosis) has been a leading cause of mortal-

ity worldwide, accounting for 1.4 million deaths in 2020, commensurable only with the death

toll caused by SARS-CoV-2 [3]. Although effective combination chemotherapy exists to combat

M. tuberculosis, drug-resistant tuberculosis accounts for 450,000 new cases annually. Almost a

third of all tuberculosis-related deaths are due to antimicrobial resistance [4]. The thick cell wall

constitutes of mycolic acid, peptidoglycan, and arabinogalactan (Fig 1). The galactan region of

the arabinogalactan layer is bound to the peptidoglycan layer via a phosphodiester linkage of

the α-L-rhamnopyranose-(1!3)-α-D-GlcNAc-1-phosphate disaccharide [5]. This linker, com-

posed of a rhamnosyl residue, a sugar not found in humans, is critical to the structural integrity

of the mycobacterial cell wall (Fig 1), as well as for the viability and pathogenicity of pathogenic

mycobacteria [6, 7]. Rhamnose has also been reported to mediate virulence, adhesion, and path-

ogenesis in several other bacteria [8–11]. L-Rhamnosyl residues are synthesized in the rham-

nose pathway by four enzymes: RmlA, B, C, and D from α-D-glucose-1-phosphate (G1P) and

dTTP as the main precursors [7]. No salvage pathway is known for the synthesis of dTDP-L-

rhamnose. Consistent with this, the RmlA enzyme (D-glucose-1-phosphate thymidylyltransfer-

ase), which catalyzes the first step of rhamnose biosynthesis, is essential for bacterial growth

[12]. The importance of this enzyme for mycobacterial viability, together with the absence of

the rhamnose pathway in humans, make this enzyme a potentially valid drug target for the

development of RmlA-related anti-mycobacterial drugs for tuberculosis treatment [13].

RmlA catalyzes the condensation of G1P with dTTP to produce dTDP-D-glucose, which is

processed further by the RmlB-D enzymes [7]. RmlA is homologous to other bacterial sugar

nucleotide transferases, although the tetrameric arrangement of RmlA is distinct from these

[14, 15]. The competitive and non-competitive product inhibition of RmlA by dTDP-L-rham-

nose has long been known [16]. In addition, the M. tuberculosis rhamnose pathway is likely

regulated by c-di-GMP and the serine/threonine protein kinases PknG and PknB [13, 17].

PknG is required for the intrinsic multidrug resistance [18] and virulence [19] of mycobacte-

ria; moreover, it interacts with and phosphorylates two essential components of the rhamnose

pathway, RmlA and Wbbl2 [17], thereby inhibiting the enzymatic activity of RmlA [17]. The

inhibition of cell wall assembly has proven to be effective for inhibiting mycobacterial growth.

Drugs such as ethambutol (EMB), isoniazid (INH), and D-cycloserine, which target the syn-

thesis of various cell wall components, are successfully used in tuberculosis therapy. As a result,

the biosynthesis of the mycobacterial cell wall has been a significant research objective over the

last decade [1, 5, 20].

As dTTP, one of the canonical nucleotide building blocks of DNA, is utilized not only for

DNA replication but also for cell wall biosynthesis and assembly, we hypothesized that this

connection might serve as a checkpoint allowing mycobacteria to synchronize these processes

by monitoring and regulating dTTP availability (Fig 1). To this end, we investigated growth,

morphology, cellular dNTP pool, and possible signs of stress in Mycobacterium smegmatis (M.

smegmatis) upon perturbation of the cellular RmlA level. Since rmlA is essential [12] and

attempts to inhibit M. smegmatis RmlA using a previously reported inhibitor [21] were unsuc-

cessful, we chose to overexpress RmlA to influence and study its cellular function. In addition,

by overexpressing RmlA, cellular dTTP used for replication could be restricted. We found that

RmlA overexpression caused morphological changes, including cell elongation and the

appearance of large polar bulbs at the tip of the cell. RmlA overexpression induced 2-6-fold

changes in the mRNA levels of various stress factors, including LexA, WhmD, and IniA. We

PLOS ONE Investigation of potential crosstalk between cell wall synthesis and DNA replication through dTTP

PLOS ONE | https://doi.org/10.1371/journal.pone.0263975 February 24, 2022 2 / 17

Funding: This work was supported by the National

Research, Development and Innovation Office,

Hungary, OTKA FK124527 to JT and PD128254 to

RH. Work in L.N. laboratory was supported by

National Institutes of Health grants R01AI087903,

R21AI119287 and R21AI159770. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0263975


also found that RmlA overexpression resulted in significant dTTP depletion in a M. smegmatis
PknG knock-out strain (PknG(-)). Finally, live-cell imaging of M. smegmatis cells expressing

fluorescently tagged RmlA revealed an intriguing helix-like distribution of RmlA along the

cylindrical portion of the cell.

Materials and methods

Bacterial strains, media, and growth conditions

M. smegmatis mc2155 [22] strains were grown in Lemco broth. The Lemco broth was supple-

mented with 15 g L−1 Bacto agar for a solid medium. Streptomycin was added at 20 μg/ml,

hygromycin B at 50 μg/ml, and tetracycline (TC) at the final concentration of 0.05–0.2 μg/ml.

Construction of RmlA expressing M. smegmatis strains

The RmlA coding region was PCR amplified and cloned into the vectors pKW08-Lx [23]

(Addgene #25012), pTEC16-mOrange [24] (Addgene plasmid # 30175), and pLL192 [25]

using the primers and restriction sites indicated in S1 Table in S1 File to construct the overex-

pressing and the fluorescently tagged constructs, respectively. Successful cloning was verified

with the sequencing of the appropriate region of the plasmid. 0.5–0.5 μg of the appropriate

plasmids were electroporated into electrocompetent wild type (WT) [26] or PknG(-) [18] M.

smegmatis strain according to Table 1. Three parallels of each strain were used in the

experiments.

Fig 1. Hypothesis: A dual role of thymidylate biosynthesis in mycobacterium. In mycobacteria, dUMP, the

precursor for dTTP biosynthesis, is synthesized exclusively by dCTP deamination and coupled dUTP hydrolysis by

Dcd:dut. dTTP is used not only for DNA replication by DNA polymerases but also by RmlA that uses this nucleotide

for the first step of L-rhamnosyl biosynthesis, a critical step in cell wall biosynthesis. (Abbreviations: linker–L-

rhamnosyl linker; Dcd:dut—bifunctional dCTP deaminase:dUTPase; TS–thymidylate synthase; RmlA—D-glucose-

1-phosphate thymidylyltransferase; Pol–DNA polymerase).

https://doi.org/10.1371/journal.pone.0263975.g001
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Verification of RmlA expression by qPCR

Overexpression was verified by measuring mRNA levels of RmlA in WT and inducible or con-

stitutive overexpressing strains. Cells were grown in 50 ml liquid culture until saturation; then,

in the RmlAi strain, overexpression was induced by adding 0.05 μg/ml TC at OD(600) = 0.2–

0.4. Cells were harvested by centrifugation at 4000 g for 20 min. Cells were washed in ice-cold

PBS before resuspension in 2 volumes of RNA Protect Reagent (Qiagen). Samples were stored

at -80˚C. RNA was purified with the Rneasy RNA Clean-up kit (Qiagen) according to the man-

ufacturer’s instructions. Mycobacterial RNA yield was assayed using the Nano-Drop ND-2000

Spectrophotometer (NanoDrop Technologies). cDNA samples were amplified from 0.1 μg total

RNA by random hexamer primers using High-Capacity Reverse Transcription Kit (Applied

Bioscience). The resulting cDNA was quantified by qPCR using EvaGreen (Bioline) and

MyTaq PCR master mix (Bioline) in a BioRad CFX96 qPCR instrument. Non-reverse tran-

scribed, and no template controls were used as controls for DNA contamination. We prepared

three technical and three biological replicates for all measurements. sigA (MSMEG_2758) and

Ffh (MSMEG_2430) [27] were used as endogenous reference genes to normalize input cDNA

concentration. The relative expression ratios of the examined genes were calculated using the

comparative Ct method (ΔΔCt) by the BioRad CFX Maestro software. Primers, primer effi-

ciency, and all measured data of the qPCR analysis are compiled in the supplementary archive.

Growth inhibition assay

The control WT and PknG(-) M. smegmatis strains, the WT and PknG(-) M. smegmatis strains

overexpressing RmlA (RmlAi), and the control M. smegmatis strain overexpressing luciferase

(Lxi) were grown in M9 minimal media containing 0.05% Tween-80 in liquid culture over-

night. The precultures were then diluted to OD (600) = 0.1 and grown in the presence of

Table 1. Strains and plasmids used in the study.

resistance relevant characteristics usage source or reference

strains

mc2 155 - WT Snapper et al. 1990

RmlAi strep, hyg wt harboring pKW08-RmlA inducible (TC) overexpression of RmlA this study

RmlAc hyg wt harboring pTEC-RmlAover constant overexpression of RmlA this study

Lxi hyg wt harboring pKW08-Lx inducible (TC) overexpression of luciferase, control

strain

Hirmondo et al. 2015

RmlA-gfp strep wt harboring pLL192-RmlA expression of RmlA-gfp this study

RmlA-mOrange hyg wt harboring pTEC16-RmlA expression of RmlA-mOrange-2 this study

mOrange hyg wt harboring pTEC16 expression of mOrange-2; control strain this study

PknG- hyg pknG- control strain Wolff et al. 2009

RmlAi, pknG- strep, hyg pknG- harboring pKW08-RmlA inducible (TC) overexpression of RmlA in PknG-

background

this study

plasmids

pKW08-Lx hyg expression from TetRO promoter inducible (TC) overexpression of luciferase Williams et al. 2010; Addgene

#25012

pKW08-RmlA hyg, strep expression from TetRO promoter inducible (TC) overexpression of RmlA this study

pTEC-RmlAover hyg expression from hsp60 promoter constant overexpression of RmlA this study

pLL192-RmlA strep GFP tag, expression from own promoter localization of RmlA this study

pTEC16 hyg mOrange-2 expression from MSP

promoter

localization control Takaki et al. 2013; Addgene

#30175

pTEC16-RmlA hyg mOrange-2 tag, expression from own

promoter

localization of RmlA; super-resolution imaging this study

https://doi.org/10.1371/journal.pone.0263975.t001
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various concentrations of TC (0, 0.05, or 0.1 μg/ml TC) in a plate reader (Biotek Synergy MX)

at 37˚C with constant shaking. OD (600) was measured every 10 min.

Microscopy

RmlA was overexpressed in WT and PknG(-) strains for morphological studies. Overexpres-

sion was induced by 0.1 or 0.2 μg/ml TC. The strains were grown in agar plates containing TC

in the indicated concentration, then streaked onto microscopy slides covered with 0.1% low

melting agarose (Sigma). Cell membranes were stained with 1 μg/ml Bodipy (522/529) dye

(Thermo Fischer). Samples were investigated in phase-contrast, and fluorescence modes

under a Leica DM IL LED microscope. Microscopic images were analyzed using Fiji [28]. Cell

length was measured using the software Bacstalk [29].

RmlA was expressed using its own promoter for localization studies, tagged with GFP or

mOrange-2. If appropriate, the strains were grown in agar plates containing specific drugs,

then streaked onto microscopy slides covered with 0.1% low melting agarose (Sigma).

RmlA-GFP strains were stained with 10 μg/ml Propidium-iodide. Samples were investigated

using a Leica TCS SP8 STED microscope. In the case of the GFP tagged constructs, the confo-

cal mode was used, while the mOrange-2 signal was suitable for the STED mode to analyze

localization patterns. Deconvolution was performed using the Huygens Professional software.

Microscopic images were refined and analyzed using Fiji [28].

Gene expression analysis

RmlA was overexpressed in WT and PknG(-) strains for gene expression studies. Overexpression

was induced by 0.1 or 0.2 μg/ml TC. For CIP and EMB treatments, drugs were added to the cul-

tures at OD (600) = 0.1. CIP was used at 0.3 μg/ml, EMB at 100 μg/ml final concentration, where

cell mortality was 20–80%. Cells were grown in 50 ml liquid culture until saturation, washed in

ice-cold PBS, and harvested by centrifugation (4000 g, 20 min). Bacterial pellets were resus-

pended in 2 volumes of RNA Protect Reagent (Qiagen) and stored at -80˚C. RNA was purified

with the Rneasy RNA Clean-up kit (Qiagen) according to the manufacturer’s instructions. Myco-

bacterial RNA yields were assayed using the Nano-Drop ND-2000 Spectrophotometer (Nano-

Drop Technologies). 0.1 μg of total RNA was reverse transcribed to cDNA using random

hexamer primers and the High-Capacity Reverse Transcription Kit (Applied Bioscience). The

resulting cDNA was quantified by qPCR using EvaGreen (Bioline) and MyTaq PCR master mix

(Bioline) in a BioRad CFX96 qPCR instrument. Non-reverse transcribed, and no-template con-

trols were used for checking genomic and exogenous DNA contamination, respectively. For all

measurements, three technical and three biological replicates were used. sigA (MSMEG_2758)

and Ffh (MSMEG_2430) were used as endogenous reference genes to normalize input cDNA

concentrations. The relative expression ratios of the examined genes were calculated using the

comparative Ct method (ΔΔCt) by the BioRad CFX Maestro software. Primers, primer efficiency,

and all measured data of the qPCR analysis are compiled in S1 Table in S1 File.

dNTP extraction and determination of the dNTP pool size

dNTP extraction and quantification were performed according to Szabo et al. [30]. Cells were

grown until the culture reached the mid-exponential phase OD (600) ~ 0.7. The total CFUs

were determined for each culture. The cultures were centrifuged (20 min, 4000 g, 4˚C), and

the cell pellets were extracted in precooled 0.5 ml 60% methanol overnight at −20˚C. After 5

minutes of boiling at 95˚C, cell debris was removed by centrifugation (20 min, 13 400 g, 4˚C).

The methanolic supernatant containing the soluble dNTP fraction was vacuum-dried (Eppen-

dorf) at 45˚C. The dNTP pellet was dissolved in 50 μl nuclease-free water.
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Determination of the dNTP pool size in each extract was as follows: 10 pmol template oligo

(Sigma), 10 pmol probe (IDT), and 10 pmol NDP1 primers (Sigma) were present per 25 μl

reaction. The concentration of each non-specific dNTP was kept at 100 μM. VWR1 TEMPase

Hot Start DNA Polymerase (VWR) was used at 0.9 unit/reaction in the presence of 2.5 mM

MgCl2. To record calibration curves, the reaction was supplied with 0–12 pmol or 0–25 pmol

specific dNTP depending on the applied dT1 or dT2 template, respectively. Sequences of used

primers and probes are presented in the supplementary archive. Fluorescence was recorded

every 13 seconds in a CFX96 Touch™ Real-Time PCR Detection System. The thermal profile

was 95˚C 15 min, (60˚C 13 s) × 260 cycle for dATP and dTTP measurement. In the case of

dCTP and dGTP measurements, the polymerization temperature was 55˚C. The results were

analyzed using the nucleoTIDY software (http://nucleotidy.enzim.ttk.mta.hu/) [30].

Results

RmlA overexpression produces elongated cells and altered cell morphology

To decipher how dTTP metabolism and cell wall biosynthesis affect each other, we investigated

the cellular function of RmlA, the cell wall biosynthetic enzyme that potentially links these two

processes together using dTTP in the first step of the rhamnose biosynthetic pathway. As RmlA

is essential in Mycobacteria [12], we could not knock out its gene. Alphey and his colleagues

described a RmlA inhibitor [21] effective against Pseudomonas aeruginosa and M. tuberculosis.
However, we could not detect any growth inhibition using this compound in M. smegmatis, even

at the highest possible concentration limited by water solubility (200 μg/ml; 8-fold the MIC deter-

mined in M. tuberculosis [21]). Therefore, we chose to overexpress RmlA and investigate its

effects in WT and PknG(-) M. smegmatis cells. RmlA activity has been described to be regulated

by serine/threonine protein kinases PknB and PknG mediated phosphorylation. In PknG(-) cells,

RmlA regulation by PknG is supposed to be switched off [17], i.e., RmlA is likely to be active in

this strain. To overexpress the protein, we constructed a constitutive (RmlAc) and an inducible

expression system (RmlAi). Protein expression in the latter case could be induced by adding TC

to the growth medium. The degree of RmlA expression was verified by mRNA quantification

using qPCR. sigA [31] and Ffh [27] were used as reference genes. We detected a 25-40-fold

increase (p< 0.008) in the RmlA mRNA levels in the RmlAc and RmlAi strains upon TC induc-

tion, respectively (Fig 2A). We chose the inducible system for subsequent experiments. RmlAi M.

smegmatis cultures grew at a WT rate (Fig 2B). Intriguingly, RmlA overexpression in the PknG

(-) strain fully restored the growth arrest of the parental strain in a minimal medium (Fig 2B).

We investigated the possible phenotypes resulting from RmlA overexpression under the

microscope. The distribution of cells on microscopy slides prepared from exponentially grow-

ing cultures indicates that under the same growth conditions (the same amount of detergent

applied in the medium), RmlAi cells are more prone to form aggregates than WT cells (Fig 3).

This observation is consistent with the noisiness of the RmlAi growth curves (Fig 2B).

The effects of RmlA overexpression on M. smegmatis morphology were investigated using

phase contrast and epifluorescence microscopy (Fig 4). WT, PknG(-), and luciferase-express-

ing (Lxi) strains were used as controls to exclude artifacts potentially caused by TC and protein

overexpression, respectively. We observed two distinct morphological changes upon the

induction of RmlA overexpression in both WT and PknG(-) backgrounds. The cells became

more variable in size and shape than the WT; on average, they became longer (Fig 4A). In

addition, the normal rod shape of M. smegmatis was disrupted at the cell poles, especially at

the 0.2 μg/ml TC concentration. Fig 4B shows that the cylindrical shape is changed into spheri-

cal at the tip of the cells. To statistically analyze the observations, we defined cells with a diame-

ter larger than 0.6 μm deformed. In the RmlAi strain, 4.6% of the cells were deformed, 0
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spherical (bubble-like) structure was observed (n = 119) at 0 μg/ml TC; 11% of the cells were

deformed, spherical structures were observed in 9% of the cells (n = 86) at 0.1 μg/ml TC, and

52% of the cells were deformed, spherical structures were observed in 40% of the cells (n = 89)

at 0.2 μg/ml TC. In the PknG(-); RmlAi strain, 3% of the cells were deformed, 0 spherical (bub-

ble-like) structure was observed (n = 390) at 0 μg/ml TC; 11% of the cells were deformed,

spherical structures were observed in 9% of the cells (n = 277) at 0.1 μg/ml TC, and 34% of the

cells were deformed, spherical structures were observed in 34% of the cells (n = 259) at 0.2 μg/

ml TC. In the control strains, 1–5% of the cells were deformed, with no spherical structure

observed (n = 75–549 / strain).

Fig 2. RmlA overexpression in M. smegmatis and its effect on cell growth. A) Overexpression was evaluated by measuring

mRNA levels of RmlA in WT and overexpressing strains (RmlAi–induced overexpression by the addition of 0.05 μg /ml TC, or

RmlAc—constitutive overexpression). RmlA levels in RmlAc and RmlAi strains were 25 and 40 fold higher (p< 0.008) than in the

WT M. smegmatis, respectively. B) WT, RmlAi, PknG(-), and PknG(-); RmlAi M. smegmatis strains were grown in liquid culture

without any treatment or with 0.1 μg/ml TC. OD (600) was measured every 10 min in a plate reader.

https://doi.org/10.1371/journal.pone.0263975.g002

Fig 3. RmlAi cells are more prone to aggregation. The indicated strains were grown in liquid culture and streaked onto microscopy slides as

described in Methods. RmlA overexpression was induced by the addition of 0.2 μg/ml TC. The control strains do not carry the RmlAi plasmid.

https://doi.org/10.1371/journal.pone.0263975.g003
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We quantified the observed elongation of the RmlAi cells and subjected the results to statis-

tical analysis (Fig 5). We calculated 2.9 and 1.6 fold increase in the mean cell length in the

RmlAi and RmlAi; PknG(-) strains compared to the WT, respectively.

Effects of RmlA overexpression on the cellular dNTP pool

As RmlA uses dTTP to synthesize dTDP-rhamnose, we expected that the overexpression of

RmlA could deplete dTTP from the cellular nucleotide pool, which, in turn, could cause

Fig 4. Effects of RmlA overexpression on the morphology of M. smegmatis. A) RmlA overexpression in both WT

and PknG(-) backgrounds resulted in cell elongation and the appearance of spherical, bubble-like structures breaking

off the normal rod shape. B) High-resolution visualization of the morphological changes in the RmlAi; PknG(-) strain

upon TC induction. The cell membrane was stained by Bodipy 522/529. PC denotes phase-contrast images.

https://doi.org/10.1371/journal.pone.0263975.g004
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replication defects. Therefore, we measured the cellular dNTP concentrations in all investi-

gated strains using our improved fluorescence-based dNTP quantification assay (Fig 6) [30].

The principle of the assay is similar to that of the TaqMan assay. All four dNTPs are deter-

mined separately using dNTP-specific templates. The fluorescence output signal upon DNA

elongation is directly proportional to the dNTP to be quantified. Interestingly, we could not

detect any significant decrease in dTTP concentration caused by RmlA overexpression in the

WT strain (Fig 6). However, RmlA overexpression in the PknG(-) background resulted in ~ 2

fold decrease in the dTTP concentration (p< 0.016) (Fig 6). Changes in the cellular dGTP,

dATP, and dCTP concentrations were statistically insignificant (Fig 6).

Effects of RmlA overexpression on replication and cell wall biosynthesis

stress factors

RadA and LexA were chosen to indicate stress for DNA replication, while IniA and WhmD

served as cell wall biosynthesis stress indicators. The upregulation of iniA and whmD upon

treatment with the cell wall biosynthesis inhibitors EMB and INH [31, 32] was shown earlier

and used as a positive control for cell wall biosynthesis stress. The upregulation of the SOS-

Fig 5. Cell elongation upon RmlA overexpression. The normalized distribution of cell length is shown as bars. Gaussian curve fitting to the

data is shown as smooth lines. The number of cells counted in each sample (n) is shown in the legend. RmlA overexpression was induced by

0.1 or 0.2 μg/ml TC (TC 0.1 and TC 0.2 respectively). TC 0 stands for non-induced controls. The highest probability cell length yielded by

the Gaussian curves in each case is the following in the order of 0.2 μg/ml TC; 0.1 μg/ml TC and no TC: 2.02±0.03 μm; 2.10±0.02 μm; 2.06

±0.08 μm for the WT; 1.98±0.01 μm; 2.22±0.01 μm; 2.20±0.01 μm for the PknG(-); 5.48±0.53 μm; 1.94±0.16 μm; 1.91±0.02 μm for the

RmlAi; 3.17±0.20 μm; 1.99±0.01 μm; 2.01±0.02 μm for the PknG(-); RmlAi and 2.32±0.01 μm; 2.10±0.02 μm; 2.01±0.02 μm for the Lxi

samples.

https://doi.org/10.1371/journal.pone.0263975.g005
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response protein LexA and the DNA repair protein RadA in response to CIP treatment was

used as a positive control for replication stress [33, 34]. The concentrations of the applied

drugs were chosen to inhibit cell growth while allowing downstream analysis of the remaining

cells (Fig 7). To investigate the response of genes in the thymidylate biosynthesis pathway to

RmlA overexpression, we measured the expression levels of Dcd:dut, ThyA, and ThyX

enzymes. We also quantified the mRNA of the members of the rhamnose biosynthesis pathway

(RmlA-D) and PknG known to regulate rhamnose biosynthesis [17]. The transcription level of

these genes was measured by qPCR following different treatments or RmlA overexpression.

mRNA expression levels were normalized to that of the nontreated WT strain. RmlA over-

expression had only a mild effect on the expression of the investigated genes in the WT back-

ground (Fig 8). However, in the PknG(-) background, all investigated stress factors were

upregulated 2-6-fold (IniA 3.3-fold; WhmD 5.6-fold; LexA 2.15-fold and RadA 6-fold upregu-

lation, respectively). We also detected a mild upregulation for RmlB and RmlC (~2-fold over-

expression). However, RmlD was downregulated (-1.5-fold in the PknG-, and -2.5-fold in the

WT background). The expression level of the thymidylate synthesis pathway enzymes was not

changed significantly. The CIP treatment increased the expression of LexA (~13.5-fold), RadA

(~12-fold), and IniA (~1.8-fold), while the EMB treatment resulted in RadA (~3.5-fold),

WhmD (~5.5-fold), and IniA (~ 100-fold) overexpression. Interestingly, the expression level of

RmlA was significantly decreased in the PknG(-) strain (-5.5-fold) and also as a result of the

CIP treatment (-14-fold). In summary, the 2-6-fold increase in the expression of cell wall bio-

synthetic and replication stress factors indicates that RmlA overexpression induces quantifi-

able stress in the cellular processes studied.

Fig 6. The effect of RmlA overexpression on the cellular dNTP pool. Concentrations of dNTPs in the extracts were measured

according to [30]. The dTTP level in the RmlA overexpressing PknG(-) strain was significantly lower than that in the PknG(-) strain

(p< 0.016), although it is unchanged when RmlA was overexpressed in the WT background. The cellular concentration of other

dNTPs was not significantly changed in the RmlA overexpressing strains.

https://doi.org/10.1371/journal.pone.0263975.g006
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RmlA localizes nearby the cell membrane in a helix-like pattern

To investigate the cellular localization of RmlA, strains expressing the fluorescently tagged

proteins RmlA-mOrange-2 or RmlA-GFP were constructed. To avoid artifacts from overex-

pression, the expression of these fluorescent constructs was driven by the RmlA promoter. We

found that RmlA is accumulated at the cell perimeter in a helix-like pattern (Fig 9). The signal

is most abundant at the tip of cells (Fig 9), where growth is thought to occur in mycobacteria.

Discussion

To reveal possible interconnections between dTTP metabolism and cell wall biosynthesis, we

set out to investigate the cellular function of RmlA. This enzyme uses dTTP as a precursor in

the rhamnose biosynthetic pathway. Qu and his colleagues showed [12] that RmlA is essential

in mycobacteria and constructed a M. smegmatis rmlA null strain that conditionally expressed

RmlA from M. tuberculosis. At a permissive temperature, cells exhibited the normal rod shape.

In contrast, cells showed irregular surface wrinkles, and subsequent lysis at a non-permissive

temperature at which the plasmid expressing M. tuberculosis RmlA could not replicate [12].

The morphological changes we observed upon RmlA overexpression are in line with those

resulting from rmlA depletion [12]. Our RmlA overexpressing cells also appeared significantly

longer than the WT, indicating a role of RmlA in cell growth. Furthermore, 40% of the RmlA

overexpressing cells developed spheroidal structures at the cell poles. These results indicate

Fig 7. Effects of CIP and EMB treatments on cell viability. Treatments were performed on exponentially growing WT bacteria in liquid cultures

for 8 h using 100 μg/ml EMB and 0.3 μg/ml CIP. CFU was counted on antibiotic-free agar plates. Concentrations were chosen so that growth

inhibition was in the range of 20–80%.

https://doi.org/10.1371/journal.pone.0263975.g007

PLOS ONE Investigation of potential crosstalk between cell wall synthesis and DNA replication through dTTP

PLOS ONE | https://doi.org/10.1371/journal.pone.0263975 February 24, 2022 11 / 17

https://doi.org/10.1371/journal.pone.0263975.g007
https://doi.org/10.1371/journal.pone.0263975


that both the absence and the excess of RmlA activity cause morphological abnormalities in M.

smegmatis.
We found that RmlA localizes in a helical pattern at the cylindrical part of the cell in addi-

tion to its enrichment at the poles. This pattern indicates that crosslinking of peptidoglycan

and arabinogalactan layers is not restricted to the cell poles despite the observation that newly

synthesized peptidoglycan in mycobacteria is limited to the poles [35]. The helical localization

pattern of RmlA is reminiscent of the helical cables formed by cytoskeletal proteins (FtsZ,

MreB, and Mbl) in rod-shaped bacteria that grow via cylindrical extension [36–38]. In the

absence of MreB homologs in mycobacteria [39], the rod shape must be achieved by yet

unknown mechanisms. The observed disrupted rod morphology at the poles in the RmlAi

strains and the localization pattern of RmlA-GFP using epifluorescence microscopy are also

reminiscent of what Plocinski et al. detected when studying the cell wall synthesis protein

cwsA at a similar resolution [40, 41].

Since RmlA uses dTTP to synthesize dTDP-D-glucose, it could potentially deplete the cellu-

lar dTTP pool causing replication defects and growth inhibition if not appropriately regulated,

as shown with other dTTP deficient conditions [42]. However, we could not detect any signifi-

cant growth arrest in RmlA overexpressing strains. On the contrary, the RmlA-overexpressing

PknG(-) strain grew better than its parental strain in a minimal medium. The reduced growth

of the PknG-deficient M. tuberculosis strain in the minimal medium was shown in an earlier

report [43], in which Cowley et al. proposed that growth arrest is caused by a decrease in the

de novo glutamine synthesis [43]. Interestingly, in our experiments, RmlA overexpression fully

rescued the growth arrest observed in PknG(-) M. smegmatis in a minimal medium. We also

Fig 8. Effects of RmlA overexpression on the expression of different genes. RadA and LexA were used as indicators

for replication stress, while IniA and WhmD indicated cell wall biosynthesis stress. Dcd:dut, ThyA, and ThyX

represent the thymidylate biosynthesis pathway, while RmlA-D belongs to the rhamnose biosynthetic pathway. PknG,

known to regulate rhamnose biosynthesis, was also measured. The following treatments were used as positive controls:

CIP for replication stress and EMB for cell wall biosynthesis stress. Expression levels were normalized to those of the

WT strain. Changes in expression levels are shown as a heat map. Blue depicts downregulation, while red is for

upregulation. Black star indicates p< 0.05 for the change in expression.

https://doi.org/10.1371/journal.pone.0263975.g008
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found that the RmlA overexpressing strains (both RmlAi and PknG(-); RmlAi) are more

prone to aggregation than parental strains. Hsu et al. and Hardy et al. showed that RmlA influ-

ences biofilm formation in Listeria monocytogenes [10] and Caulobacter crescentus [11],

respectively. A similar influence of RmlA in M. smegmatis would be consistent with the

observed increase in aggregation. The importance of RmlA regulation by phosphorylation is

also discernible from the results on cellular dTTP concentrations in the RmlA overexpressing

strains. While we could not detect any significant cellular dTTP concentration change in

PknG proficient cells, the dTTP level decreased to its half upon RmlA overexpression in the

PknG(-) background, devoid of negative regulation by PknG phosphorylation. Similarly,

RmlA overexpression only resulted in significant expression changes in the PknG(-) back-

ground. In addition to its PknG regulation, the feedback inhibition of RmlA also seems to be

efficient in avoiding dTTP depletion. In a 40-fold excess of RmlA in the RmlAi;PknG(-) cells,

dTTP should have been entirely depleted without feedback inhibition. Moretti et al. showed

that Salmonella enterica typhimurium RmlA could use all dNTPs and NTPs in vitro [44],

although with a dTTP bias. We found that M. smegmatis RmlA perturbed the cellular concen-

tration of only dTTP without affecting other dNTPs, which suggests that it is specific for dTTP

in the cellular environment.

RmlA overexpression resulted in both cell wall biosynthetic and replication stress indicated

by the 2-6-fold moderate but solid increase in the mRNA levels of the selected stress factors

(Fig 8). Although severe dNTP depletion was not observed in cell extracts, transient dTTP

depletion in the cells may have led to thymine starvation which can induce replication stress.

Due to the efficient feedback inhibition mechanism of RmlA, we could not establish at what

point dTTP availability may serve as a link between replication and cell wall biosynthesis. We

observed, however, that both cell wall biosynthesis and replication stresses can be moderately

Fig 9. The cellular localization pattern of fluorescently tagged RmlA. To investigate the cellular localization of

RmlA, we constructed M. smegmatis strains expressing GFP (A) and mOrange-2 (B) tagged RmlA under the control of

the endogenous RmlA promoter. A) The localization pattern of the GFP tagged protein was observed using confocal

microscopy. Of the 57 cells analyzed, all exhibited a helical fluorescence pattern here. DNA was stained with

propidium iodide. B) The localization of mOrange-2 tagged protein was investigated using STED super-resolution

imaging. We found that in all 68 cells analyzed, RmlA localized to the cell perimeter in a helix-like pattern, while no

helicity was observed in the mOrange controls (mOrange panel in Fig 9B). Cell boundaries are indicated with a dashed

line.

https://doi.org/10.1371/journal.pone.0263975.g009
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induced by RmlA overexpression, and there might be some interconnection between the two

processes. On the other hand, our investigations unveiled that the cylindrical part of the cell

may not be as inert as previously thought. The fact that RmlA, acting to crosslink the peptido-

glycan and arabinogalactan layers, localizes throughout the whole cell length in a helical pat-

tern strongly suggests that cell wall synthesis also occurs in the cylindrical part of the cell, not

only at the poles. Consistent with this, the morphological changes upon RmlA overexpression

indicate that RmlA plays a role in determining cell shape driven by a yet unknown mechanism

in mycobacteria.
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