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Abstract

In the current study, a breast tumor xenograft was established in athymic nude mice by subcutaneous injection of the MCF-7
cell line and assessed the tumor progression by photoacoustic spectroscopy combined with machine learning tools. The
advancement of breast tumors in nude mice was validated by tumor volume kinetics and histopathology and corresponding
image analysis by TissueQuant software compared to controls. The ex vivo tumors in progressive conditions belonging to
time points, day 5", 10", 15" & 20" were excited with 281 nm pulsed laser light and recorded the corresponding
photoacoustic spectra in time domain. The spectra were then pre-processed, augmented for a 10-fold increase in the data
strength, and subjected to wavelet packet transformation for feature extraction and selection using MATLAB software. In the
present study, the top 10 features from all the time point groups under study were selected based on their prediction ranking
values using the mRMR algorithm. The chosen features of all the time-point groups were then subjected to multi-class
Support Vector Machine (SVM) algorithms for learning and classifying into respective time point groups under study. The
analysis demonstrated accuracy values of 95.2%, 99.5%, and 80.3% with SVM- Radial Basis Function (SVM-RBF), SVM-
Polynomial & SVM-Linear, respectively. The serum metabolomic levels during tumor progression complemented
photoacoustic patterns of tumor progression, depicting breast cancer pathophysiology.

Introduction deaths in women worldwide due to breast cancer [1]. Breast

cancer in an advanced stage with distant metastases is

The most common malignancy among women worldwide is
breast cancer. According to GLOBOCAN 2018, breast
cancer accounts for ~2.1 million new cases and 0.6 million
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almost incurable with the existing therapeutic methods.
Therefore, detecting breast cancer before time is the best
possible treatment planning option, thereby eliminating the
disease’s apparent consequence [2].

Histopathology is currently considered the gold standard
for diagnosing various cancers, including breast cancer, by
assessing structural changes in tissues [3]. Various
researchers worldwide have made continuous attempts to
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find appropriate methods for diagnosing breast cancer, and
many of the techniques currently being used are extensively
being tested. Mammography, which uses ionizing radiation,
demonstrates low sensitivity and specificity upon the
increase of tissue density. Ultrasound being a low-
resolution technique, sometimes cannot confirm malig-
nancy without a biopsy. Magnetic Resonance Imaging
(MRI), because of its restricted specificity, often gives false-
positive results and is not suitable for in situ carcinoma. The
use of Computed tomography (CT) has radiation risks,
expensive as well as time-consuming. In the case of Posi-
tron Emission Tomography - Computed Tomography (PET/
CT), skilled personnel to handle radioactive tracer injection
is required and is not suitable for young women [4-6].
Microwave biosensor-based methods for early-stage breast
cancer detection have shown the potentiality of Microwave
Imaging (MI) as an alternative or additional tool to mam-
mography. However, there are quite a few limitations to the
practical application of this technique, primarily being
computationally expensive. Other constraints, like penetra-
tion of microwaves in breast tissues, are dielectric property
dependent, vary with frequency and temperatures. Also, a
significant attenuation of the electromagnetic waves within
the tissues with higher conductivity, limitation in spatial
resolution, phase distortion inside and around the biological
objects, etc. are other drawbacks of MI. Therefore, devel-
oping a high-sensitive and quick diagnostic technique for
early-stage breast cancer is crucial [7, 8].

There are reports of using optical techniques in diagnosing
malignant breast tissues [9, 10]. Optical techniques like
fluorescence imaging and fluorescence lifetime imaging
provide a non-destructive probing of tissue structures and
composition, making them safe for intraoperative use [11].
Photoacoustics, on the other hand, is an emergent imaging
modality in the biomedical field and has demonstrated its
application in a variety of tissue types involving pre-clinical
and clinical models [12]. The technique has been tested
preclinically and clinically for the imaging of the brain,
thyroid, breast as well as for dermatologic imaging [13-16],
Intraoperative imaging, Lymphatic system imaging, Gyne-
cological, and urologic imaging, etc. [17]. The technique
provides high image contrast and, with the help of endo-
genous and exogenous contrasting agents, adequate depth of
imaging. In recent times, there has been tremendous progress
achieved in the instrumentation and imaging applications by
the technique [18]. The photoacoustic spectroscopy’s ability
to detect biochemical alterations upon the onset of breast
tumor development has been demonstrated [19]. In combi-
nation with machine learning algorithms, photoacoustic
spectroscopy has shown tremendous improvement in the
classification of abnormal tissues from healthy, signifying its
diagnostic capability and possible alternative to currently
available tools for disease diagnosis [20].

The experimental data obtained from biological specimens
are the multivariate types, which arise mostly from the
samples’ heterogeneity nature. Various statistical approaches
have been used in the past and present to extract meaningful
information from such data, uncovering obscure patterns
within datasets and revealing the underlying pathology and
pathogenesis [21]. Among the tested statistical approaches,
Machine learning is gaining more popularity because of its
performance and sensitivity to data classification. Machine
learning (ML) algorithms involve mathematical models
applied to train data sets by adapting their parameters to
predict. Machine Learning can identify distinct features from
the data to be used for predicting them. The Machine
Learning algorithms has broadly been used in the prognosis
and monitoring of cancer by extracting the molecular features
from cell-free DNA in the blood [22], also used in the
classification of melanoma [23] and for detecting lymph node
metastases in breast cancers from histological images [24].
However, training a machine learning model for optimal data
classification typically requires large training dataset which
poses a practical challenge to obtain from biological samples
due to non-availability and ethical issues. Data augmentation
techniques can be implemented to generate synthetic training
data to address this issue of data scarcity. Data augmentation
enhances the available limited dataset by transforming
existing samples to create new ones [25]. This approach of
augmenting data is a familiar methodology in computer-
vision domain but has not been fully explored in addressing
time-series classification, which is attempted in the present
study on time-domain photoacoustic spectra.

For the spectral signals of various sample types, the
hidden features can be extracted through spectral transfor-
mations using “Fast Fourier Transform” - FFT and wavelet
transform — WT tools. Further, since an appropriate spectral
feature is needed to classify data through Machine learning
accurately, selecting the right spectral transformation tool
for feature extraction is the key to data classification. In
most real-time signals, including photoacoustic signals, WT
demonstrates a better performance than FFT. This is
because “FFT” does not significantly extract minor differ-
ences in the input signals compared to WT, making WT a
better data transformation tool for feature extraction
[26, 27]. There are many “wavelet transform” (WT) types,
and they decompose signal waves onto a set of essential
functions known as wavelets, obtained from a single model
wavelet, called mother wavelet [28]. In WT, “Wavelet
Packet Decomposition” (WPD) is used to generate both
“approximations” and “details” coefficients from the input
signals understudy in the low and high-frequency regions,
respectively. WPD is an iterative process carried out until
the desired levels are achieved. The spectral features thus
extracted from various pathological samples can be used for
discrimination analysis applying different machine learning
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tools, including Support Vector Machine (SVM) analysis
[29]. SVM is an effective supervised learning method
applied to data classification of different sample types used
in high-throughput technologies generating a large volume
of data. In the present study, to classify photoacoustic
spectral data of tumor progression in the xenograft mice
model, SVM learning has been used.

In the present study, upon breast tumor induction using
MCF-7 cells injection to athymic nude mice evaluated for
tumor progression by photoacoustic spectroscopy- a novel
approach combined with machine learning tools. The tumor
progression was further validated using histopathological
evidence of tumor growth and corresponding quantitative
image analysis by TissueQuant software compared to control.
The serum metabolites analysis of the control and progressive
stages of the tumor was also performed in the study, drawing
a correlation of the biochemical changes with corresponding
photoacoustic signatures upon tumor progression.

Materials and methods
Tumorigenesis and sample collection

The current study was carried out as per the guidelines and
approval of the Institutional Animal Ethics Committee
(IAEC), MAHE, Manipal, India. The breast tumor xeno-
graft was developed in BALB/c, athymic nude mice (n = 5)
using the MCF-7 cell line. According to established pro-
tocol, ~5 million of 75-85% confluent MCF-7 cells sus-
pended in 100pul of 100% Matrigel were injected
subcutaneously on the animals’ flank region for inducing
tumor xenograft model and 100 pl of 100% Matrigel alone
to the control group. The animals were regularly checked
for tumor development, and the tumor progression was
measured for length and breadth using a digital Vernier
caliper. The tumor volume kinetics was calculated using the
formula mentioned below [19]. Based on the allowed tumor
volume limit after MCF 7 cells injection, the entire tumor
growth period was divided into 4 assessment time points
(day 5, 10, 15, and 20) and conducted the study considering
day O as control.

Tumor Volume = (width® x length)/2 mm’

On reaching the defined time points, the animals were
anesthetized, injecting 50 mg/kg Sodium Thiopentone
intraperitoneally and collecting 2ml of blood from each
through the retro-orbital puncture. Immediately after the
withdrawal of blood samples, the secondary physical
method of euthanasia was followed to ensure animals’ death,
and tumor masses were harvested. A small piece of the
tumor mass was fixed immediately in 10% Neutral buffered
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formalin (NBF) for histopathological study. The remaining
tumor tissues were snap-frozen and stored at —80 °C for
further studies. The frozen tissues were thawed to room
temperature, and photoacoustic spectra were recorded.

Photoacoustic spectral recordings

The photoacoustic spectra from the tumor tissues were
recorded ex vivo using the experimental setup consisting
of an Nd-YAG laser (LITRON Lasers, United Kingdom)
pumped frequency-doubled dye laser (PULSARE Pro,
FINE ADJUSTMENT, Germany) as an excitation source.
The second harmonic (532 nm) of the Nd-YAG laser was
used to pump the dye laser containing Rhodamine 6G dye
to obtain 281 nm laser light for the samples’ excitation.
The laser light (energy =~ 100 uJ per pulse) was focused
onto the tissue samples placed in a quartz cuvette of
dimension: 35 mm (Height) x 10 mm (Width) x 10 mm
(Depth) using a 6 mm focusing fused silica ball lens
(Edmund Optics), held in contact with the PZT detector
(PI Ceramics, Germany), maintaining a constant pressure
throughout. As a result of 281 nm pulsed laser excitations,
the induced photoacoustic signals in the tumor tissues
were detected by the PZT detector, and after amplification
using a preamplifier, they were recorded in the time
domain on an oscilloscope (Tektronix, TDS 5034B) as
shown in Fig. 1. The photoacoustic spectra were recorded
from each tumor tissue in 4 different positions and
5 spectra from each location. Hence, a total of 500 pho-
toacoustic spectra (5 spectra x 4 positions x 5 tissues x 5
groups) were recorded. The photoacoustic spectra were
then processed using MATLAB R2019b (MathWorks,
USA) software. The sampling frequency was set to 2.6
MHz during the photoacoustic signal acquisition.

Data analysis

The typical raw photoacoustic spectra of different time
point groups under study recorded in time-domain in the
region 0-2 ms are shown in Fig. 2A. The raw spectra were
processed for further analysis using MATLAB R2019b
software (MathWorks, USA).

Pre-processing

Initially, we pre-processed the spectra from each sample of all
the experimental groups under study. The pre-processing step
involved detrending, baseline correction, background subtrac-
tion, and normalization of the spectra. After pre-processing, we
selected a common ‘region of interest’ (ROI) with a maximum
spectral variation for all the photoacoustic spectra under study
as shown in Fig. 2B. In the present study, ROI between 0.27
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Fig. 1 Photoacoustic instrumentation. Block diagram of the experimental setup used to record Photoacoustic spectra of tumor tissues belonging
to different days of tumor progression (days 5, 10%, 15", 20™) and control (day 0™).
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and 0.6 ms along the time axis showed maximum spectral
variations and was selected for further analysis.

Augmentation

In the present study we followed Time-series Data Aug-
mentation. We have adopted rescaling as a data augmen-
tation technique, which changes the raw data’s magnitude,
preserving the labels. Scaling is implemented by multi-
plying the original data by a random scalar [25]. In the
current study we have employed rescaling as data aug-
mentation technique using 0.5—4.5 variants in an increment
of 0.5 on the original photoacoustic spectra to increase 10-

x103
Time (sec)

x103
Time (sec)

fold data strength as compared to original data. A typical
augmented photoacoustic data obtained from a day 20™
photoacoustic spectrum is shown in Fig. 3. The augmented
and original data were then combined together and used for
further analysis.

Wavelet transformation

The pre-processed ROI selected photoacoustic spectra
(Fig. 2B, typical spectra) along with augmented spectra
were subjected to wavelet transformation using a Wavelet
Packet Transform (WPT)/Wavelet Packet Decomposition
(WPD) to extract the hidden spectral features from them.
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Fig. 3 Spectral data 8 T

Typical augmented spectra
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augmentation conducted on an
ROI selected photoacoustic 6l
spectrum using the process
rescaling. Each spectrum was
incrementally rescaled ranging
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and generated 9 augmented
spectra for each, making a total
of 10 spectra including original.
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WPT offers optimal signal analysis given by three para-
meters: scale/level, position, and frequency. A pictorial
representation of the WPT workflow (Binary tree) is shown
in Supplementary Fig. S1. In the present study under WPT,
we have used the sub-band filtering on the input spectral
signals of equal widths for each decomposition level to
capture the right information from the data and approx-
imation and detail information from the spectra decom-
posed. Each decomposed level preserved the global/total
energy and can reconstruct the exact/original spectral pat-
terns. In the present study, the mother wavelet db6 was used
as a predictive model because it demonstrated better results
than others. The energy distribution of the wavelet coeffi-
cients for the level 2 decomposition for the photoacoustic
signals of day 0™, 5, 10%, 15", and 20™ groups under study
found to be ~99.2%, 99.8%, 99.8%, 99.9%, 99.9%
respectively for approximate coefficient ‘AA2’ as shown in
Supplementary Fig. S2. As depicted in Figs. S1 and S2, the
optimal signal strength was observed in decomposition
level 2 under frequency level (2, 0) i.e., AA2 and hence was
considered the ideal decomposition level. Since the fre-
quency of interest has maximum energy falling under AA2,
it was used for further analysis.

Feature selection

In the present study, ‘minimal Redundancy Maximal
Relevance’ (mRMR) feature selection algorithm was used
to eliminate redundant features confined in the WPT coef-
ficient (2,0). The algorithm selects the best among the
features by eliminating the noise and discriminates the class
better [30]. The mRMR uses an empirical method in
choosing the features that are mutual and having maximum
dissimilarities. This method was followed by the feature
ranking based on prediction importance score. In the present
study, 10 features were found optimal for the discrimination
of the spectra from different groups under study and were
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used as an input feature matrix for the machine learning
algorithms for training and testing [31].

Classification

The features selected using the mRMR algorithm from the
combined original and augmented photoacoustic spectral
data of different time point groups (day 0™, 5, 10™, 15" &
20™) under study were fed to the SVM learning algorithm
for training and classification to their respective time points
groups. The feature matrix contained 10 features belonging
to 5000 photoacoustic spectra, 500 original spectra, 100
belonging to each of 5 time points groups (day 0%, 5%, 10®,
15™ & 20™) plus 4500 augmented spectra obtained with 9
augmentations on each spectrum. A multi-class SVM
learning model (RBF, Polynomial and Linear) trained using
80% of the feature matrix data belonging to each group
under study and 20% used for testing of the model.

These SVM algorithms work on both linear and non-
linear modes of classification. It separates the classes using
hyperplanes, created by forming support vectors and mar-
gins. The support vectors are the data points that are closer
to the hyperplanes. Margin is the maximum value of the
separation of the hyperplanes of different classes. The
hyperplane position depends on the locus of the support
vectors. There are different kinds of kernel functions;
‘Radial Basis function’ (RBF), ‘Polynomial’, ‘Linear’, and
‘Sigmoid’ used in SVM, ‘RBF’ and ‘Polynomial’ are used
for nonlinear classifications. In the present study, we have
used SVM-RBF, SVM-Polynomial, and SVM-linear mod-
els to train and test the data. The models’ performance was
evaluated by ‘Specificity’, ‘Sensitivity’ & ‘Accuracy’. For
SVM, the classification score for a sample value (x) is the
signed distance from x to the decision boundary, ranging
from —oo to + . The highest score value indicates that it
belongs to the target class and a negative score indicates
that it belongs to another category. The predicted score is
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given by the function, as below,

flx) = Z apyiG(x,x) + b
=

where (aj, ay,...., &, b) is the estimated SVM parameters
which are obtained by the trained model, G(x;, x), known as
the dot product between x and the support vectors in the
predictor region for the training set of the sum of
observations [29].

Histology

The formalin-fixed tumor tissues were dehydrated with
graded ethanol (50-100%), further defatted in xylene, and
embedded in paraffin. Subsequently, a 5 um thick section of
the paraffin-embedded tissues were used for Hematoxylin
and Eosin (H&E) staining. The paraffin sections were
deparaffinized and were rehydrated and stained with
hematoxylin solution for 5 min. This step was followed by
1 dip in 1% acid alcohol solution (1% HCI in 70% ethanol),
the excess stain was washed in tap water. Afterward,
the sections were stained using eosin solution for 3 min
and dehydrated with graded alcohol and cleared in
xylene [32].

Liquid chromatography-mass spectrometry (LCMS)

The metabolomic analysis was performed using Agilent
6520 Accurate-Mass Q-TOF LC/MS System with Agilent
1200 Series HPLC unit (Agilent Technologies, Santa Clara,
California, USA). The blood serum samples obtained from
the experimental animals of various time-point groups were
used for the metabolomic analysis. The metabolites were
extracted by mixing the serum and ice-cold methanol in 1:2
ratio, followed by vortexing the mixture for 15 min. This
was centrifuged at about 12,000 rpm, 12 min. The super-
natant collected was lyophilized, and the residue was dis-
solved with 0.1% formic acid in 30 ul of 5 % acetonitrile
(95:5). An 8 ul of the processed serum samples from dif-
ferent experimental groups under study were injected into
the reversed-phase column (ZORBAX Eclipse Plus C18,
4.6 mm x 150 mm, 5 um; Agilent Technologies). Metabo-
lites were separated using a gradient system in LC main-
tained by Solvent A (0.1% formic acid in water) and B
(0.1% formic acid in 90% acetonitrile). Basic and neutral
metabolites were eluted in positive mode using a gradient
flow rate of 400 pl/min in mobile phase A and mobile phase
B (92% A & 8% B in 25 min, 8% A & 92% B for 10 min
and equilibrated to 92%A & 8% B for 10 min) [33].

The raw data obtained from each run were processed
using the Qualitative Mass Hunter Analysis Software
B.07.00 (Agilent Technologies, Santa Clara, California,

USA), a molecular feature extraction tool. The data files
containing monoisotopic mass, respective abundance, and
retention time were used for data alignment and filtering
under Mass Profiler Plus software (MPP) (Agilent Tech-
nologies, version B.12.5). Features that were present in at
least 60% of the sample numbers (3 out of 5) in each group
were considered for further analysis. Compounds were
identified in METLIN and HMDB database based on iso-
topic pattern distribution and accurate mass within a spe-
cified tolerance (15 ppm error). Fragmentation patterns of
metabolites were matched with in-house developed MS/MS
spectral library. The intensity values of the identified
metabolites from the control and test groups were logl0
transformed and used to plot a circular bar graph using
CIRCOS. Metabolites were then subjected to one-way
ANOVA for multiple groups in the study. Subsequently,
Metabolomic Pathway Analysis (MetPA) was carried out
using MetaboAnalyst software 4.0.

Statistical analysis

The results are expressed as the mean + standard error
(SEM), and Student’s ¢ test and one-way ANOVA per-
formed for statistical significance. A p value <0.05 (n =15)
was considered significant. The statistical analyses were
carried out using GraphPad Prism 8.0 software (San Diego,
CA, USA).

Results
Tumorigenesis

In the study, the tumor xenograft in athymic nude mice was
established using MCF-7 cell lines. In the 5th day of post-
MCEF-7 cells injection, a small palpable tumor was
observed, and the tumor volume showed an exponential
growth in subsequent days till day 20, reaching the max-
imum permissible tumor volume limit of 1000 mm>. The
control group has shown no growth at the site of injection.
By considering the tumor volume of the control group as 0
mm3, the statistical analysis, as mentioned before, was
performed. The data obtained from tumor volume kinetics
were plotted, demonstrating the progressive tumor condi-
tion shown in Fig. 4A.

Histology

The histological findings in the study showed different tumor
development stages, as shown in Fig. 4, depicting the picture
of intact tumor in nude mice (Fig. 4B-top row) and H&E
stained images in 100x and 400x (Fig. 4B — middle & bottom
row), respectively. On day 5™, approximately one-fifth of the
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Fig. 4 Tumor volume Kinetics and histology. (A) Plot of tumor
kinetics showing progression of tumor volume using mean tumor
volumes at days 5%, 10, 15" and 20" post- MCF-7 cells inoculation
in athymic nude mice as compared to day 0 control. (B) Pictures of the
intact breast tumor (i—v; top row) and the corresponding H & E stained
sections in 100x magnification (i—v; middle row) and 400x magnifi-
cation (i—v; bottom row) for different time point groups (days O‘h, S‘h,
10", 15™ & 20"; i—v) of tumor progression post-MCE-7 cells injection,
along with day 0 control.

tumor cells were found viable. But as the tumor progressed, a
better establishment of the tumor was seen on day IO‘h,
showing more viable cells with few blood capillaries. Day
15 showed well-developed blood capillaries compared to the
former stage and viable tumor cells. The day 20™ histological
finding showed well-developed blood capillaries, and, in
some regions, extensive necrosis was also observed.

Photoacoustic study

A differential photoacoustic spectral pattern was observed
for different experimental groups under study. The mean
pre-processed photoacoustic spectra of each group after
WPT demonstrated varied amplitude along the time axis.
The wavelet transformed spectra subsequently subjected to
the mRMR algorithm and the top 10 features necessary for
the discrimination of all the spectra belonging to different
groups based on their prediction ranking values were
obtained by the analysis, as shown in Fig. 5. As can be seen
from the figure, the best feature is the feature 1 with a
maximum prediction score value of 0.093 at wavelet coeffi-
cient level 15. The rest of the features were of lesser predic-
tion scores. These were ranked from all groups as follows;
feature 2 — coefficient level 5, prediction score 0.081; feature
3 — coefficient level 16, prediction score 0.056; feature 4 —
coefficient level 14, prediction score 0.051; feature 5 —
coefficient level 17, prediction score 0.041; feature 6 — coeffi-
cient level 9, prediction score 0.036; feature 7 — coefficient
level 18, prediction score 0.034; feature 8 — coefficient
level 1, prediction score 0.026; feature 9 — coefficient level
52, prediction score 0.024; feature 10 — coefficient level 10,
prediction score 0.022, as shown in Fig. 5. The variations in
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Fig. 5 Mean photoacoustic spectra & prediction ranking. Mean photoacoustic spectra in the region of interest (ROI) from day 0%, 5%, 10%, 15%
& 20" after WPD (line graph)- a time versus amplitude plot. The bar graph represents the features after mRMR performed on the data- a plot of

wavelet coefficient versus prediction rank values.
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Fig. 6 Selected features for machine learning as input matrix.
(A) Top 10 features and their predictor importance score. (B) Coef-
ficients of the top 10 selected features for individual groups used as

the features for all the time point groups under study were
visualized by plotting them using GraphPad prism 8.0,
which is shown in Fig. 6 along with their prediction scores.
These top 10 features from all the time points groups were
fed to the machine learning algorithm as an input feature
matrix for classification by using multi-class SVM-RBF,
SVM-Polynomial, and SVM- Linear algorithms with 80%
data for training and 20% for testing. The random training
and testing of the classification models were done by
repeating the process 10 times and selecting best classifi-
cation model for the analysis as shown in Supplementary
Fig. S3. The sensitivity, specificity, and accuracy for the
best classification by the models were also calculated, as
listed in Table 1. The sensitivity values for classification
using SVM-RBF, SVM-polynomial and SVM-linear for the

input feature matrix for SVM learning. One-way analysis of variance
test predicted p <0.0001(***) and Dunnett test for multiple pairs
significant with p <0.0001.

51 10™, 15" and 20" day groups are found to be 98%,
98%, 90.5%, 92.5%; 100%, 99.5%, 100%, 98% and 98%,
64.5%, 73.5%, 83.5% respectively. Similarly, the specificity
and accuracy values for the analysis using SVM-RBF,
SVM-Polynomial, and SVM-Linear are found to be 97%,
100%, 92% and 95.2%, 99.5%, 80.3% respectively.

Metabolomics

LC-MS data analysis of serum samples obtained from the
control and test groups under study revealed the presence of
a total of 3997 spectral features/metabolites. The data was
filtered to their intensity, present in a minimum of 3 out of 5
animals (60%) per group. These metabolites were annotated
using the m/z ratio in METLIN and HMDB databases
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Table 1 Performance metrics of

testing 20% of the photoacoustic Class

SVM model

Specificity (%) Sensitivity (%) Accuracy (%)

data for each time point group
under study using SVM analysis
after the training with 80% of
the data from each group.

Day 0 RBF
Day 5
Day 10
Day 15
Day 20
Day 0
Day 5
Day 10
Day 15
Day 20
Day 0
Day 5
Day 10
Day 15
Day 20

Polynomial

Linear

97 - 952
- 98

- 98

- 90.5

- 92.5

100 - 99.5
- 100

- 99.5

- 100

- 98

92 - 80.3
- 98

- 64.5

- 73.5

- 83.5

within 15 ppm tolerance. There were 114 compounds
annotated, excluding xenobiotics and drugs. Further were
used the intensity of the identified compounds to visualize
the global metabolome of control and test groups using
Circos illustration, as shown in Fig. 7A. The Circos repre-
sentation showed differential distribution patterns across the
control and test groups. Intensity and presence of metabo-
lites were considered in each sample of all the groups, and
upon performing ‘Student’s ¢ test’ and ‘One-way ANOVA’
on the annotated compounds, found that 19 metabolites
present in all the experimental groups were altered as shown
in Supplementary Fig. S4. The metabolites were subjected
to MS/MS analysis to find the fragmentation patterns to
validate the annotated compounds.

The significantly altered compounds were subjected to fold
change analysis. The fold change was calculated for days 5%,
10™, 15" & 20™ groups with respect to control, as shown in
the Supplementary Fig. S5. The fold change analysis showed
that the serum levels of most of the metabolites to be down-
regulated as the tumor progressed with respect to control.
Further, the metabolites from all the time-points were sub-
jected to ‘Pearson’s correlation analysis,” as shown in the
Supplementary Fig. S6. The differentially altered serum
metabolites in control and test groups were detected in serum
samples based on the most abundant and significantly altered
intensities and were transformed to logl0 and represented as
Box-Whiskers plots. Statistically significant changes in meta-
bolite intensity between the control and day 20" group are
represented by asterisk (¥***p <0.001, **p <0.01, *p <0.05).
However, some metabolites showed no statistical significance
compared to control, as shown in Supplementary Fig. S4.

Among 114 identified compounds, the amino acid levels,
lipid levels, and other compounds showed significant var-
iations in the current study. The student’s ¢ test was
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performed for day 0 versus day 20 group, the amino acids,
threonine, proline-betaine, L-valine, tryptophan, tyrosine,
and other metabolites such as 5-methylcytidine, serotonin,
piperidine and propionyl choline were found to be sig-
nificantly decreased in progressive tumor condition com-
pared to control. Further, carnitine and o-propanoyl-L-
carnitine also showed similar intensity trend upon tumor
progression to day 20" However, metabolites such as
acylcarnitine, valeryl carnitine, pantothenic acid, succinyl
acetoacetate and 5-(3-Pyridyl)-2-hydroxytetrahydrofuran
had altered intensities upon tumor progression, never-
theless, did not show significance in downregulation.

Pathway analysis

The annotated metabolites (114 compounds) were subjected
to pathway analysis using MetaboAnalyst 4.0. It was
observed that most of the pathways were affected. Among
them, the tryptophan pathway was also impacted with 3 hits
(tryptophan, serotonin & kynurenine) with a raw p value of
0.0443 and a pathway Impact of 0.34, respectively. The
graphical representation of pathway analysis is shown in
Fig. 7B with the list of pathways impacted.

Discussion

In the present study, breast tumor progression was assessed by
photoacoustic spectroscopy combined with machine learning
using support vector machine analysis. Initially, the tumor
induced as mentioned in the materials and methods was
validated by tumor volume kinetics (Fig. 4A) and histological
study (Fig. 4B), also explained in the Supplementary Section
1. Tumor progression on day 0, day 5, day 10, day 15, and
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Fig. 7 Metabolome overview
and pathway analysis. (A) An
overview of serum metabolome
patterns in control and Days 5™,
10", 15%, and 20™ groups.
Circos diagram illustrates a
comparison of log10
transformed intensity values of
114 identified metabolites
(excluding xenobiotics) detected
in control (Inner-red), Day 5t
(green), Day 10" (blue), Day
15" (yellow), and day 20
(orange). (B) (i) Metabolic
Pathway Analysis (MetPA). All
the pathways are represented as
circles. The color and size of
each circle are based on the

p value and pathway impact
value, respectively. The plot is
showing the —log of p values
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day 20 post tumor induction, was also validated by histolo-
gical image processing, as explained in Supplementary Sec-
tion 4. Photoacoustic spectroscopy, which can detect minor
biochemical changes in the biological samples, was then used
to record spectral profiles of the progressive tumor conditions

[34]. As mentioned in the materials and methods, there were
500 original photoacoustic spectra, 100 from each 5-time
point group recorded. After pre-processing and selecting ROI
containing maximum variation with tumor progression, the
original spectra were augmented 10 folds (5000 spectra, 1000
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from each group), the original and augmented spectral data
analyzed using an SVM algorithm to predict functional out-
comes of disease diagnoses [35]. Support vector machine has
widely been used, replacing some of the commonly used
logistic functions like SoftMax as a classifier in deep learning
[36]. In cancer classification, SVM has been used as a clas-
sifier on high throughput microarray gene expression [37].
Moler et al. applied SVM in a colon cancer tissue classifi-
cation using microarray gene expression data. When the
performance of SVM was compared with the naive Bayes
classifier using different numbers of selected genes, the for-
mer was found to outperform the latter [38]. The SVM is thus
most suitable for tissue classification on a wide range of data
types [39].

In the present study, to increase the data diversity and
size for limiting overfitting in machine learning, all 500
ROI-selected photoacoustic spectra were subjected to data
augmentation. In a study, Rashid et al., 2019 have shown a
machine learning-based framework for identifying con-
struction equipment activities to assess productivity, safety,
and environmental impact on construction sites using the
time-series data [25]. The study showed the impact of
augmentation on the machine learning model. In the present
study, data augmentation was done by adopting the option
rescaling to achieve 10-fold increase in the data strength.
The combined original and augmented data were subjected
to Wavelet Transformation (WT) to extract hidden spectral
features from them. We selected WT over FFT for feature
extraction because FFT does not significantly extract minor
variations from the input signals like real-time photo-
acoustic signals compared to WT [27]. Further, there are
many WT types, and they decompose signal waves onto a
set of essential functions known as wavelets, obtained from
a single model wavelet, called mother wavelet [28]. In this
study, we have used db6 wavelet, as mother wavelet. In
WT, Wavelet Packet Decomposition (WPD) generates both
‘approximations’ and ‘details’ coefficients from the input
data understudy in the low and high-frequency regions,
respectively, to create the full binary tree, as shown in
Supplementary Fig. 1. WPD is an iterative process, repeats
until a desired level is achieved. It provides an actual signal
variation required for the analysis under a particular sub-
band in the process. In the present study, AA2 (2,0) sub-
band demonstrated optimal signal variation and was used to
select the spectral features for the analysis. WPD has also
been used to classify ECG signals, providing significantly
detailed signal decomposition hence improving the time-
frequency resolution of the signal [26].

After the transformation of the photoacoustic spectra,
feature extraction, which plays a vital role in deciding the
performance of machine learning by accurately classifying
the data, selecting the right spectral transformation tool for
feature extraction is the key to data classification. The
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reduced redundancy in data contributes to the reduced
noise-based prediction and results in better classification
accuracy [40]. Therefore, the feature selection algorithm,
the minimal Redundancy Maximal Relevance (mRMR)
algorithm, is faster and computationally feasible and does
not involve learning was used. The mRMR minimizes the
correlation between different features of a target class in the
analysis, ensuring feature ranking based on mutual infor-
mation and prediction ranking, as shown in Fig. 5. As
mentioned earlier, 10 features were selected by mRMR and
used for data classification. Previously, mRMR based fea-
ture selection was used in microarray data analysis for
determining biologically relevant genes in cancer samples.
Genes selected by mRMR algorithms showed a better
characteristic of phenotypes and improved prediction [30].

In the present study, the spectral features selected by
mRMR were subjected to Machine Learning using Support
Vector Machine (SVM) analysis to classify the photo-
acoustic spectral data of progressive tumor stages. SVM is
an effective supervised learning method applied for data
classification of different sample types in high-throughput
technologies generating a large volume of data [29]. In our
study, the top 10 features selected by mRMR were used as
an input feature matrix for classification using multi-class
SVM learnings. The multi-class SVM models used were
SVM-RBF, SVM-Polynomial, SVM- Linear algorithms,
and varied classification accuracy of 95.2%, 99.5% &
80.3%, respectively, were obtained. Our analysis demon-
strated the best results in SVM-Polynomial compared to the
rest, as shown in Table 1 and Supplementary Fig. S3. The
performance metrics of the machine learning models, the
sensitivity values for days 5%, 10%, 15% and 20® groups
using SVM-RBF are 98%, 98%, 90.5%, 92.5%, respec-
tively, using SVM-Polynomial are 100%, 99.5%, 100%,
and respectively and using SVM-Linear are 98%, 64.5%,
73.5%, and 83.5% respectively. The specificity values of
the analysis using SVM-RBF, SVM-Polynomial, and SVM-
Linear are found to be 97%, 100%, and 92%, respectively.
These outcomes are also listed in Table 1.

In the present study, photoacoustic signals were from the
tissue samples of progressive tumor conditions based on
tryptophan excitation. It was also observed that spectral fea-
tures 2, 6, 8, and 10 extracted from photoacoustic patterns
shown increased wavelet coefficients with the tumor pro-
gression. This may be due to the uptake of tryptophan by
tumor tissues and contributing to corresponding photoacoustic
spectra, as shown in Fig. 8A. Further, the metabolomic ana-
lysis conducted in the present study using MetaboAnalyst
software revealed tryptophan metabolism, one of the most
dysregulated pathways with tumor progression. The altered
serum tryptophan levels showed a decreasing trend (Fig. 8B)
as the tumor progressed compared to the control group, which
has also been explained in the Supplementary Data (Section



Exploring photoacoustic spectroscopy-based machine learning together with metabolomics to assess breast... 963

A Serum Tryptophan

i

o o
o =)
1 1

Intensity (a.u.)

4.5
4.0 T T T T T
0 5 10 15 20
I  Feature 2 ] Feature 6
15+ 154
S 10+ 10
s
Q 5 54
©
=]
2 o] kdT T T 0
3
-5 5-
<
-10 T T T T T -10 T T T T T
0 5 10 15 20 0 5 10 15 20
m Feature 8 v Feature 10
15 15
S 10
s 10
® 5-
E 51
= o4 T ey B I
3 0
-5
<
'10 | T T T I -5 T 1 1 1 1
0 5 10 15 20 0 5 10 15 20
Time (Days) Time (Days)

Fig. 8 Correlation between metabolomic analysis and photo-
acoustic measurements of tumor progression. (A) Tryptophan
intensity found in Day Oth, 5‘h, 10™, 15, and 20™ obtained from serum
metabolomics data analysis and t-test performed between day 0" and
day 200 predicted p value as significant, p = 0.0109 (*). (B) wavelet
coefficients of the features extracted from the photoacoustic signals of
tumor tissues belonging to Day 0%, 5™ 10", 15, and 20". (i) Feature
2, (ii) Feature 6, (iii) Feature 8 and (iv) Feature 10. One-way analysis
of variance test predicted p value as significant, p <0.0001(***).

3). The decrease in serum tryptophan levels at progressive
time points demonstrated an inverse correlation with spectral
features 2, 6, 8, 10 in the study. This decrease in serum
tryptophan and the corresponding increase in wavelet coeffi-
cients from photoacoustic measurements may be due to the
uptake of tryptophan from serum by tumor tissues.

In conclusion, the current study reported an establish-
ment of MCF-7 cells induced breast tumor xenograft in
athymic nude mice and assessed tumor progression by a
novel integrated approach of photoacoustics spectroscopy
and machine learning. Breast tumor advancement in nude

mice was also validated through tumor tissue histology in
the study. Metabolomics data analysis performed in the
study revealed lesser tryptophan levels in serum than tumor
tissues, as reported by photoacoustic spectroscopy studies
on tumor tissues. The decrease in serum tryptophan levels
may be due to higher uptake of tryptophan by the tumor.
Further, photoacoustic spectral analysis of tumor tissues
involving WPT and mRMR for classification applying
multi-class SVM-RBF, SVM-Polynomial, and SVM- Lin-
ear algorithms demonstrated varied classification accuracy
of 952%, 99.5% & 80.3%, respectively. The SVM-
polynomial showed the highest classification accuracy in
the study indicating photoacoustic spectroscopy combined
with machine learning could be a potential prognostic tool
for assessing breast tumor progression. As per our knowl-
edge, the present study is the first to use photoacoustic
spectroscopy and machine learning for evaluating breast
tumor progression supported by serum metabolomic ana-
lysis. This approach holds a very high potential for clinical
translation; however, upon further modifications/improve-
ments, the method can be brought into the clinical setting
for early detection of breast cancer conditions.

Data availability

Data will be available upon request after the execution of a
data use agreement.
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