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Abstract Death domains (DDs) mediate assembly of oligomeric complexes for activation of

downstream signaling pathways through incompletely understood mechanisms. Here we report

structures of complexes formed by the DD of p75 neurotrophin receptor (p75NTR) with RhoGDI, for

activation of the RhoA pathway, with caspase recruitment domain (CARD) of RIP2 kinase, for

activation of the NF-kB pathway, and with itself, revealing how DD dimerization controls access of

intracellular effectors to the receptor. RIP2 CARD and RhoGDI bind to p75NTR DD at partially

overlapping epitopes with over 100-fold difference in affinity, revealing the mechanism by which

RIP2 recruitment displaces RhoGDI upon ligand binding. The p75NTR DD forms non-covalent, low-

affinity symmetric dimers in solution. The dimer interface overlaps with RIP2 CARD but not RhoGDI

binding sites, supporting a model of receptor activation triggered by separation of DDs. These

structures reveal how competitive protein-protein interactions orchestrate the hierarchical

activation of downstream pathways in non-catalytic receptors.

DOI: 10.7554/eLife.11692.001

Introduction
The death domain (DD) is a globular protein module of 80–90 amino acid residues with a characteris-

tic six-helix bundle fold (Feinstein et al., 1995; Ferrao and Wu, 2012). DDs are present in a variety

of proteins, including several members of the tumor necrosis factor receptor superfamily (TNFRSF)

and a range of intracellular signaling components, such as caspases and kinases. The DD family

includes four subfamilies of structurally related domains, including the canonical DD, the death effec-

tor domain (DED), the caspase recruitment domain (CARD), and the pyrin domain (PYD). DD-con-

taining proteins play central roles in apoptotic and inflammatory signaling through the formation of

oligomeric protein complexes, and several disease-causing mutations have been mapped to DD

interfaces (Park et al., 2007). All DD complexes described so far involve homotypic interactions

between DDs of the same subfamily (e.g., DD with DD, CARD with CARD, etc.). All known DD inter-

actions belong to one of three types (I to III), each mediated by conserved asymmetric interfaces in

the interacting DDs (Park, 2011; Park et al., 2007; Weber and Vincenz, 2001). Heterotypic com-

plexes between DDs from different subfamilies have not yet been described and, aside from a few

structures of DDs bound to small polypeptides, no complexes of DDs with proteins outside the DD

superfamily have been reported. Thus, type I, II, and III interactions between DDs are thought to rep-

resent the predominant mechanism of oligomerization and complex formation for DD-containing

proteins.

The cytoplasmic domain of the p75 neurotrophin receptor (p75NTR, also known as NGFR and

TNFRSF16) contains a C-terminal DD connected to the transmembrane (TM) domain by a 60-resi-

due-long linker region (Liepinsh, 1997). p75NTR is a receptor for members of the neurotrophin fam-

ily, such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) (Dechant and
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Barde, 2002; Roux and Barker, 2002). In addition to the neurotrophins, a number of other extracel-

lular ligands can also engage or signal through p75NTR, including the beta-amyloid peptide

(Knowles et al., 2009; Perini et al., 2002), the rabies virus glycoprotein (Tuffereau et al., 1998),

and various myelin-derived polypeptides (Wang et al., 2002; Wong et al., 2002). p75NTR may func-

tion alone or in conjunction with other transmembrane proteins to allow ligand binding and intracel-

lular signaling. These proteins include members of the Trk family of receptor tyrosine kinases,

members of the Vps10p family of sorting receptors, such as Sortilin, and the Nogo receptor, which

promotes binding to myelin-derived ligands (Underwood and Coulson, 2008). p75NTR can engage

different intracellular pathways, of which the best characterized are the RhoA pathway, which regu-

lates axon growth, collapse and degeneration (Park et al., 2010; Yamashita et al., 1999;

Yamashita and Tohyama, 2003), the NF-kB pathway, which contributes to cell survival

(Carter et al., 1996; Khursigara et al., 2001; Vicario et al., 2015), and the c-Jun kinase (JNK) or

caspase pathway, which mediates apoptotic cell death (Friedman, 2000; Yoon et al., 1998). p75NTR

signaling through any of those three pathways requires a functional DD (Charalampopoulos et al.,

2012). Expression of p75NTR increases in a number of neurodegenerative diseases and upon injury

or stress conditions, where it contributes to neuronal and glial cell damage, axonal degeneration,

and synaptic dysfunction (Ibanez and Simi, 2012). Inhibition of p75NTR signaling has emerged as an

attractive strategy for limiting neural damage in neurodegeneration and nerve injury.

The mechanism of activation of p75NTR in response to neurotrophins involves a conformational

rearrangement of disulfide-linked receptor dimers, resulting in the separation of intracellular DDs

(Vilar et al., 2009). Fluorescence resonance energy transfer (FRET) experiments have shown that the

two DDs in the p75NTR dimer are in close proximity to each other (high FRET state) and that NGF

binding induces a decrease in FRET signal (Vilar et al., 2009). Disruption of this conformational

change through mutation of a conserved cysteine residue in the TM domain prevents p75NTR

eLife digest Cells have proteins called receptors on their surface that can bind to specific

molecules on the outside of the cell. Typically, this binding activates the receptor and the activated

receptor then triggers some biochemical changes inside the cell. For many receptors, the portion of

the receptor inside the cell is essentially an enzyme that can trigger a biochemical change by itself.

Some receptors, however, lack any enzymatic activity, and it is often unclear how these ‘non-

catalytic receptors’ trigger changes inside a cell.

A protein called p75 neurotrophin receptor (or p75NTR for short) is a non-catalytic receptor that is

expressed when neurons are injured and its activity leads to the death of the neurons and related

cells. Inhibiting this non-catalytic receptor is an attractive strategy for limiting the damage caused by

diseases of the nervous system. However, the molecular mechanisms behind the activity of p75NTR

are not well understood.

Previous biochemical studies set out to answer the question of how p75NTR engages with

components of the signaling machinery inside the cell, and found several components that interact

with this receptor. Now, Lin et al. have tried to gain a more detailed understanding of those

interactions at a molecular level. This involved solving the three-dimensional structures of three

protein complexes that involve part of p75NTR (called the “death domain”) and one of two signaling

components (called RhoGDI and RIP2).

Two of the protein complexes showed that RIP2 and RhoGDI bind to the receptor’s death

domain at partially overlapping sites, although RIP2 binds about 100 times more strongly than

RhoGDI.A third protein complex showed an interaction between two copies of the death domain,

which involves a surface of the receptor that overlaps with RIP2’s, but not RhoGDI’s, binding site.

These structures, together with the results of other experiments, allowed Lin et al. to propose a

model that could explain how p75NTR is activated. First, the two death domains must be separated.

Next, RIP2 is recruited to the receptor, and outcompetes and displaces RhoGDI. This change in

protein-protein interactions switches the receptor’s signaling from one pathway to the other. Now

that these structures are available, they can be used in future experiments to design specific

changes in the receptor that would allow researchers to dissect its different activities.

DOI: 10.7554/eLife.11692.002
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signaling in response to neurotrophins (Vilar et al., 2009). p75NTR lacks an associated catalytic activ-

ity. Similar to other members of the TNFRSF, signaling by p75NTR proceeds via ligand-induced

recruitment and release of cytoplasmic effectors to and from its intracellular domain. Ligand-induced

separation of p75NTR DDs may allow the recruitment of intracellular components for downstream

signal propagation. Although a variety of intracellular proteins have been reported to interact with

p75NTR, the molecular mechanisms by which the receptor engages different signaling pathways

remain unclear. To begin addressing these questions, our laboratory performed a comprehensive

structure–function study of the p75NTR DD that resulted in the identification of three sets of solvent-

exposed residues that are critical for p75NTR’s ability to engage the RhoA, NF-kB and JNK/cell death

pathways, respectively (Charalampopoulos et al., 2012). Receptor mutants that are selectively defi-

cient in one pathway but not others were generated, demonstrating that different signaling outputs

can be genetically separated in p75NTR. Understanding how such interfaces relate to each other and

to the mechanism of receptor activation has remained an important challenge.

In this study, we have undertaken a structural biology approach to elucidate the molecular mech-

anisms underlying downstream signaling mediated by the DD in p75NTR. We have determined the

solution structures of the p75NTR DD in complex with RhoGDI (Rho guanine nucleotide dissociation

inhibitor), which links the receptor to the RhoA pathway (Yamashita et al., 1999; Yamashita and

Tohyama, 2003), or with the CARD domain of RIP2 kinase, which is necessary for p75NTR coupling

to the NF-kB pathway (Charalampopoulos et al., 2012; Khursigara et al., 2001). We have also

solved the solution structure of the p75NTR DD homodimer, revealing the DD surface that is

occluded prior to neurotrophin-mediated receptor activation. These structures uncover novel hetero-

typic DD interactions, not previously seen in other DD-containing complexes, and reveal the molecu-

lar mechanisms underlying the early stages of p75NTR activation and downstream signaling.

Results

Solution structure of the complex between the p75NTR DD and RhoGDI
RhoGDI interacts constitutively with the DD of unliganded p75NTR, linking the receptor to the RhoA

pathway (Yamashita and Tohyama, 2003). Neurotrophin binding induces the release of RhoGDI

from p75NTR and decreases RhoA activity (Gehler et al., 2004; Yamashita et al., 1999;

Yamashita and Tohyama, 2003). Using biochemical and cell-based assays, we have previously iden-

tified solvent-exposed residues in the p75NTR DD that are critical for its interaction with RhoGDI and

RhoA activation, including residues in helices H1 and H6 (Charalampopoulos et al., 2012). In order

to obtain a molecular understanding of this interaction, we determined the solution structure of the

human p75NTR DD:RhoGDI complex by multidimensional nuclear magnetic resonance (NMR) spec-

troscopy (Figure 1—figure supplement 1 and Table 1). We note that, unless otherwise indicated,

all amino acid residue numbering in this study corresponds to the human forms of the respective

proteins. Human and rat p75NTR DD share more than 90% sequence identity—including all

functionally relevant residues—and an essentially identical three-dimensional structure with an over-

all RMSD of 1.7 Å ((Liepinsh, 1997) and this study). The ensemble of the 10 lowest-energy conform-

ers of the DD:RhoGDI complex and a representative structure are depicted in Figure 1A,B. p75NTR

DD in the complex consists of one 310-helix followed by six a-helices and its global fold is very simi-

lar to that of our previously described structure of rat p75NTR DD (Liepinsh, 1997). In the complex,

the C-terminal domain of RhoGDI primarily displays an immunoglobulin-like fold similar to previously

described structures of this protein (Longenecker et al., 1999). Residues Glu40 to Gly57 in the

RhoGDI N-terminal domain fold into a long helix, which is not involved in p75NTR DD binding and

remains flexible in the complex (Figure 1A). Removal of this N-terminal domain did not affect

RhoGDI binding to p75NTR DD (Figure 1—figure supplement 2). Inspection of the interface in the

complex showed that it is mainly formed by a-helices H1 and H6 of the p75NTR DD and b-strands S2,

S3, S9 and a-helix H2 of RhoGDI, forming a small hydrophobic core surrounded by polar residues

(Figure 1C). Charged residues play an important role in the binding interface and high concentration

of salt (i.e., greater than 200 mM NaCl) can almost completely disrupt p75NTR DD:RhoGDI interac-

tion in vitro (Figure 1—figure supplement 1C). It is gratifying to note that all functional DD determi-

nants that we have previously identified by site-directed mutagenesis clustered at the DD:RhoGDI

interface of the complex structure (labeled red in Figure 1C,D). The structure of the DD:RhoGDI
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complex offered an opportunity to address the functional importance of a larger set of residues in

the p75NTR DD as well as in RhoGDI. Co-immunoprecipitation experiments were performed in cells

transfected with constructs of full-length p75NTR and RhoGDI carrying different point mutations in

selected residues. Alanine substitution of individual amino acid residues likely uncovers only those

side chains making the most critical contribution to the binding interface. In the p75NTR DD, substitu-

tion of either Asp412, Lys343 or Glu420 was found to significantly diminish interaction with RhoGDI

(Figure 1D). In RhoGDI, substitution of Lys99 or Lys199 abolished its interaction with p75NTR

(Figure 1E). In agreement with this, the structure of the complex shows that these two positively

charged side chains make charge interactions with Glu420 and Asp412, respectively, in the p75NTR DD

(Figure 1C).

Analysis of the p75NTR DD:RhoGDI complex and a previously described crystal structure of the

RhoGDI:RhoA(GDP) complex (Longenecker et al., 1999) indicated that p75NTR DD and RhoA inter-

act with different surfaces in RhoGDI, located at opposite sides of the molecule. The two distant

binding sites on RhoGDI suggested that a heterotrimer complex p75NTR DD:RhoGDI:RhoA may be

structurally feasible. We investigated this by performing HADDOCK calculations (Dominguez et al.,

2003) using our solution structure of p75NTR DD from its complex with RhoGDI and the crystal struc-

ture of the RhoGDI:RhoA(GDP) complex. Multiple refinements converged to a mean backbone root

mean square deviation (RMSD) of 0.64 ± 0.05 Å (Figure 2A,B and Table 2). Ramachandran plot anal-

ysis of the docking model indicated that the trimer structure, including the two intermolecular inter-

faces, still occupies the energetically preferred conformation. In the tripartite complex, the N-

terminal domain of RhoGDI folded into two helices and bound to RhoA(GDP), similar to its confor-

mation in the RhoGDI:RhoA(GDP) complex (Longenecker et al., 1999). The DD binding site on

Table 1. NMR and refinement statistics for p75NTR DD complexes and RIP2 CARD.

NMR distance and dihedral constraints DD:RhoGDI RIP2 CARD DD:CARD DD:DD

Distance constraints

Total NOE 3525 2107 3760 3344

Intra-residue 809 436 798 728

Inter-residue

Sequential ( i – j = 1) 1054 656 1130 986

Medium-range ( i – j � 4) 665 589 1016 892

Long-range ( i – j � 5) 945 426 771 706

Intermolecular NOE 52 - 45 32

Total dihedral angle restraints a 222 132 260 280

Structure Statistics

Violations (mean and s.d.)

Distance constraints (Å) 0.36 ± 0.02 0.25 ± 0.01 0.36 ± 0.03 0.28 ± 0.01

Dihedral angle constraints (º) 3.50 ± 0.46 2.75 ± 0.28 3.37 ± 0.28 2.86 ± 0.59

Max. dihedral angle violation (º) 4.16 3.25 3.77 4.28

Max. distance constraint violation (Å) 0.39 0.26 0.44 0.29

Ramachandran Plot (allowed region) 99.8% 99.5% 99.8% 99.9%

Average RMSD (Å) b

Heavy atoms 0.91 ± 0.12 0.83 ± 0.06 0.99 ± 0.08 0.77 ± 0.06

Backbone atoms 0.55 ± 0.13 0.36 ± 0.05 0.66 ± 0.09 0.43 ± 0.02

a Dihedral angle constraints were generated by TALOS based on Ca and Cb chemical shifts.
b Average r.m.s. deviation (RMSD) to the mean structure was calculated among 10 refined structures. Superimposing residues for DD:RhoGDI, RIP2

CARD, DD:CARD, and DD:DD are 334–421 of DD with 70–204 of RhoGDI, 436–523 of RIP2 CARD, 334–420 of DD with 435–534 of RIP2 CARD and 334–

421 of DD respectively. The total AMBER energy for DD:RhoGDI, RIP2 CARD, DD:CARD, and DD:DD are –9884 � 41, –4437 � 32, –7706 � 32 and –

7161 � 18 kcal/mol respectively.

DOI: 10.7554/eLife.11692.003
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RhoGDI remained nearly identical to that in the DD:RhoGDI complex. This analysis shows that inter-

action of the three proteins can indeed occur simultaneously and explains previous biochemical stud-

ies showing that RhoA can be co-immunoprecipitated with p75NTR in the presence of RhoGDI

(Yamashita et al., 1999). Using the purified proteins, we determined the binding affinity of the

RhoGDI:RhoA complex by surface plasmon resonance (SPR). Titration of RhoGDI onto immobilized

RhoA, yielded a binding Kd of 0.14 ± 0.01 mM, which is in agreement with previous measurements

(Tnimov et al., 2012) (Figure 2C). Interestingly, when RhoGDI was precomplexed with purified

p75NTR DD, the Kd was 2.2 ± 0.11 mM (Figure 2D), indicating that binding to the p75NTR DD

decreases the affinity of the RhoGDI:RhoA interaction by about 15-fold. We note that, in the

absence of RhoGDI, no binding between p75NTR DD and RhoA could be detected in these experi-

ments (Figure 2E). These results suggest that RhoGDI binding to the p75NTR DD weakens its interac-

tion with RhoA, a step which may facilitate RhoA activation.

Figure 1. Solution structure of the complex between the p75NTR DD and RhoGDI. (A) Superposition of backbone

heavy atoms of the 10 lowest-energy structures of the human p75NTR DD:RhoGDI complex. N- and C-termini are

indicated. (B) Ribbon drawing of the lowest-energy conformer. Light brown, p75NTR DD; Cyan, RhoGDI. N- and C-

termini, as well as DD helices H1 and H6 are indicated. (C) Details of binding interface in the complex viewed in

the same orientations as panel B, respectively. Key residues at the binding interface are labeled and depicted as

stick models. Red labels denote interface residues functionally validated in our earlier mutagenesis study

(Charalampopoulos et al., 2012). (D) Co-immunoprecipitation of wild type (WT) and DD point mutants of human

p75NTR with Myc-tagged RhoGDI in transfected HEK 293 cells. Antibodies used for immunoprecipitation (IP) and

Western blotting (WB) are indicated. WCE, whole cell lysate. The immunoblots shown are representative of three

independent experiments. (E) Co-immunoprecipitation of WT and point mutants of Myc-tagged human RhoGDI

with p75NTR in transfected HEK 293 cells. Antibodies used for immunoprecipitation (IP) and Western blotting (WB)

are indicated. WCE, whole cell extract. The immunoblots shown are representative of three independent

experiments.

DOI: 10.7554/eLife.11692.004

The following figure supplements are available for figure 1:

Figure supplement 1. NMR spectra of DD:RhoGDI complex in 20 mM HEPES at 28˚C and pH 6.9.

DOI: 10.7554/eLife.11692.005

Figure supplement 2. The N-terminal domain of RhoGDI does not bind to p75NTR DD.

DOI: 10.7554/eLife.11692.006
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Solution structure of the complex between the p75NTR DD and RIP2
CARD
NGF binding to p75NTR elicits the recruitment of RIP2 kinase to the receptor. Recruitment of RIP2 is

required for regulation of the NF-kB pathway by p75NTR. Previous biochemical studies established

that the interaction between p75NTR and RIP2 is mediated by their DD and CARD domains, respec-

tively (Khursigara et al., 2001). The RIP2 CARD consists of 107 amino acids and is located in the C-

terminal of the protein. It connects to the N-terminal kinase domain via a linker of 120 amino acids.

We determined the NMR structure of human RIP2 CARD in monomeric form (Figure 3A,B and

Figure 2. Structural model of tripartite complex between p75NTR death domain, RhoGDI and RhoA. (A)

Superposition of backbone traces of the 10 lowest-energy structures of p75NTR DD:RhoGDI:RhoA tripartite

complex. N- and C-termini are indicated. (B) Ribbon diagram of a representative structure of p75NTR DD:RhoGDI:

RhoA heterotrimer complex. Light brown, p75NTR DD; Cyan, RhoGDI; Blue, RhoA. Mg2+ and GDP appear in ball-

and-stick models. p75NTR DD helices H1, H5 and H6 as well as N- and C-termini are indicated. (C) Binding of

RhoGDI to immobilized RhoA:GDP:Mg2+ measured by surface plasmon resonance (SPR). Binding affinity was

determined by steady-state analysis. One binding site model was used for fitting of SPR data. The sensorgram

shown is representative from three independent experiments. (D) Binding of RhoGDI complexed with p75NTR DD

(molar ratio 1:2) to immobilized RhoA:GDP:Mg2+ measured by SPR. Binding affinity was determined by steady-

state analysis. One binding site model was used for fitting of SPR data. The sensorgram shown is representative

from three independent experiments. (E) Sensorgram showing lack of interaction between p75NTR DD (tested at

125–500 nM) and immobilized RhoA:GDP:Mg2+. The sensorgram shown is representative from three independent

experiments.

DOI: 10.7554/eLife.11692.007

The following figure supplement is available for figure 2:

Figure supplement 1. Local structural differences in RhoGDI after interaction with either p75NTR DD or RhoA:

GDP.

DOI: 10.7554/eLife.11692.008
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Table 1). The solution structure of RIP2 CARD comprises an arrangement of six a-helices followed

by one short 310-helix, all tightly packed around a hydrophobic core. A C-terminal tail of 17 amino

acids (Leu524-Met540) follows the CARD and is unstructured and flexible in solution. A unique seg-

ment (Gln518-Ile523) between the C-terminal tail and the 310-helix contains two structural disruptor

residues (i.e., Pro519 and Pro520, Figure 3B) and lacks a secondary structure, but its orientation was

well-defined in the NMR structure. A number of hydrophobic residues (e.g., Ile523, Figure 3B) in this

segment closely interact with the first and the last a-helices in the RIP2 CARD. Structural comparison

using the DALI server (Holm and Rosenström, 2010) showed that the most similar structure to RIP2

CARD was the CARD of nucleotide-binding oligomerization domain-containing protein 1 (NOD1),

with a Z-score between 9 and 11. NOD1 and RIP2 have been shown to interact with each other

through their CARDs to propagate immune signaling (Mayle et al., 2014). The two CARDs share

similar structural features, including a similar arrangement of all but the last of the a-helices, which

displays different local secondary structures in the two proteins (Figure 3—figure supplement 1A).

Despite their folding similarities, the two CARDs exhibit significantly different surface characteristics.

Particularly, RIP2 CARD has many more charged residues on its surface than its NOD1 counterpart

(Figure 3—figure supplement 1B,C). Different electrostatic surfaces will confer different interaction

specificities, a common feature among members of the DD superfamily, including the CARD

subfamily.

In order to obtain a molecular understanding of the p75NTR DD:RIP2 CARD interaction, we deter-

mined the NMR structure of the complex. Figure 3C,D present the three-dimensional solution struc-

ture of this complex obtained from the NMR experimental restraints (Table 1 and Figure 3—figure

supplement 2). The core helical structure of the p75NTR DD in the p75NTR DD:RIP2 CARD complex

was similar to that in the p75NTR DD:RhoGDI complex, with a pairwise RMSD of ~1.9 Å (Figure 3—

figure supplement 3A). The orientation of a-helices H3 and H6 changed by approximately 7˚–8˚.
Similarly, pairwise RMSD between RIP2 CARD in monomeric form and in complex with the p75NTR

DD was ~1.5 Å (Figure 3—figure supplement 3B). The main interface in the core structure of the

p75NTR DD:RIP2 CARD complex involved a-helices H2, H3, H5, H6, and H5–H6 loop of p75NTR DD

and a-helices H1, H3–H4, and H5–H6 loops of RIP2 CARD (Figure 3E,F). Both electrostatic and

hydrophobic interactions contribute to the p75NTR DD:RIP2 CARD interface. Interestingly, the C-ter-

minal tail of RIP2 CARD was better defined in its complex with the p75NTR DD compared to its

monomeric form, although the last six amino acids still remained flexible. The C-terminal tail bound

to a-helices H1, H5, and H6 of p75NTR DD, through both hydrophobic and charged interactions

(Figure 3D and Figure 3—figure supplement 3B). In our previous site-directed mutagenesis studies

of the p75NTR DD, we had identified residues in helices H2 (Asp357, His361, and Glu365), H3 (Gln369

and Glu371), H5 (Asp399), and H6 (Asp412 and Glu415) as being critical for its interaction with RIP2

(Charalampopoulos et al., 2012). We were pleased to note that all these residues mapped to the

Table 2. Structural statistics for the 10 lowest-energy structures of p75NTRDD:RhoGDI:RhoA Trimer

and Hexamera.

Trimer Hexamer

Backbone RMSD (Å)

From the mean, full complex 0.61 ± 0.25 0.59 ± 0.20

From the mean, all interfaces 0.58 ± 0.22 0.48 ± 0.13

Total energy (kcal/mol) -20721 ± 137 -37682 ± 210

Ramachandran plot (%)b

Residues in the most favored regions 82.2 84.7

Residues in additional allowed regions 14.1 12.5

Residues in generously allowed regions 1.9 1.9

Residues in disallowed regions 1.8 0.9

aStructural statistics for the 10 lowest-energy conformers were obtained from HADDOCK calculation using NOEs

between DD and RhoGDI.
bRamachandran analysis was carried out using PROCHECK-NMR.

DOI: 10.7554/eLife.11692.009
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Figure 3. Solution structure of RIP2 CARD and its complex with p75NTR DD. (A) Superposition of backbone heavy

atoms of the 10 lowest-energy structures of human RIP2 CARD. N- and C-termini are indicated. (B) Ribbon

drawing of the lowest-energy conformer of human RIP2 CARD. N- and C-termini, as well as selected residues in

the C-terminal tail are indicated. (C) Superposition of backbone heavy atoms of the 10 lowest-energy structures of

the human p75NTR DD:RIP2 CARD complex. N- and C-termini are indicated. (D) Ribbon drawing of the lowest-

energy p75NTR DD:RIP2 CARD conformer. Light brown, p75NTR DD; Green, RIP2 CARD. N- and C-termini, as well

as DD helices H2, H3, and H5 are indicated. (E and F) Details of binding interface in the complex viewed in the

same orientations as panel D, respectively. Key residues at the binding interface are labeled and depicted as stick

models. Red labels denote interface residues functionally validated in our earlier mutagenesis study

(Charalampopoulos et al., 2012). (G) Co-immunoprecipitation of wild type (WT) and point mutants of Flag-

tagged human RIP2 with p75NTR in transfected HEK 293 cells. In the overexpression conditions used for this

experiment, interaction of RIP2 with p75NTR was constitutive in the absence of ligand. Antibodies used for

immunoprecipitation (IP) and Western blotting (WB) are indicated. WCE, whole cell extract. The immunoblots

shown are representative of three independent experiments.

DOI: 10.7554/eLife.11692.010

The following figure supplements are available for figure 3:

Figure 3 continued on next page
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DD:CARD binding interface defined in our NMR structure of the complex (labeled red in Figure 3E,

F). The NMR structure of the DD:CARD complex offered an opportunity to address the functional

importance of residues in the RIP2 CARD. Co-immunoprecipitation experiments were performed in

cells transfected with constructs of full-length p75NTR and RIP2, the latter carrying different point

mutations in selected residues of the CARD. We found that individual substitution of interface resi-

dues Gln437, Asp467, Lys471, Ile496, Glu500, or Arg528, significantly diminished RIP2 interaction with

p75NTR (Figure 3G).

Differential binding of RhoGDI and RIP2 CARD to the p75NTR DD
Comparison of the DD interfaces used for binding to RhoGDI and RIP2 CARD showed that these

shared partially overlapping binding sites on p75NTR DD (Figure 4A), indicating that RIP2 and

RhoGDI cannot bind to the p75NTR DD simultaneously due to steric hindrance. This is in agreement

with our previous biochemical studies that identified overlapping epitopes required for the interac-

tion of p75NTR DD with both RIP2 and RhoGDI (Charalampopoulos et al., 2012). In order to better

understand the hierarchical relationship of these interactions, we determined the binding affinities of

the DD:RhoGDI and DD:CARD complexes by SPR. The Kd of RhoGDI binding to the p75NTR DD was

0.82 ± 0.3 mM, while the Kd of CARD binding to the DD was 4.67 ± 0.7 nM (Figure 4B,C), indicating

that RIP2 CARD binds with approximately 177-fold higher affinity than RhoGDI to the p75NTR DD.

This is in line with the larger buried solvent accessible area in the p75NTR DD:RIP2 CARD complex

(~1400 Å2) compared to that in the p75NTR DD:RhoGDI complex (~900 Å2). Kinetic analyses revealed

that CARD associates with the p75NTR DD with faster on-rate, and dissociates with slower off-rate,

than RhoGDI (Table 3). The RIP2 CARD could still fold into a typical a-helical structure after deletion

of the C-terminal tail (Figure 3—figure supplement 4A). However, the binding affinity of this con-

struct to the p75NTR DD was 58.7 ± 8.8 nM, that is, approximately 12-fold lower than with the C-ter-

minal tail (Figure 3—figure supplement 4B), indicating a significant contribution of the C-terminal

tail to the association of RIP2 with p75NTR.

The differential binding of RhoGDI and RIP2 CARD to the p75NTR DD was further tested through

analysis of 2D NMR spectra of RhoGDI binding to p75NTR DD in competition with RIP2 CARD.

Figure 4D shows details of the RhoGDI spectra focusing on representative residues located in and/

or close to the DD:RhoGDI interface. Addition of p75NTR DD produced a shift in the cross-peaks of

these residues (red in Figure 4D), indicating binding of RhoGDI to the DD. Addition of RIP2 CARD

to the RhoGDI:DD complex shifted these cross-peaks back to their initial positions (arrows in

Figure 4D), indicating dissociation of RhoGDI from the p75NTR DD. These data demonstrate that

RhoGDI and RIP2 CARD compete for binding to the p75NTR DD and that RIP2 CARD can displace

RhoGDI from the receptor. In order to test the functional significance of the antagonism between

RIP2 and RhoGDI, we assessed the levels of RhoA-GTP, a measure of RhoA activation, in cells trans-

fected with a p75NTR expression construct in the absence or presence of increasing concentrations

of a RIP2 construct (Figure 4E). While expression of p75NTR increased RhoA-GTP levels in trans-

fected cells, coexpression of RIP2 decreased RhoA-GTP levels in a concentration-dependent manner

(Figure 4E), in agreement with an inhibitory role of RIP2 in p75NTR-mediated activation of the RhoA

pathway. In line with this, we found elevated levels of RhoA-GTP in brain extracts from Rip2 knock-

out mice compared to wild type littermates (Figure 4F), suggesting that RIP2 can also restrict the

activation of the RhoA pathway in vivo.

Figure 3 continued

Figure supplement 1. Structure comparison of CARD domains using a sequential structure alignment program

(http://v3-4.cathdb.info/).

DOI: 10.7554/eLife.11692.011

Figure supplement 2. NMR Spectra of DD:CARD complex.

DOI: 10.7554/eLife.11692.012

Figure supplement 3. Structural comparisons of p75NTR DD and RIP2 CARD domains.

DOI: 10.7554/eLife.11692.013

Figure supplement 4. The C-terminal tail of RIP2 CARD contributes to its interaction with the p75NTRDD.

DOI: 10.7554/eLife.11692.014
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Solution structure of the p75NTR DD homodimer
The current model of p75NTR activation by neurotrophins predicts that the DDs should be in close

proximity to each other to account for the high FRET state of the unliganded receptor. Purified rat

p75NTR DD has been shown to exist in either monomeric form or equilibrium between monomeric

and dimeric forms depending on pH and counterion (Vilar et al., 2014). However, the complete

assignment of the DD homodimer was not reported in that study. We also found that human p75NTR

DD exists mainly in monomeric form in TRIS or HEPES buffer at pH 6.0–7.0, which were the buffer

conditions used for structure determination of DD:RhoGDI and DD:CARD complexes. In phosphate

Figure 4. Structural basis for competitive interaction between RIP2 and RhoGDI on the p75NTR DD. (A) Surface representation of p75NTR DD (light

brown) with overlapped ribbon drawings of RhoGDI (cyan) and RIP2 CARD (green). The expanded view shows detail of the overlapping interfaces

demonstrating steric clashes between residues in RhoGDI and CARD (highlighted as stick models). (B and C) Binding of RhoGDI (B) and RIP2 CARD

(including C-terminal tail) (C) to captured His-tagged p75NTR DD measured by SPR. Colored lines represent experimentally recorded values at different

concentrations and black lines are fitting data. Binding affinities were determined by kinetic analysis using one binding site model was used for fitting

of SPR data. The sensorgrams shown are representative from three independent experiments. (D) [1H-15N] HSQC spectra of 15N-RhoGDI showing the

ability of RIP2 to displace RhoGDI from the p75NTR DD. The panels show details of different regions of the spectra for RhoGDI alone (green), RhoGDI in

the presence of p75NTR DD (red), and RhoGDI in the presence of both p75NTR DD and RIP2 CARD (blue). Representative RhoGDI residues located in

and/or close to the DD:RhoGDI interface are labeled. Arrows denote shifts in the spectra of labeled RhoGDI residues upon addition of p75NTR DD and

RIP2 CARD. All the spectra were recorded at pH 6.9 and 28˚C. The concentrations of RhoGDI, p75NTR DD and RIP2 CARD were 0.05, 0.2, and 0.2 mM

respectively. (E) Analysis of RhoA-GTP levels in lysates of HEK293 cells transfected with p75NTR and RIP2 expression constructs, as indicated. Increasing

concentrations of RIP2 construct is indicated. The histogram shows average RhoA-GTP levels (from triplicate measurements) normalized to p75NTR

alone. Protein expression levels were controlled by Western blotting (not shown). * p<0.01 vs. p75NTR alone (t-test). (F) Analysis of RhoA-GTP levels in

cerebellar extracts prepared from P7 Rip2 knockout mice and wild type littermates (WT). The histogram shows average RhoA-GTP levels in WT (N = 3)

and KO (N = 4) animals normalized to WT levels. *p<0.05 vs. WT (t-test).

DOI: 10.7554/eLife.11692.015

Table 3. Association and dissociation binding constants of p75NTR DD binding to RhoGDI and RIP2

CARD.

ka (mM-1
�s-1) kd (s-1�10-3) Kd (nM)

DD:RhoGDI 0.06 ± 0.01 50 ± 9 827 ± 338

DD:CARD 0.72 ± 0.34 3.32 ± 1.5 4.67 ± 0.7

DOI: 10.7554/eLife.11692.016
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buffer, however, we observed a new form of p75NTR DD as revealed by the appearance of a new set

of cross peaks in the [1H-15N] HSQC spectrum (Figure 5—figure supplement 1A,B). The set of cross

peaks corresponding to monomeric DD was still visible, with nearly identical chemical shift but

weaker intensity (Figure 5—figure supplement 1A), suggesting the coexistence of dimeric and

monomeric DDs under these conditions. Dynamic lighter scattering (DLS) also indicated the forma-

tion of dimeric p75NTR DDs in the presence of phosphate ions (Figure 5—figure supplement 1C,D).

EGFP-tagged p75NTR DDs showed anisotropic changes due to homodimerization at different DD

concentrations. The apparent Kd of dimerization derived from anisotropic change was 49 ± 15 mM

(Figure 5—figure supplement 1E). This relatively low-affinity interaction may facilitate DD separa-

tion (low FRET state) upon receptor activation by neurotrophins.

In order to identify the dimerization interface, we determined the NMR structure of the p75NTR

DD homodimer. The p75NTR DD homodimer adopted a C2 symmetry (Figure 5A,B). A short C-ter-

minal tail of 7 amino acids (Ser421-Val427) in each monomer remained disordered, similar to the DD:

RhoGDI and DD:CARD complexes. The helical bundle, including the 310 helix, did not undergo sig-

nificant structural change with an RMSD lower than 1.5 Å compared to the other complexes. The

dimerization interface consisted of a-helices H2 and H3 as well as residues in the H1–H2 and H3–H4

loops. Dimerization involved both charge and hydrophobic interactions. The key residues in the

dimer interface included Asp357, Arg360, Thr377, His378, Glu379, and Ala380 (corresponding to Asp354,

Arg358, Thr375, His376, Glu377, and Ala378 in rat p75NTR DD). This is in agreement with previous site-

directed mutagenesis and NMR titration studies of the rat p75NTR DD homodimer (Vilar et al.,

Figure 5. Solution structure of the p75NTR DD homodimer. (A) Superposition of backbone heavy atoms of the 10

lowest-energy structures of the human p75NTR DD homodimer. N- and C-termini are indicated. (B) Ribbon drawing

of the lowest-energy conformer viewed perpendicular (top) and parallel (bottom) to the twofold symmetry axis. DD

monomers are colored in light brown and orange. N- and C-termini, as well as DD helices H1, H2, H3, and H4 are

indicated. (C) Detail of binding interface in the DD homodimer. The top image shows the same view as that in

panel B, bottom. Key residues at the binding interface are labeled and depicted as stick models. Red labels

denote interface residues functionally validated in a previous mutagenesis study (Vilar et al., 2014).

DOI: 10.7554/eLife.11692.017

The following figure supplement is available for figure 5:

Figure supplement 1. Homodimerization of p75NTR DD.

DOI: 10.7554/eLife.11692.018
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2014) (red-labeled residues in Figure 5C). Cys381 (homologous to Cys379 in rat p75NTR DD) was also

located in the dimerization interface but appeared in reduced form with a Cb chemical shift of 26.5

ppm. The distance between Cys381Sg from each monomer was 6.7 ± 0.1 Å, that is, too long for the

formation of a disulfide bond. The buried solvent accessible area in the p75NTR DD homodimer was

573 Å2, in line with the low affinity of the DD:DD interaction. We conclude that the two p75NTR DD

protomers form a low-affinity, noncovalent homodimer in our structure.

The p75NTR DD homodimer interface defined in our NMR studies did not overlap with the

RhoGDI binding site (Figure 6A,B). This is in agreement with the constitutive interaction of RhoGDI

with the closed conformation of the receptor. On the other hand, the DD homodimer partially

occluded the RIP2 CARD interaction surface (Figure 6C), indicating that interaction of RIP2 with

p75NTR requires dissociation of the DD homodimer. We investigated whether the recruitment of

RIP2 contributes to the separation of DDs triggered after neurotrophin binding to the receptor. This

was done by taking real-time homo-FRET anisotropy measurements of DD:DD interaction in

response to NGF in cells transfected with EGFP-tagged constructs of full length wild type p75NTR

and a DD mutant deficient in RIP2 binding (Charalampopoulos et al., 2012) as previously described

(Vilar et al., 2009). Application of NGF to cells expressing wild type p75NTR produced large oscilla-

tions of increased anisotropy at the cell membrane (Figure 6D), resulting in a positive net change

averaged over a 15-min treatment compared to vehicle (Figure 6E). As anisotropy is inversely

related to FRET, this behavior indicates ligand-triggered separation of receptor intracellular

domains, as proposed earlier (Vilar et al., 2009). We note that the oscillations observed here are

unlikely to represent the synchronous behavior of ensembles of receptors, as their average period

(2–3 min) would seem too slow to reflect real molecular dynamics. Importantly, the p75NTR construct

carrying mutations in the CARD binding site (CBS mutant) produced very similar anisotropy changes

after NGF treatment (Figure 6D,E), indicating that recruitment of RIP2 is not required for DD sepa-

ration in response to ligand binding to p75NTR. Finally, we note that the DD homodimer interface

also overlapped with several residues involved in neurotrophin-mediated activation of JNK, caspase-

3 and the apoptosis pathway (Figure 6F) as identified in our previous studies

(Charalampopoulos et al., 2012). Thus, while the structure and biochemical properties of the

p75NTR DD homodimer support the ligand-independent interaction of RhoGDI with the receptor,

they also demonstrate that dissociation of the p75NTR DD homodimer is required for recruitment of

RIP2 and for activation of the JNK/caspase-3 pathway in response to neurotrophins.

Discussion

Novel heterotypic interactions in the death domain superfamily
The main paradigm in signal transduction by DD-containing proteins is oligomerization via homo-

typic DD interactions. Although p75NTR contains a DD, which is required for downstream signaling,

no intracellular p75NTR effectors containing canonical DDs have been identified. The study of DD sig-

naling in p75NTR therefore addresses an unexplored dimension of the repertoire of interactions and

activities in the DD superfamily. Homotypic interactions between DDs have been classified as type I,

II, and III according to the interfaces involved (Park, 2011; Park et al., 2007b; Weber and Vincenz,

2001). Despite what might have been expected of homotypic interactions, all known interactions in

the DD superfamily are asymmetric, that is, the interaction is mediated by different interfaces in

each of the two interacting domains (e.g., Ia and Ib for type I). Remarkably, none of the binding sur-

faces in the p75NTR DD (or in RIP2 CARD) identified in this study show a close match to any of the

six conserved surfaces that characterize classical type I, II, and III interactions in the DD superfamily.

The p75NTR DD surface that binds RhoGDI is formed by residues in helices H1 and H6. A previous

study had proposed helix 5 as a binding site to RhoGDI based on serial deletion analysis of the

p75NTR DD (Yamashita and Tohyama, 2003). This conclusion is not supported by our solution struc-

ture of the DD:RhoGDI complex, in which H5 appears at the opposite side of the interface

(Figure 2B), nor by previous structure–function studies (Charalampopoulos et al., 2012). This dis-

crepancy highlights some of the pitfalls in serial deletion studies that disregard the three-dimen-

sional structures of proteins. The surface in the p75NTR DD that interacts with the CARD of RIP2

includes residues in helices H2, H3, and H6 plus residues in the H5–H6 loop. On the other side of

this interaction, residues in helix H1 as well as the H3–H4 and H5–H6 loops form the binding surface
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on the CARD of RIP2. To the best of our knowledge, this p75NTR DD:RIP2 CARD complex represents

the first structural characterization of an heterotypic interaction in the DD superfamily. Our solution

structure of this complex also revealed an additional interaction between residues in the C-terminal

half of helix H5 of the p75NTR DD and the C-terminal tail of RIP2, which extends beyond the RIP2

CARD. This additional contact confers approximately fivefold increased binding affinity between the

two proteins. Finally, the interface that mediates the p75NTR DD homodimer involves residues

located in helix H3 as well as the H1–H2 and H3–H4 loops. This surface is similar, but not identical,

to the type IIIb surface, like the one identified in the DD of PIDD for interaction with RAIDD

(Park et al., 2007b). Unlike the classical type IIIb surface, however, the DD:DD interaction in p75NTR

makes extensive use of residues in the H3 helix, and the same surface in the two interacting DDs is

used to form a symmetric dimer. Further studies will be required to determine whether the interac-

tions identified here for the p75NTR DD are exceptions or else represent new types of interactions

that are yet to be identified in other DD-containing proteins.

Figure 6. Relationship between p75NTR DD dimer interface and sites of interaction with downstream effectors. (A) Surface presentation of p75NTR DD

with homodimer interface colored in blue. N- and C-termini are indicated. (B, C and F) Representation of RhoGDI binding site (yellow in (B) RIP2 CARD

binding site (green in (C) and JNK/caspase-3 activation sites (from [Charalampopoulos et al., 2012]) (red in (F) on the p75NTR DD surface showing

overlap of DD homodimer interface (blue) with CARD binding and JNK/caspase-3 activation sites but not with RhoGDI binding site. N- and C-termini

are indicated. (D) Representative experiment showing traces of average anisotropy change after addition of NGF or vehicle in cells expressing wild type

p75NTR or a CARD binding site mutant (CBS mut) that is unable to bind RIP2 (Charalampopoulos et al., 2012). Addition of NGF, but not vehicle,

induced positive anisotropy oscillations above baseline (horizontal axis at 0) in both wild type and mutant receptor constructs. (E) Net anisotropy

change over 15 min after addition of NGF or vehicle in cells expression wild type p75NTR or the CARD binding site mutant (CBS mut). Results are

expressed as average ± SD (N = 3 experiments; n = 15–17 cells examined per experiment). **p < 0.001 vs. vehicle.

DOI: 10.7554/eLife.11692.019
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A symmetric DD homodimer in p75NTR

The solution structure of the p75NTR DD homodimer shows it is a symmetric, noncovalent dimer held

together by low-affinity interactions involving residues in helix H3 and the H1–H2 and H3–H4 loops.

The p75NTR DD dimer interface is in agreement with sites of interaction with downstream effectors

identified by the structures reported here and in our previous site-directed mutagenesis studies (Fig-

ure 6). This p75NTR DD dimer structure is also in accordance with a recent mutagenesis study that

identified residues important for dimerization of rat p75NTR DD (Vilar et al., 2014), many of which

are also implicated in our structure. On the other hand, our results do not support two crystallo-

graphic structures reported for the rat p75NTR DD homodimer that suggested this to be either a

covalent symmetric dimer, held by a disulfide bond between Cys379 residues, or a noncovalent asym-

metric dimer (Qu et al., 2013). None of the currently available evidence derived from structural,

mutagenesis, or functional studies appears to support those crystal structures. Nevertheless, we can-

not at present rule out the possibility that p75NTR DDs may under certain circumstances form alter-

native oligomeric complexes through different interfaces. A recent study has suggested that p75NTR

can form trimers in transfected cells based on the apparent molecular weights of p75NTR species in

SDS/PAGE (Anastasia et al., 2015). Our NMR studies of the p75NTR DD do not support such conclu-

sion as we have not found any evidence for the existence of DD trimers in any of the conditions

tested. Another recent study has used solution NMR spectroscopy to investigate the mobility of the

transmembrane and intracellular domains of p75NTR incorporated into lipid–protein nanodisks

(Mineev et al., 2015). These authors found a high level of flexibility in the juxtamembrane domain

of p75NTR, an observation that we also reported in our earlier NMR studies of this domain (Lie-

pinsh, 1997), but they could not detect self-association of intracellular domains. However, it is

unclear whether the lipid detergent used to form the lipid–protein nanodisks interacted with the

p75NTR DD and prevented its dimerization. A few detergent molecules, too few to affect DD rota-

tional correlation time, would be sufficient to hinder DD:DD interactions.

Competitive protein–protein interactions define the hierarchical
activation of downstream pathways in p75NTR signaling
The mechanism underlying ligand-induced dissociation of RhoGDI from p75NTR has remained

unclear. As neurotrophins induce the release of RhoGDI and the recruitment of RIP2, we have specu-

lated that RIP2 may displace RhoGDI from binding sites in the p75NTR DD

(Charalampopoulos et al., 2012). Our solution structures of the p75NTR DD in complex with RhoGDI

and the RIP2 CARD lend experimental support to this notion by showing how steric clashes between

the two effector proteins preclude their simultaneous binding to the p75NTR DD. SPR experiments

indicated that RIP2 CARD binds with over 100-fold higher affinity to the p75NTR DD than RhoGDI,

and 2D-NMR competition studies demonstrated that RIP2 CARD can in fact displace RhoGDI from

the receptor. The functional significance of this relationship was evidenced by the ability of RIP2 to

decrease p75NTR-mediated RhoA activation in a dose-dependent manner. Furthermore, the

enhanced activation of the RhoA pathway observed in brain extracts of Rip2 knockout mice suggests

that RIP2 may also restrict activation of this pathway in vivo. These results demonstrate how a hierar-

chy of binding affinities dictates the differential interaction of downstream effectors with p75NTR and

ultimately controls the logic of p75NTR signaling.

A model for the early stages of p75NTR engagement with the RhoA and
NF-kB pathways
p75NTR has been postulated to function as a “displacement factor” that releases RhoA from RhoGDI

leading to RhoA activation (Yamashita and Tohyama, 2003). This model has led to the idea that the

p75NTR DD and RhoA may compete for binding to RhoGDI. On the other hand, biochemical experi-

ments have shown that RhoA can associate with p75NTR through RhoGDI and the three proteins can

be recovered together in co-immunoprecipitation assays (Yamashita et al., 1999; Yamashita and

Tohyama, 2003), a result that would be incompatible with the displacement concept. Our structural

studies show that the p75NTR DD and RhoA bind on opposites sides of the RhoGDI molecule, allow-

ing the formation of a tripartite DD:RhoGDI:RhoA complex. Using a model of this complex and our

solution structure of the p75NTR DD homodimer, we have constructed a model of the hexameric

complex of these proteins (Video 1). This model retains the two fold symmetry of the DD
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homodimer, and accommodates all six compo-

nents without any steric clashes. How can these

interactions lead to RhoA activation? Our SPR

experiments showed that association of RhoGDI

with the p75NTR DD reduced its affinity for RhoA

by 15-fold. Close comparison of RhoGDI struc-

tures in the complexes with either p75NTR DD or

RhoA revealed local structural perturbations in

RhoGDI (Figure 2—figure supplement 1), sug-

gesting a potential allosteric mechanism underly-

ing the release and activation of RhoA upon

RhoGDI biding to the receptor. Based on the

present studies, we propose a model for the early

stages of p75NTR engagement with the RhoGDI/

RhoA and RIP2/NF-kB pathways based on differ-

ential binding affinities and competitive protein–

protein interactions (Figure 7). At the plasma membrane, the p75NTR forms a dimer held together

by interactions between its DD and TM domains (Figure 7A). Recruitment of the RhoGDI:RhoA com-

plex brings RhoA close to the plasma membrane (Figure 7B). RhoGDI binding to the p75NTR DD

weakens its interaction with RhoA, a lipid-modified protein, allowing it to equilibrate with the plasma

membrane where it can be activated by membrane-associated guanine nucleotide exchange factors

(GEFs) (Garcia-Mata et al., 2011). RhoA may thus be in equilibrium between the cell membrane and

the RhoGDI:p75NTR complex, and the action of GEFs and GTPase-activating proteins (GAPs) may

further contribute to the dynamics of this exchange (Figure 7B). Upon dissociation from p75NTR, for

example, as a consequence of RIP2 recruitment in response to NGF binding, RhoGDI regains high

affinity for RhoA, extracting it from the membrane and holding it back in the cytosol in an inactive

state (Figure 7C). This new view of the p75NTR DD in the activation of RhoA is in better agreement

with the emerging role of RhoGDI as a general facilitator of small GTPase activity cycles. Recruitment

Video 1. Model of the hexameric complex between

p75NTR, RhoGDI and RhoA(GDP). Animation around

the two-fold symmetry axis of the hexameric p75NTR

DD:RhoGDI:RhoA(GDP) complex. p75NTR DD appears

in light brown, RhoGDI in cyan and RhoA in blue.

DOI: 10.7554/eLife.11692.020

Figure 7. Competitive protein–protein interactions orchestrate coupling of p75NTR to the RhoGDI/RhoA and RIP2/

NF-kB pathways. Schematic drawing of a model for the coupling of p75NTR to the RhoGDI/RhoA and RIP2/NF-kB

pathways based on the structural and biochemical studies presented above. (A) The p75NTR dimer in the cell

membrane is held by homotypic interactions of DDs (light brown) and TM domains (blue). (B) RhoGDI (cyan) brings

RhoA (dark purple) in proximity to the plasma membrane through its interaction with the DD of p75NTR. While the

twofold symmetry axis of the DD:RhoGDI:RhoA hexametric complex is likely to be perpendicular to the plasma

membrane, its relative orientation is hypothetical. RhoGDI binding to the p75NTR DD decreases its affinity for

RhoA by 15-fold, and allows equilibration of RhoA with the plasma membrane, where it can be activated by GEFs.

(C) Neurotrophin binding induces a conformational change in p75NTR resulting in the separation of its DDs

(Vilar et al., 2009), exposing binding sites to downstream effectors that couple to the JNK/caspase-3 or NF-kB

pathways, including RIP2. Recruitment of RIP2 to the p75NTR DD is mediated by the interaction of its CARD (green)

with a binding surface that partially overlaps with that occupied by RhoGDI. As the binding affinity of the RIP2

CARD for the p75NTR DD is 100-fold higher than that of RhoGDI, the recruitment of RIP2 displaces RhoGDI from

the receptor. Released from the DD, RhoGDI regains higher affinity for RhoA, extracting it from the membrane

and holding it back in the cytosol.

DOI: 10.7554/eLife.11692.021
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of RIP2 to p75NTR ultimately leads to increased NF-kB activity by as yet unknown mechanisms.

Another p75NTR interactor, TRAF6, is also a known regulator of the NF-kB pathway

(Khursigara et al., 1999; Ye et al., 1999). As TRAF6 has been shown to interact with the juxtamem-

brane region of p75NTR, but not with the DD, RIP2 and TRAF6 may be able to bind simultaneously

to the receptor and together contribute to enhance NF-kB activity in response to neurotrophins.

Conclusions
The structural studies of DD signaling in p75NTR presented here uncovered novel heterotypic interac-

tions not previously seen in other DD-containing complexes. They represent new ways by which DDs

regulate intracellular signaling. NMR, biochemical, and functional studies defined competitive inter-

actions between RhoGDI and RIP2 CARD and between RIP2 CARD and the p75NTR DD homodimer.

These interactions give us unique insights into the molecular mechanisms underlying p75NTR activa-

tion and signaling, and reveal how overlapping interfaces and differential binding affinities cooper-

ate to orchestrate the hierarchical activation of downstream pathways in noncatalytic receptors.

Materials and methods

Sample preparation
The cDNAs of human p75NTR DD (330–427), RhoGDI (2–204), RhoA (2–190), and RIP2 CARD (434–

539) were amplified from total human embryonic stem (ES) cell cDNA and subcloned into pET32-

derived expression vectors between BamH I and Xho I restriction sites. Each recombinant protein

contains 16 additional residues (MHHHHHHSSGLVPRGS) at the N-terminal, including one 6�His tag.

Unlabeled proteins were expressed in E. coli strain SoluBL21 (DE3) in LB or M9 medium. Protein

samples were purified using Ni-NTA affinity chromatography, FPLC gel filtration (Superdex 75), and/

or ionic exchange (MonoQ or MonoS). Isotopic labeling was carried out by expressing the proteins

in M9 minimal medium containing 15N-NH4Cl and/or
13C-labeled glucose as the sole source of nitro-

gen and carbon. Protein complexes were prepared by mixing individual purified domains. Due to

the weak binding affinities of DD:RhoGDI and DD homodimer complexes, as well as solubility prob-

lems of the DD:CARD complex in salt-containing buffers, gel filtration chromatography could not be

used to purify these protein complexes. For the p75NTR DD:RhoGDI complex, two double-labeled

samples were prepared in 10 mM D18-HEPES, 10 mM D10-DTT, 1 mM EDTA, and 0.01% sodium

azide at pH 6.9: (1) 0.5 mM 13C,15N-labeled p75NTR DD mixed with 2 mM unlabeled RhoGDI; (2) 0.5

mM 13C, 15N-labeled RhoGDI mixed with 2 mM unlabeled p75NTR DD. For the p75NTR DD:RIP2

CARD complex, two double-labeled samples were made in water with 10 mM D10-DTT: (1) 0.5 mM
13C, 15N-labeled p75NTR DD mixed with 1 mM unlabeled RIP2 CARD; (2) 0.5 mM 13C, 15N-labeled

RIP2 CARD mixed with 1 mM unlabeled p75NTR DD. For the RIP2 CARD on its own, 0.7 mM 13C,
15N-labeled RIP2 CARD was prepared in 50 mM D10-DTT in water. For the p75NTR DD homodimer,

1 mM 13C, 15N-labeled p75NTR DD was mixed with 1 mM unlabeled p75NTR DD in 50 mM phosphate

buffer, 10 mM D10-DTT, 1 mM EDTA and 0.01% sodium azide at pH 6.9.

NMR spectroscopy and structure calculations
NMR experiments were performed on a Bruker 800 MHz NMR spectrometer with a cryogenic probe

at 28˚C. All spectra were processed with NMRPipe (Delaglio et al., 1995) and analyzed with

NMRView supported by a NOE assignment plugin (Johnson and Blevins, 1994). Resonance assign-

ments of backbone, aliphatic, and aromatic side chains were obtained using previously described

methods (Lin et al., 2006; Xu et al., 2006). Intramolecular NOE restraints were obtained from 4D

time-shared 13C, 15N-edited NOESY spectra (Xu et al., 2007). Intermolecular NOEs were identified

from 13C,15N-filtered 3D experiments (Zwahlen et al., 1997). Ambiguous NOEs were assigned with

iterated structure calculations by DYANA (Herrmann et al., 2002). Final structure calculation was

started from 100 conformers. Energy minimization of the 10 conformers with the lowest final target

function values was performed in AMBER force field (Case et al., 2002). The mean structure was

obtained from the 10 energy-minimized conformers for each domain. PROCHECK-NMR

(Laskowski et al., 1996) was used to assess the quality of the structures. All the structural figures

were made using MOLMOL (Koradi et al., 1996) or Chimera (Pettersen et al., 2004). The
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coordinates of p75NTR DD:RhoGDI, RIP2 CARD, p75NTR DD:RIP2 CARD, and p75NTR DD homodimer

have been deposited with the Protein Data Bank with PDB IDs 2n80, 2n7z, 2n83, and 2n97,

respectively.

Model structure calculations, structure-based alignments and structural
comparison
The structure of DD:RhoGDI:RhoA was modeled using HADDOCK 2.2 (Dominguez et al., 2003).

The starting structures for the trimer were the DD monomeric structure from the lowest-energy

structure of p75NTR DD:RhoGDI complex and the crystal structure of human RhoGDI:RhoA(GDP)

(PDB ID: 1CC0). The starting structures used to build the hexameric model were the lowest-energy

structure of the p75NTR DD homodimer and the crystal structure of human RhoGDI:RhoA(GDP).

NOE data between p75NTR DD and RhoGDI were employed to create interaction restraints for both

trimer and hexamer. Totally, 1000 rigid-body docking solutions were first generated by energy mini-

mization. The best 100 structures according to intermolecular energies were subjected to semi-flexi-

ble simulated annealing in torsion angle space followed by a final refinement in explicit water.

Pairwise structure-based alignment and comparison were carried out using a sequential structure

alignment program (SSAP) available at the SSAP server (http://www.cathdb.info/cgi-bin/cath/Ssap-

Server.pl).

Dynamic lighter scattering (DLS) and circular dichroism (CD)
The apparent hydrodynamic radii of p75NTR DD domain in HEPES or phosphate buffer at pH 7.0

were examined by DLS (DynaPro, Protein Solutions Inc., Lakewood, NJ) at 22˚C. The data were ana-

lyzed using Dynamics 5.0 software. The CD spectra of all samples were recorded on a Jasco J-810

spectropolarimeter equipped with a thermal controller at 22˚C.

Surface plasmon resonance (SPR) and anisotropy measurements of DD
homodimerization
All sensorgrams were recorded on a BIAcore T200 at 22˚C. For experiments with captured p75NTR

DD (ligand), purified p75NTR DD-His was captured onto NTA sensor chips via Ni2+/NTA chelation.

Protein samples of purified RIP2 CARD or RhoGDI (analytes) were sequentially diluted in running

buffer (10 mM HEPES, 50 mM NaCl, 0.005% Surfactant P20, 0.02% protease-free BSA at pH 7.0)

and injected over the surfaces at different concentrations post capture. Regeneration of the NTA

surface was performed using 350 mM EDTA. For experiments involving immobilized RhoA, unpreny-

lated RhoA:GDP:Mg2+ was immobilized via amine coupling onto CM5 sensor chips. Unreacted car-

boxymethyl sites were capped by ethanolamine. Protein samples of analytes were sequentially

diluted in running buffer (10 mM HEPES, 50 mM NaCl, 0.005% Surfactant P20, pH 7.0) and injected

over the surfaces at different concentrations. To measure the binding of RhoGDI to RhoA, 1 mM

MgCl2 and 100 mM GDP were also included in the running buffer. Binding affinities were expressed

as equilibrium dissociation constants (Kd) determined by steady state (Figure 2C,D) or kinetic analy-

ses (Figures 4B,C and Figure 3—figure supplement 4B) using the BIA evaluation software. One

binding site model was used for fitting of SPR data.

For anisotropy measurements of DD homodimerization, a cDNA encoding Enhanced Green Fluo-

rescent Protein (EGFP) carrying the A206K mutation (to prevent its dimerization) was linked to the

C-terminal of the human p75NTR cDNA via DNA ligation and the chimera protein (p75NTR DD-EGFP)

was expressed in E. coli BL21(DE3) and purified by FPLC. p75NTR DD-EGFP was sequentially diluted

in 50 mM phosphate buffer at pH 7.0. The anisotropy value was obtained from the measurements of

fluorescence intensity in both parallel and perpendicular emission modes using a BioTek Cytation

Imaging Reader at room temperature. Dimer dissociation constants were obtained by nonlinear fit-

ting of anisotropy measurements to an equation describing a monomer–dimer equilibrium

(Martin and Martin, 1996).

Plasmids, antibodies, and mice
Full-length cDNAs encoding human p75NTR, RhoGDI and RIP2 were amplified from human embry-

onic stem (ES) cell cDNA and subcloned in the pCDNA3 vector backbone (Invitrogen) for protein

expression in mammalian cells. Mutations and epitope tags were introduced using QuickChange
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Site-Directed Mutagenesis Kit (Stratagene, United Kingdom) and verified by DNA sequencing. Nor-

mal expression of all constructs was verified by immunoblotting. The origin of antibodies was as fol-

lows: ANT-007 anti-p75NTR (for immunoprecipitation) from Alomone Labs; ab52987 anti-p75NTR (for

immunoblotting) and anti-RhoGDI from Abcam; anti-Myc from Cell Signaling Technologies; anti-RIP2

from Enzo Life Sciences; anti-b-actin and anti-bIII-tubulin from Sigma-Aldrich. Rip2 knockout mice

were obtained from Koichi Kobayashi and Richard Flavell (Kobayashi et al., 2002).

Cell culture, cell transfection, immunoprecipitation, immunoblotting,
and RhoA activation assay
HEK293 and COS-7 cells were obtained from ATCC and cultured under standard conditions in

DMEM supplemented with 10% fetal calf serum, 100 units/ml penicillin, 100 mg/ml streptomycin,

and 2.5 mM glutamine. HEK293 cells were transfected with the polyethylenimine (PEI) method.

Briefly, cells were plated in a 10 cm tissue culture dish at a confluency of 3 � 106 cells/dish in normal

growth media. Twenty-four hours after plating, the media was changed to growth media containing

1% v/v FBS. Transfection mix was prepared by mixing 1 mg of plasmid with 3 mg of PEI (1 mg/ml) in

DMEM. The transfection mix was left to stand at room temperature followed by addition dropwise

into culture plates. 24 hrours after transfection, the transfected cells were returned to normal growth

media. After a further 24 hr, cells were placed in sera-free media for 16 hr prior to harvest and lysis

in 50 mM Tris/HCl pH 7.5, 1 mM EDTA, 270 mM Sucrose, 1% (v/v) Triton X-100, 1 mM benzamidine,

1 mM PMSF, 0.1% (v/v) 2-mercaptoethanol, and in the presence of phosSTOP (Roche) phosphatase

inhibitor cocktail mix as per manufacturer instructions. The cellular extracts were then centrifuged at

4˚C top speed on a benchtop centrifuge for 15 min. The supernatant was collected and filtered using

a 0.2 mM syringe filter. Protein concentration was determined by Bradford Assay. For anisotropy

microscopy, COS-7 cells were transfected with Fugene6 (Promega) according to manufacturer’s

instructions. For immunoprecipitation, cell extracts (0.5 mg protein) was incubated for 16 hr at 4˚C
on a rotating wheel with 0.5 mg of anti-p75 antibody (ANT-007, Alomone) attached to Protein G–

Sepharose (7.5 ml packed beads). The beads were collected by brief centrifugation (2 min,780� g,

4˚C), washed three times with 0.5 ml of Wash Buffer (50 mM Tris/HCl pH 7.5, 1% (v/v) Triton X-100,

0.05% (v/v) 2-mercaptoethanol, and 0.2 M NaCl). After the last wash, pelleted beads were aspirated

off the wash buffer followed by addition of Laemmli sample buffer and analysis by SDS-PAGE and

Western Blot. Immunoblots were developed using the ECL Western Blotting Kit (Thermo Scientific)

and exposed to Kodak X-Omat AR films. Image analysis and quantification of band intensities were

done with ImageJ software (NIH). For RhoA activation assays, mouse cerebella were dissected from

postnatal day (P) 7 pups. RhoA activity was evaluated in total cerebellar extracts or in lysates of

transfected HEK293 cells using the RhoA G-Lisa kit (Cytoskeleton) following the manufacturer’s

instructions. Equal amount of protein was used from each sample as determined by Bradford Assay.

Homo-FRET anisotropy microscopy
Anisotropy microscopy was done as previously described (Vilar et al., 2009) in transiently trans-

fected COS-7 cells. Images were acquired 24 hr post-transfection, using a Nikon Eclipse Ti-E motor-

ized inverted microscope (Nikon, Japan) equipped with a X-Cite LED illumination system. A linear

dichroic polarizer (Meadowlark Optics) was placed in the illumination path of the microscope, and

two identical polarizers were placed in an external filter wheel at orientations parallel and perpendic-

ular to the polarization of the excitation light. The fluorescence was collected via a CFI Plan Apo-

chromat Lambda 40�, 0.95 NA air objective, and parallel and polarized emission images were

acquired sequentially on an Orca CCD camera (Hamamatsu Photonics, Japan). Data acquisition was

controlled by the Metamorph software (Molecular Devices, USA). NGF (from Alomone Labs) or vehi-

cle was added 3 min after the start of the time lapse at a concentration of 100 ng/ml. Anisotropy val-

ues were extracted from image stacks of 30 images acquired in both parallel and perpendicular

emission modes every 30 s for a time period of 15 min after NGF addition. For each construct, 12–

15 ROIs were measured in three independent transfections performed in duplicate. Fluorescence

intensity and anisotropy images were calculated as described by Squire et al. (2004). Wild type and

CARD binding site (CBS) mutant cDNA constructs of rat p75NTR were tagged at the C terminus with

a monomeric version of EGFP (Clontech) carrying the A206K mutation that disrupts EGFP
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dimerization. The CBS p75NTR mutant corresponded to the triple mutant D355A/H359A/E363A

described in our previous study (Charalampopoulos et al., 2012).
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