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Abstract

The diversity and composition of ecological communities often co-vary with ecosystem productivity. However, the relative
importance of productivity, or resource abundance, versus the spatial distribution of resources in shaping those ecological
patterns is not well understood, particularly for the bacterial communities that underlie most important ecosystem
functions. Increasing ecosystem productivity in lakes has been shown to influence the composition and ecology of bacterial
communities, but existing work has only evaluated the effect of increasing resource supply and not heterogeneity in how
those resources are distributed. We quantified how bacterial communities varied with the trophic status of lakes and
whether community responses differed in surface and deep habitats in response to heterogeneity in nutrient resources.
Using ARISA fingerprinting, we found that bacterial communities were more abundant, richer, and more distinct among
habitats as lake trophic state and vertical heterogeneity in nutrients increased, and that spatial resource variation produced
habitat specific responses of bacteria in response to increased productivity. Furthermore, changes in communities in high
nutrient lakes were not produced by turnover in community composition but from additional taxa augmenting core
bacterial communities found in lower productivity lakes. These data suggests that bacterial community responses to
nutrient enrichment in lakes vary spatially and are likely influenced disproportionately by rare taxa.
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Introduction

Ecosystem productivity is an important driver of the diversity

and composition of ecological communities. Much attention has

been given to understanding how communities change with

increased productivity, due to the desire to understand how species

and their threats are distributed globally [1] and the widespread

increase in nutrient enrichment and primary productivity of many

ecosystems [2]. Productive ecosystems often support high species

richness [3], as evidenced by diversity hotspots in ecosystems such

as marine upwelling zones [4] and tend to host distinct

communities from low productivity ecosystems. Productivity is

thought to promote changes in species richness and composition

due to the increased energy available to support the coexistence of

multiple species and trophic levels [5,6], as well as by promoting

shifts to species that dominate in productive environments.

However, productivity is not always a good predictor of species

richness [7], and the mechanisms behind observed richness and

compositional changes in response to increased ecosystem

productivity remain obscure [8].

Spatial or temporal heterogeneity in resource availability can

also facilitate the coexistence of species in many environments

[9,10], and is commonly used to explain why species richness

varies with ecosystem productivity [11–13]. Yet, the relative

importance of resource availability and heterogeneity in influenc-

ing patterns of species richness and composition in productive

ecosystems remains unclear for many ecological communities

[8,14–16], especially for prokaryotes. Bacteria are a fundamental

component of food webs and provide the foundation for overall

ecosystem functioning, yet we know relatively little about how

bacterial communities respond to increases in productivity in most

ecosystems [17–19]. In addition, bacteria have unique character-

istics, such as metabolic flexibility and dormancy that might make

their response to productivity and resource heterogeneity unique.

In addition, bacteria can acquire new functional capacities

through the exchange of genetic material [20], thus, taxonomic

richness may be unresponsive to changes in productivity [21].

Lakes vary widely in productivity and the heterogeneity of

resource distribution in response to variation in nutrient loading

from human and watershed sources [15,22]. Increased primary

production, or trophic status, in lakes is associated with changes in

species richness and composition of many ecological communities,

including bacteria [23,24]. The richness of macroorganisms often

declines at richer trophic state, due to the dominance of

phytoplankton that are less palatable or toxic to consumers [25],

declines in littoral productivity [26], and changes to the physical

and chemical characteristics of the lake environment [22].

Therefore, changes associated with increased lake trophic status

often negatively impact diversity of lake communities, change their

composition, and lead to the dominance of a few species through

homogenization of food resources and reduction in habitat
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availability [15,27]. Bacterial communities are known to shift in

response to increased lake trophic status [28], but the fundamental

mechanisms and importance of resource distribution in mediating

those changes have not been fully explored.

Nutrient enrichment in lakes tends to magnify the vertical

differences in physical and chemical characteristics such as

nitrogen (N), phosphorus (P) and dissolved oxygen (DO) among

lake strata [22]. However, existing studies of the response of

bacterial communities to eutrophication have only evaluated the

responses of surface communities or the integrated water column

rather than habitat-specific responses [28,29]. In stratified lakes,

the surface layer (epilimnion) is typically warm, nutrient-poor, and

productive, whereas the deep layer (hypolimnion) is cooler, richer

in nutrients, and often low in dissolved oxygen (DO). These

differences may be especially important when considering how the

response of lake bacteria may differ from eukaryotic communities

since vertical differences in physical and chemical conditions are

known to structure bacterial communities in stratified lakes [30–

32]. For example, low DO in the hypolimnion promotes the use of

diverse energy pathways by bacteria such as denitrification and

sulfate reduction that are not energetically advantageous in the

oxic epilimnion, and therefore, could promote higher diversity of

bacterial communities in the entire water column in response to

increased trophic status. Therefore, bacterial communities are

likely less similar among lake strata in high productivity (eutrophic)

than in low productivity (oligotrophic) lakes.

In addition, although several studies have observed changes in

bacterial communities with increased lake trophic status

[24,29,33], few have identified which type of bacterial taxa are

responsible for driving shifts in overall composition [34,35]. For

example, while there is increasing evidence that some taxa flourish

in high productivity lakes [36], it is unclear whether taxonomic

changes result from a complete turnover in the community [37],

an increase in the relative abundance of a few key taxa [38], or the

increased presence of previously rare or novel taxa that augment a

core community of taxa present in low nutrient lakes. For

example, a study that evaluated how dominant, common and rare

taxa responded to another important disturbance in lakes, lake

mixing, found that shifts in the bacterial community were driven

by the increased dominance of a few taxa [38].

We evaluated how bacterial abundance, taxonomic richness,

and composition changed among and within lakes along a

gradient of increasing trophic state. In particular, we quantified

the amount of variation in the bacterial response that was

explained by trophic state, resource heterogeneity, and their

combination. Second, we evaluated whether communities associ-

ated with different lake habitats (specifically the epi-, meta- and

hypolimnion) responded differently to increased trophic status

than communities assessed in the surface layer or integrated at the

whole-lake scale. Finally, we evaluated which taxa were respon-

sible for changes in community characteristics; specifically, we

asked whether patterns were driven by turnover in the community

or by additional taxa augmenting a core community present across

all lakes. Thus, in this study we were able to address whether

changes in the observed number of taxa and composition of

bacterial communities followed the same patterns as eukaryotic

communities in response to productivity in lakes and whether the

distribution or abundance of resources was more important in

shaping those patterns.

Methods

We sampled 21 lakes in the Puget Sound region of western

Washington (USA) and southern British Columbia (Canada,

Figure 1) that spanned a large gradient of anthropogenic nutrient

loading and productivity [39]. We sampled during the summer-

stratified period of July and August 2008. Therefore, our samples

reflected the communities that had developed following two to

three months of stratified conditions within the water column [31].

As previously described [39], the lakes included in this study were

physically similar. Twenty of the 21 lakes were monomictic, and

one lake was too shallow to develop thermal stratification. No

permissions were required to access 17 of these lakes since they

were accessible via a public boat launch. We obtained permission

from the University of British Columbia to access the remaining

four lakes, which were on the property of their Malcolm Knapp

Research Forest. No endangered or protected species were

involved in this research.

All bacterial community samples and measurements of lake

environmental characteristics were collected over the deepest

point in each lake. Water samples for nutrient and chlorophyll a

analyses were collected from the epilimnion (surface), metalimnion

(thermocline depth), and hypolimnion (within 3 m of the lake

bottom) with a van Dorn bottle. Total N (TN) was determined

using the perchloric acid digestion method [40] followed by

analysis with automated colorimetry on a Lachat autoanalyzer

(Lachat Instruments, Loveland, CO, USA). Total P (TP)

concentration was determined colorimetrically after persulfate

digestion and reaction with molybdate and stannous chloride [40].

Water samples for inorganic N and P determination were pre-

filtered through a 0.2 mm Supor filters (Supor-200, Pall Gelman,

East Hills, NY) and then analyzed colorimetrically using the same

methods as above without a pre-digestion step. Chlorophyll a

concentration was determined fluorometrically (Turner Designs,

Sunnyvale, California) and used as a surrogate for algal

community biomass. Temperature, dissolved oxygen (DO), and

pH measurements were taken at 1-m depth intervals with a YSI

sonde 6600 (YSI Integrated Systems & Services, Yellow Springs,

OH, USA). Other physical lake data such as mean and maximum

depth, lake area, and drainage area were obtained from the King

County Water and Land Resources Division and the Washington

Department of Ecology.

Two water samples for bacterial community analysis were

collected from the epilimnion, metalimnion and hypolimnion of

each lake with a Van Dorn Bottle. Two 300-mL samples were

pooled and bacteria collected on 0.2-mm filters (Supor-200, Pall

Gelman, East Hills, NY). Filters were frozen immediately and

stored at280uC until further processing. DNA was extracted from

replicate filters using the Qiagen DNEasy Blood and Tissue Mini-

kit (Qiagen, Valencia, CA). Samples for bacterial cell enumeration

were preserved with 2% formalin, filtered onto a 0.2 mm black

polycarbonate filter, stained with 49, 6-diamidino-2-phenylindole

(DAPI), and viewed with a Nikon Eclipse 80i digital microscope at

10006magnification.

Bacterial community composition and observed richness were

assessed using automated ribosomal intergenic spacer analysis

[41]. ARISA generates fingerprints of the microbial community

based on the length heterogeneity in the intergenic spacer region

between the 16S and 23S rRNA genes, which varies among

organisms. ARISA has similar limitations as other PCR-based

fingerprinting approaches [41] and tends to only survey dominant

taxa in a community, thus our assessment of bacterial community

composition is really a comparison of the community of dominant

taxa among lakes. However, ARISA has been shown to give a

robust, high-resolution view of bacterial assemblages in aquatic

ecosystems [42,43], to generate results that are consistent with

more high resolution techniques [42,44], and can represent

species-level taxonomic resolution (98–99% sequence similarity;

Lake Nutrient Enrichment and Bacterial Communities
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[42]). The 16S-23S intergenic region was amplified using the

polymerase chain reaction (PCR) from the total extracted DNA

using 6-FAM-labelled universal 1406-F primer (59 TGYACA-

CACCGCCCGT-39) and bacterial specific primer 23S-R(59-

GGGTTBCCCCATTCRG-39) [41,45]. PCRs were conducted

on a Mastercycler gradient thermocycler (Eppendorf, New York).

PCR products were pooled, quantified, and analyzed on a

MegaBACE 1000 automated capillary sequencer (GE Healthcare

Corporation, New Jersey). Operational taxonomic units (OTUs)

were generated by binning ARISA fragments into successively

larger length bins based on their size and eliminating fragments

that were ,150 and .1300 bp [42]. We used peak area to

estimate relative abundance of OTUs in our samples [43], which

we considered to be the ratio of the peak area of an OTU in a

sample to the total peak area of the sample. We also converted the

peak area matrix to presence-absence to assess the composition of

bacterial communities in the ARISA profiles by occurrence

patterns. We calculated observed richness from ARISA profiles

by summing the number of OTUs observed in each sample,

hereafter referred to as profile richness. We found no differences in

bacterial community patterns using peak height vs. peak area.

Statistical Analyses
We used a principal components analysis (PCA) to summarize

physical and chemical variation related to trophic status among

lakes. We found that lakes varied little in relevant physical

characteristics (lake area and mean depth), and thus we used the

first axis of the resulting PCA as a multivariate proxy for increasing

lake trophic state (Figure 2A). Although we did not measure

primary productivity directly, other studies have found good

agreement between primary productivity and chlorophyll a and

nutrient concentrations in lakes with similar concentrations as

lakes in this study [46].

To quantify vertical heterogeneity in chemical and physical

variables within each lake (e.g., TN, TP, temperature, and DO),

we used the standard deviation of measurements among lake strata

(Table S1). We then performed a PCA that included only the

standard deviations of these physical and chemical variables to

establish a gradient of resource heterogeneity among lakes.

To compare the influence of increasing trophic state (‘‘trophic

status’’), depth variation in resource availability (‘‘resource

heterogeneity’’), and their combination (trophic status and

resource heterogeneity) on the bacterial community, we then took

the scores from the first principal component (PC 1) of each PCA

and regressed them against metrics of bacterial abundance,

ARISA profile richness, and an index of community similarity

among ARISA profiles (see below for description). The combined

trophic status and resource heterogeneity model contained two

predictor variables: PC 1 of the trophic status PCA, and PC1 of

the resource heterogeneity PCA. All variables were transformed to

meet the assumptions of normality prior to the PCA. We evaluated

the support for each of the three candidate models describing the

Figure 1. Map of study sites. Lakes included in the study were located in the Puget South Basin in Washington state, USA and British Columbia,
Canada. Lakes are indicated by black points.
doi:10.1371/journal.pone.0086991.g001
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relationships between environmental conditions and the bacteria

community attributes using Akaike’s Information Criteria adjusted

for small sample sizes [47]. The model with the lowest AICc was

considered the best model, and models within 2 AICc units of one

another were considered to be equally good [47]. In addition, we

calculated AIC weights (wi) for each individual model, which

estimates a probability that model i is the best model given the set

of models we considered. Finally, to evaluate overall importance of

the individual variables, trophic status and resource heterogeneity,

we calculated wi for each term across the three models we

compared (Table 1).

Bacterial community similarity among samples was assessed

using Sorensen’s coefficient for occurrence data [48] and the

Chao-Sorensen abundance estimator for relative abundance data

[49]. We assessed the overall similarity of communities within a

lake by using an average dissimilarity value among ARISA profiles

from all two-layer comparisons. We used a constrained analysis of

principal coordinates (CAP) to evaluate if changes in community

composition were associated with increasing trophic state [50]

since it allowed us to use the Chao-Sorensen similarity index.

Finally, we investigated whether changes in the bacterial

community with increased lake trophic status were realized by

shifts in ‘‘widespread’’ or ‘‘narrowly distributed’’ taxa. We assessed

how the relative contribution of widespread OTUs (taxa observed

in the majority of lakes) changed with trophic state and habitat

heterogeneity. We considered widespread taxa to be those that

were observed in 90% of lakes in our study (but see Table S2 for

evaluation of different thresholds). We then assessed whether the

occurrence and relative abundance of these taxa changed across

the lake trophic gradient and with increasing heterogeneity (i.e.,

PC1 of trophic status and resource heterogeneity PCAs). All

analyses were done in R Version 2.14.0 [51] using the vegan

package [52].

Results

Lake Characteristics
Productivity-related variables such as TP, TN, and chlorophyll

a explained a substantial portion of the environmental variation

among lakes in this study (59%; Figure 2, Table S1). Epilimnetic

TP concentrations ranged from 4.6 m g L21 to over 30 mg L21,

and chlorophyll a ranged from 0.23 to 10.2 mg L21, thus the lakes

ranged from oligotrophic to eutrophic [22]. Environmental

conditions did not change similarly in each layer with increased

trophic state; for example, the epilimnion was less variable among

lakes than either the metalimnion or hypolimnion in most

environmental characteristics (Table S3). As a result, conditions

within the water column were more heterogeneous as trophic state

increased (R2 = 0.57, Figure 2C). We observed the most significant

differences in TN and TP concentrations among layers as trophic

state increased (Figures 2B and C). TN and TP were correlated

with the availability of NH4 (r = 0.71) and PO4 (r = 0.86),

respectively. Thus, nutrient availability was variable within the

water column. Finally, the percent change in nutrient concentra-

tions was greater in the hypolimnion than in either the epi- or

metalimnion (Table S3).

Figure 2. Principal component analyses (PCAs) showing
environmental variation across lakes in this study. Panel A
shows PCA results based on trophic state variables, panel B shows PCA
results based on Heterogeneity variables (standard deviation among
depths in variables) and panel C shows the correlation between the
trophic state PC 1 scores and heterogeneity PC 1 scores (R2 = 0.57).
Arrows show significant variables (p,0.05) and values in parentheses
show percentages of total environmental variation among lakes
explained by each axis. ‘EpiTN’ = epilimnetic TN, ‘EpiTP’ = epilimnetic

TP, ‘HypoTP’ =Hypolimnetic TP, ‘HypoDO’ = hypolimnetic DO, and
DO= epilimnetic DO. ‘.std’ indicates that the standard deviation of
measurements of the specified variable among layers. Triangles = eu-
trophic, stars =mesotrophic, and squares = oligotrophic lakes.
doi:10.1371/journal.pone.0086991.g002
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Did Lake Bacterial Communities Shift in Response to
Increasing Trophic State?
Bacterial communities at the whole-lake scale shifted signifi-

cantly in association with increasing lake trophic state (Figure 3,

Figure S1). Average bacterial abundance (R2 = 0.46, Table 1,

Figure 2A) and ARISA profile richness increased linearly with our

proxy for lake eutrophication (R2 = 0.30, Table 1, Figures 3A & E)

and ranged from 66 to 106 OTUs per lake. Our CAP model

showed that bacterial community composition shifted with

increased lake trophic status and shifts were strongly associated

with increasing chlorophyll a (r = 0.99) and epilimnetic TN

(r = 0.76) concentration (Figure S1). The CAP model explained

29% of the total variation in community composition among lakes.

The first CAP axis captured the majority of that explained

variation (71.4%), indicating that community composition

changed in response to increased lake trophic state.

Did the Responses of the Bacterial Community Vary
among Habitats in Lakes?
Bacterial communities associated with surface and deep habitats

displayed different patterns of abundance, and the richness and

composition of ARISA profiles changed significantly as lake

trophic state increased (Figure 3, Figure S1). Average bacterial

abundance increased with trophic state (R2 = 0.46), was highest in

the metalimnion (ANOVA; F= 5.6, p= 0.006), but increased

significantly in all layers across the trophic gradient (Figure 3). The

richness of ARISA profiles also varied significantly among layers

(ANOVA, F= 10.6, p,0.001), but only increased notably in the

hypolimnion in response to trophic state (R2= 0.15, Figure 3H).

Profile richness was highest on average in the hypolimnion

(5567 SD), which also had the largest range of observed richness,

ranging from 37 OTUs in Gwendoline Lake, an oligotrophic lake,

to 71 OTUs found in more nutrient-rich Geneva Lake. Therefore,

increases in the profile richness in the hypolimnion accounted for

the increases we observed in overall lake richness (R2 = 0.39).

When all lake communities were considered together, there

were significant, but small, compositional differences among epi-,

meta- and hypolimnetic communities (ANOSIM, R=0.16,

p = 0.001), and surface and deep communities shared the fewest

taxa (data not shown). Furthermore, surface communities were

significantly less variable than deep communities across the trophic

gradient (Homogeneity of dispersion, p,0.001), and surface and

deep communities within a given lake tended to become less

similar to one another as trophic state increased (R2 = 0.12).

However, heterogeneity in nutrient concentrations among strata

explained slightly more of that variation than trophic state alone

(R2 = 0.17, Figure 4, Table 1).

In all cases, the heterogeneity model or the trophic status plus

heterogeneity model explained more variation in bacterial

communities among lakes than the trophic status model alone

(Table 1). We found that greater vertical heterogeneity of nutrient

availability (Figure 2) was strongly related to increased abundance,

ARISA profile richness, and decreasing similarity of communities

among lake strata (Table 1, Figure 4). Total abundance and

observed richness were both more strongly related to increases in

the heterogeneity of P and N than increases in their concentrations

alone or to differences in temperature and DO among strata,

which other studies have shown to be associated with heteroge-

neity in bacterial community composition (Table S1; [31,32]).

Therefore, although we saw an increase in observed richness with

increased trophic state (R2 = 0.30), observed richness was more

closely linked to greater heterogeneity of nutrients within the water

column (R2= 0.41). Overall, the AICc shows that the heteroge-

Table 1. Comparison of models evaluating the effects of trophic state, heterogeneity, and their combination on bacterial
communities.

Model n k R2 AICc DAICc wi* wi of T
+ wi of H

++

ABUNDANCE

Trophic State 21 3 0.46 612.2 9.1 0.01 0.34 0.83

Heterogeneity 21 3 0.66 603.1 0.0 0.50

PC1 T+PC1 H 21 4 0.69 603.3 0.0 0.33

RICHNESS

Trophic State 17 3 0.30 129.3 2.9 0.16 0.33 0.84

Heterogeneity 17 3 0.41 126.4 0.0 0.67

PC1 T+PC1 H 17 4 0.40 129.2 2.8 0.17

DISSIMILARITY

Trophic State 17 3 0.12 223.8 0.9 0.35 0.46 0.65

Heterogeneity 17 3 0.17 224.7 0.0 0.54

PC1 T+PC1 H 17 4 0.12 221.5 3.1 0.11

WIDESPREAD

TAXA Trophic State 18 3 0.29 236.9 1.5 0.26 0.44 0.74

Heterogeneity 18 3 0.35 238.4 0.0 0.56

PC1 T+PC1 H 18 4 0.35 236.1 2.3 0.18

*AICc weight,
+Trophic State,
++Heterogeneity.
Relationship of trophic state, heterogeneity, and their combination with abundance, richness, dissimilarity of bacterial communities among lake habitats
(‘‘Dissimilarity’’), and the proportional abundance of common taxa. ‘n’ = sample size and ‘k’ = number of parameters in each model. ‘wi’ refers to the AICc weight
calculated for each model and the weights for the individual terms ‘T’ and ‘H’ across all models.
doi:10.1371/journal.pone.0086991.t001
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neity model had the most support, and that, in fact, the

heterogeneity term had the most weight across models (Table 1).

Thus, as measured here, bacterial communities exhibited habitat-

specific responses to lake eutrophication, and spatial variation in

resource availability often influenced bacterial community com-

position more than simple increases in nutrient concentration and

productivity (Figures 4 and 5).

Which Taxa Accounted for changes in Community
Composition with Eutrophication?
We observed a total of 221 OTUs across all lakes and found

that some of those taxa were widespread among lakes. We

observed that while a core community of 11 OTUs was present

and detected using ARISA in ,90% of lakes in this study

(‘‘widespread taxa’’), and while still present across lakes, made up a

decreasing proportion of both the number (R2= 0.23) and relative

abundance of taxa in lakes as lake trophic state increased

(R2 = 0.35, Figure 5). Specifically, while these widespread taxa

comprised 35–40% of the relative abundance of the community in

the more homogenous oligotrophic lakes, they were less than 15%

in the more heterogeneous eutrophic lakes. These trends were

Figure 3. Relationships of increasing trophic state (PC 1 scores) with abundance and richness. A) Whole-lake average abundance
(R2 = 0.46, p,0.001), B) Epilimnetic abundance (R2 = 0.52, p,0.001), C) Metalimnetic abundance (R2 = 0.33, p = 0.007), D) Hypolimnetic abundance
(R2 = 0.40, p = 0.003), E) Whole-lake average richness (R2 = 0.30, p = 0.003), F) Epilimnetic richness (R2 =20.06, p = 0.98), G) Metalimnetic richness
(R2 =20.03, p = 0.49), and H) Hypolimnetic richness (R2 = 0.15, p = 0.05).
doi:10.1371/journal.pone.0086991.g003

Figure 4. Bacterial communities were less similar among lake
strata as chemical heterogeneity increased (R2 =0.17, p=0.05).
Similarity of communities was based on the average Chao Sorensen
Dissimilarity from comparisons of relative abundance of taxa among
three depth strata.
doi:10.1371/journal.pone.0086991.g004
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robust to using different thresholds to define ‘‘widespread’’ (e.g.,

present in 70–90% of lakes), and strengthened as we considered

thresholds up to 90% (Table S2). We only observed four OTUs

that were present in .90% of lakes, which likely were ubiquitous

taxa that would be present regardless of lake trophic state [36]. In

addition, we found that the increasing representation of previously

low abundance or new taxa in response to trophic status was

explained most by increasing heterogeneity among habitats

(Table 1). Although the AICc values for all three models were

very close, the AIC value and variable wi’s suggest that

heterogeneity explained the declining contribution of the wide-

spread OTUs we observed to the overall lake community (Table 1).

This suggests that either novel, previously low abundance, (i.e.,

below the detection limit of ARISA), or dormant taxa [35]

increased in their relative importance as nutrient status of lakes

increased, and that chemical heterogeneity in the lake environ-

ment most likely facilitated the increased prevalence of these taxa

in the lake community.

Discussion

We found that the abundance and richness of bacterial

communities increased as lake nutrient status increased, in parallel

to what has been reported in other studies [28,33,45]. However,

we found even stronger relationships between the overall

abundance and number of OTUs observed and the spatial

heterogeneity in nutrient conditions among lake layers as trophic

status increased. Additionally, because environmental conditions

among lake strata diverged and communities associated with these

habitats responded differently to lake trophic status (Figure 3),

bacterial communities as measured by ARISA fingerprinting were

much less similar among lake strata as lake trophic state increased

(Figure 4, Table S3). Furthermore, our analyses demonstrated that

a core bacterial community of dominant bacteria did not change

systematically in high nutrient lakes but rather that increasing

habitat heterogeneity, specifically due to large changes in

conditions in the deepest layer of lakes, provided additional

habitat for previously low abundance or absent taxa that became

detectable in more eutrophic conditions. Our study shows that the

response of bacterial communities to increased productivity in

lakes may differ from that of other lake organisms as a result of

spatial heterogeneity in resources specifically affecting the ecology

of bacteria and supports the idea that the recruitment of rare or

dormant bacterial taxa in lake communities may facilitate much of

this response (e.g., [35]).

Effects of Trophic State on Lake Bacterial Communities
We observed significant increases in bacterial abundance and

changes in the richness and composition of ARISA profiles at the

whole-lake scale in response to increases in lake trophic status. As

expected, abundance was positively related to increases in nutrient

availability (TN and TP) and chlorophyll a (Table 1) across the

entire range of ecosystem productivity we observed. High

abundances of bacteria are often correlated with high rates of

bacterial productivity [46], which can be nutrient-limited in

oligotrophic lakes. We also observed increased ARISA profile

richness as trophic state increased (Figure 3E), suggesting that

more taxa coexisted as dominant types (and thus able to be

detected by ARISA) as resource availability increased. As has been

observed for macroorganisms in lakes [23], other studies have

shown lake bacterial richness to exhibit a range of linear and

unimodal responses to productivity depending on the spatial and

taxonomic resolution of the study [17,18,29]. We likely observed a

linear increase in observed richness since our lakes represented a

relatively modest gradient in nutrient loading and chlorophyll a

compared to the global distribution of lake productivity [22], thus,

we may have only captured the initial upward slope of a unimodal

response across the global range of lake trophic states. Alterna-

tively, is also possible that we observed a consistently increasing

number of taxa rather than a unimodal trend due an effect of

increased sampling; in other words, because we took discrete

samples from each lake habitat and ran a separate ARISA analysis

on each sample rather than on one integrated sample from each

lake, we were able to detect more taxa than previous studies

[23,29].

Bacterial Community Response to Resource
Heterogeneity
Bacterial community shifts were most strongly associated with

changes in the heterogeneity of the lake environment in all cases

(Table 1). Specifically, we observed more OTUs and decreased

similarity among bacterial communities in surface and deep

habitats in response to heterogeneity in N and P concentrations

(Figures 2B and 3). Environmental conditions within lakes

changed to different degrees among the epi-, meta- and

hypolimnion (Table S3), which translated to habitat specific

responses of bacterial communities in each layer across lakes

(Figure 3). For instance, although bacterial abundance increased in

all layers, we only observed increases in richness in the

hypolimnion with increased trophic status (Figure 3H), which also

had the largest range in nutrient concentrations across the trophic

gradient (Figure S1). Interestingly, communities in the surface

layer varied less across the trophic gradient than communities in

the hypolimnion, suggesting that studies that evaluate trends in

bacterial communities in response to eutrophication miss an

important aspect of the bacterial response.

While our study design does not allow us to definitely conclude

whether patterns in bacterial communities were related more to

increased trophic state or to habitat heterogeneity because the two

were correlated (Figure 2C), we found strong support for our

heterogeneity model (Table 1) and patterns suggesting that both

were important for bacterial communities. For instance, we

observed lower richness (66 OTUs) and higher similarity of

communities among lake strata (Sorensen similarity = 0.86) in the

only lake in our study that did not stratify into discrete habitats.

Figure 5. Relationship of habitat heterogeneity with the
proportional representation of widespread taxa in each lake.
Heterogeneity was measured as the PC 1 scores of ‘heterogeneity’
model. Filled circles show the total proportion of relative abundance
made up by widespread taxa (R2 = 0.35, p = 0.007) and open circles
show widespread taxa as a proportion of the total number of taxa
observed (R2 = 0.23, p = 0.03).
doi:10.1371/journal.pone.0086991.g005
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Although this lake had similar nutrient concentrations as eutrophic

lakes, environmental conditions were more homogeneous within

the water column in this lake suggesting that heterogeneity in

resource availability influenced bacterial richness more than

nutrient concentration alone in all lakes in our study.

While changes in bacterial communities in response to

increasing lake trophic status have been widely observed

[28,29,45] as have differences in communities among lake strata

[30,31,53] previous studies have not linked these observations to

evaluate the combined effects of lake resource availability and

resource heterogeneity on the richness and composition of lake

bacterial communities. Thus, while similar communities may

inhabit eutrophic lakes [36], communities become increasingly

distinct from one another as surface and deep habitat conditions

diverge and biotic interactions change [54]. Furthermore, these

findings contrast with studies of other lake organisms, such as

zooplankton and fish, which find increased productivity reduces

diversity as a result of homogenization of food resources and loss of

habitat [15,26,27]. Thus, our study demonstrates that the type of

heterogeneity that influences communities varies among macro-

and microorganisms and that the response to a large-scale

environmental change is expressed differently among habitats

within ecosystems.

In addition, our results suggest that changes in bacterial

communities with increased trophic status may be more strongly

related to vertical differences in nutrient concentrations than

dissolved oxygen, temperature, and light, which are typically

thought to structure differences among communities in different

strata within lakes [24,30,31,53]. We tested this by regressing axis

1 and 2 of our environmental PCA (Figure S1), which represented

differences among layers in nutrient concentrations and DO/

temperature, respectively. We found that in all cases axis 2

(variation in DO and temperature) did not have a strong

relationship with any bacterial response measure. Few studies

have tested for this and those that have, have often focused on a

single lake or small set of lakes [30,53]. Thus, these results suggest

that increased vertical differences in nutrient concentrations may

be more important in structuring the bacterial community than

vertical differences in DO and temperature as the trophic state of

lakes increases.

Were Widespread or Narrowly Distributed Taxa
Responsible for Shifts in Community Composition?
We found that habitat heterogeneity played an important role in

shaping the bacterial response to increasing lake trophic status

through enabling the increased contribution of new or previously

low abundance taxa in lake communities. Furthermore, we found

that increased resource heterogeneity simultaneously allowed for

the retention of a core group of taxa that were widespread among

lakes while also providing new habitat and resources for these

previously unobserved or low abundance taxa (Figure 5). Thus,

our results support the general notion of the importance of rare

taxa in microbial communities [35,55] and suggest that bacteri-

ally-relevant habitat heterogeneity may be an important mecha-

nism driving the bacterial response to increased lake ecosystem

productivity. Additionally, this pattern may be common to many

types of planktonic communities [34]. For instance, a study of the

response of a lake phytoplankton community to eutrophication

and recovery found that there were phytoplankton that were

consistently present through time, but that temporally rare taxa

were most responsive to changes in lake nutrient status and drove

changes in community composition [56].

While the use of ARISA allowed us to screen the bacterial

community in a large number of lakes and has been shown to have

species-level taxonomic resolution, as with so many methods used

to sample bacterial communities, there are limitations associated

with using this approach [57]. For example, ARISA underesti-

mates the total richness of the bacterial community and has biases

such as preferential amplification of abundant organisms [41]. For

example, many of the additional taxa that we observed in more

eutrophic lakes could have been present at low abundances in

oligotrophic lakes, and therefore below the detection limit of

ARISA. However, increased detection of these taxa in eutrophic

lakes suggests that they are at higher abundances and thus may be

more functionally important in those communities. In addition,

other studies have shown that ARISA captures similar patterns in

diversity among communities as more high-resolution techniques

such as clone libraries [58]. Further, although sequencing and

clone library techniques would have allowed us to identify specific

taxa, the higher costs associated with those techniques would have

limited our ability to sample the entire trophic gradient in our

study. Finally, our results are comparable to other studies using

similar techniques [24,33,35], and recent studies of bacterial

responses to nutrient additions that have used high throughput

sequencing techniques suggest that using a more thorough

sampling approach likely would not likely reveal a different trend

in how richness and composition respond to increased ecosystem

productivity (e.g., [19,44]). Thus, the fact that we observed such

striking trends using this approach suggests that higher resolution

sampling would have only strengthened observed patterns.

In summary, we showed that bacterial community composition

changed and was richer and more heterogeneous within lakes as

trophic status increased. In contrast to trends in macroorganisms

whose diversity is often negatively associated with increases in lake

productivity [15,23,27], we showed that the high degree of

heterogeneity in bacterial resources in eutrophic lakes promoted

higher richness as a result of differentiation of bacterial taxa

among lake habitats. We found that eutrophication alters the

drivers of bacterial community differences within lakes from

physical and redox related variables to changes in nutrient

availability. Furthermore, our results suggest that rare or dormant

taxa may be most responsible for changes in bacterial communities

with increased lake trophic state [35,59]. This ‘‘seed bank’’ of taxa

has increasingly been recognized to be important in responding to

changes in many types of ecosystems [60], and understanding the

role of rare and dormant taxa an important frontier for

understanding the processes that regulate how microbial commu-

nities respond to ecosystem change in general.
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