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OBJECTIVE—Insulin resistance in skeletal muscle plays a
critical role in the pathogenesis of type 2 diabetes, yet the cellular
mechanisms responsible for insulin resistance are poorly under-
stood. In this study, we examine the role of serine phosphoryla-
tion of insulin receptor substrate (IRS)-1 in mediating fat-induced
insulin resistance in skeletal muscle in vivo.

RESEARCH DESIGN AND METHODS—To directly assess the
role of serine phosphorylation in mediating fat-induced insulin
resistance in skeletal muscle, we generated muscle-specific IRS-1
Ser302, Ser307, and Ser612 mutated to alanine (Tg IRS-1 Ser3Ala)
and IRS-1 wild-type (Tg IRS-1 WT) transgenic mice and examined
insulin signaling and insulin action in skeletal muscle in vivo.

RESULTS—Tg IRS-1 Ser3Ala mice were protected from fat-
induced insulin resistance, as reflected by lower plasma glucose
concentrations during a glucose tolerance test and increased
insulin-stimulated muscle glucose uptake during a hyperinsuline-
mic-euglycemic clamp. In contrast, Tg IRS-1 WT mice exhibited
no improvement in glucose tolerance after high-fat feeding.
Furthermore, Tg IRS-1 Ser3Ala mice displayed a significant
increase in insulin-stimulated IRS-1–associated phosphatidylino-
sitol 3-kinase activity and Akt phosphorylation in skeletal muscle
in vivo compared with WT control littermates.

CONCLUSIONS—These data demonstrate that serine phos-
phorylation of IRS-1 plays an important role in mediating fat-
induced insulin resistance in skeletal muscle in vivo. Diabetes
57:2644–2651, 2008

I
nsulin resistance in skeletal muscle plays a major
role in the pathogenesis of type 2 diabetes, yet the
cellular mechanisms responsible for insulin resis-
tance in skeletal muscle are poorly understood (1).

Reduced insulin-stimulated glucose transport activity ex-
ists with reduced insulin receptor substrate (IRS)-1–asso-
ciated phosphatidylinositol 3-kinase (PI3-kinase) activity

in patients with type 2 diabetes and the offspring of type 2
diabetic parents (2–5). Increased serine phosphorylation
of IRS-1 has been suggested to be responsible for this
phenomenon (6), and, consistent with this hypothesis,
recent studies have demonstrated hyperserine phosphor-
ylation of IRS-1 on Ser302, Ser307, Ser612, and Ser636 in
several insulin-resistant rodent models (7–10), as well as
in lean insulin-resistant offspring of type 2 diabetic parents
(11). Circulating factors that are increased in obese and
inflammatory states, such as tumor necrosis factor-�,
activate Ser/Thr kinases (12,13). Also, recent studies (14–
18) have demonstrated a strong relationship between
intramyocelullar lipid accumulation and insulin resistance
in muscle independent of alterations in circulating adipo-
cytokines. Intramyocellular fatty acid metabolites, such as
diacylglycerol, have been postulated to activate a serine
kinase cascade leading to increased serine phosphoryla-
tion of IRS-1. Furthermore, high-fat diet–induced insulin
resistance has been abrogated in rodent models in which
certain Ser/Thr kinases (c-Jun N-terminal kinase, inhibitor
of nuclear factor �B kinase � subunit, S6 kinase-1, and
protein kinase C-�) were either knocked down or pharma-
cologically inhibited (8,9,19–21). However, it remains un-
known whether increased IRS-1 serine phosphorylation
plays a causative role in the pathogenesis of fat-induced
insulin resistance in skeletal muscle or whether it is
merely an associated phenomenon. To address this ques-
tion, we generated IRS-1 Ser302, Ser307, and Ser612 to Ala
mutant–overexpression (Tg IRS-1 Ser3Ala) mice using a
muscle-specific myosin light-chain-2 promoter and as-
sessed insulin responsiveness in vivo by intraperitoneal
glucose tolerance tests and hyperinsulinemic-euglycemic
clamp studies.

RESEARCH DESIGN AND METHODS

Animals and dietary treatment. Tg IRS-1 Ser3Ala mutants were generated
by microinjection of mutated IRS-1 (Ser302, Ser307, and Ser612) complementary
DNA constructs ligated to the myosin light-chain-2 promoter directly into
fertilized oocytes, as described previously (22). Mice were backcrossed with
C57BL/6J mice until the F2-F3 generation and male animals were selected for
experiments in this study. All control mice (wild type [WT]) were littermates
of the transgenic mice. From 25 positive founders, three lines were selected
based on their protein expression of IRS-1 (approximately two times). These
three lines showed similar phenotype when analyzed by intraperitoneal
glucose tolerance tests (IPGTTs). To reduce the possibility of the mixed
background attenuating the phenotype, we backcrossed one line for six
generations but observed no metabolic phenotype differences between F2 and
F6 backcross populations. Transgenic mice overexpressing WT murine IRS-1
(Tg IRS-1 WT) were generated by the same approach using exactly the same
expression vector except for the mutated serine residues. Two lines were
selected based on their protein expression of IRS-1 (approximately two times
more IRS-1 protein in Tg IRS-1 WT). Mice were singly housed under standard
vivarium conditions. At the age of 7–8 weeks, mice were started on a high-fat,

From the 1Howard Hughes Medical Institute, Yale University School of
Medicine, New Haven, Connecticut; the 2Department of Internal Medicine,
Yale University School of Medicine, New Haven, Connecticut; the 3Depart-
ment of Cellular and Molecular Physiology, Yale University School of
Medicine, New Haven, Connecticut; and the 4Howard Hughes Medical
Institute, Children’s Hospital Boston, Boston, Massachusetts.

Corresponding author: Gerald I. Shulman, gerald.shulman@yale.edu.
Received 6 April 2006 and accepted 3 July 2008.
Published ahead of print at http://diabetes.diabetesjournals.org on 15 July

2008. DOI: 10.2337/db06-0454.
K.M. and S.N. contributed equally to this article.
© 2008 by the American Diabetes Association. Readers may use this article as

long as the work is properly cited, the use is educational and not for profit,
and the work is not altered. See http://creativecommons.org/licenses/by
-nc-nd/3.0/ for details.

The costs of publication of this article were defrayed in part by the payment of page

charges. This article must therefore be hereby marked “advertisement” in accordance

with 18 U.S.C. Section 1734 solely to indicate this fact.

ORIGINAL ARTICLE

2644 DIABETES, VOL. 57, OCTOBER 2008



safflower oil–based diet (27% safflower oil and 59% fat-derived calories, 5.18
kcal/g) and maintained for 8 weeks. The safflower oil diet (no. 112245; Dyets,
Bethlehem, PA) was supplemented with minerals and vitamins (no. 210025
and 310025). Food was exchanged every third day, and individual food
consumption rates, body weight gain, and body composition using in vivo
nuclear magnetic resonance spectroscopy (Minispec MQ10 analyzer; Bruker
Optics, Billerica, MA) were measured at baseline and weekly throughout
dietary intervention. After 4 weeks, high-fat diet feeding and IPGTT experi-
ments (1 g glucose/kg body wt) were carried out. To examine Tg IRS-1
Ser3Ala in a different model, we also generated Tg IRS-1 Ser3Ala transgenic
mice on ob/ob background according to a previous report (9). Briefly, we
backcrossed Tg IRS-1 Ser3Ala with ob/� and mated Tg IRS-1 Ser3Ala/ob/�

to generate Tg IRS-1 Ser3Ala/ob/ob and nontransgenic ob/ob (WT/ob/ob) mice.
For insulin-signaling experiments, mice received a single intraperitoneal

injection of 0.6 units/kg insulin and tissues and plasma were harvested 15 min
later. All experiments were performed in 16-h food-deprived mice. After an
additional 4 weeks of high-fat diet treatment, hyperinsulinemic-euglycemic

clamp experiments were performed. One week before clamp experiment,
permanent catheters were inserted into the left jugular vein under deep
anesthesia (intraperitoneal injection of ketamine/xylazine: 80/10 mg/kg body
wt) and mice were allowed to regain preoperative weight for 5–7 days. All
procedures were approved by the Yale University Animal Care and Use
Committee.
Euglycemic-hyperinsulinemic glucose clamp experiments. Conscious
mice were placed in restraining tubes and their tails were secured with tape.
In vivo experiments lasted for 240 min and consisted of a 120-min basal period
directly followed by a 120-min euglycemic-hyperinsulinemic clamp. Initiating
the basal period, a prime-continuous [3-3H]glucose infusion (10 �Ci bolus, 0.1
�Ci/min) was started and continued throughout the whole experiment,
allowing the estimation of postabsorptive basal versus insulin-stimulated
glucose turnover. At t � 0 min of the clamp, a primed-continuous insulin
infusion (2.5 mU � kg�1 � min�1 Novolin; Novo Nordisc Pharmaceuticals,
Princeton, NJ) was started, raising insulin levels within a physiologic range.
Euglycemia was maintained by a variable glucose (D-20) infusion. Steady-
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FIG. 1. Generation of Tg IRS-1 Ser3Ala mice. A: Serine phosphorylation of IRS-1 protein in skeletal muscle. Serine phosphorylation of IRS-1 and
protein expression of IRS-1 were analyzed by Western blotting. All mice were killed at age 16 weeks. The high-fat diet group was fed for 8 weeks.
B: Vector construct of the mutated IRS-1 gene (Ser302, Ser307, and Ser612 to Ala mutant) for Tg IRS-1 Ser3Ala and WT IRS-1 gene for Tg IRS-1
WT. C: Comparison of IRS-1 expression in different insulin-targeting tissues. Protein expression of total IRS-1 and actin were analyzed by
Western blotting. D: Comparison of IRS-1 expression between Tg IRS-1 Ser3Ala and Tg IRS-1 WT mice. Each graph was expressed as fold
difference to their littermates. GAS, Musculus gastrocnemius; QD, Musclus quadriceps; TA, Musculus tibialis anterior; WAT, white adipose
tissue.
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state conditions for plasma glucose concentration (121 	 7 in Tg IRS-1
Ser3Ala vs. 131 	 6 mg/dl in WT) and specific activities were achieved within
70 min, and a single 2-deoxy-D-[1-14C]glucose (2-[14C]DG) injection was
administered at 75 min. To determine plasma [3-3H]glucose and 3H2O and
2-[14C]DG concentrations, blood samples were collected at 80, 85, 90, 100, 110,
and 120 min of the clamp and, for measurement of basal [3-3H]glucose
concentrations, in the final 10 min of the basal period. A plasma sample for
determination of basal insulin levels was obtained during the final 10 min of
the basal period and for steady-state insulin levels (47 	 5 in Tg IRS-1
Ser3Ala vs. 44 	 5�U/ml in WT) at 120 min of the clamp. Infusions were
performed using microdialysis pumps (CMA/Microdialysis, North Chelmsford,
MA), and radioisotopes were purchased from Perkin Elmer Life Sciences
(Boston, MA) and American Radiolabeled Chemicals (St. Louis, MO). At the
end of the experiment, animals were anesthetized with intravenous ketamine/
xylazine (80/10 mg/kg body wt), and epididymal white adipose tissue and M.
gastrocnemius, including M. soleus, M. quadriceps, and liver, were collected,
freeze-clamped, and stored at �80°C until further analysis.
Calculations. Steady-state period (when the rate of glucose appearance [Ra]
equals the rate of glucose disappearance [Rd]) was defined as the final 20–30
min of the glucose clamp. The Ra was calculated as the ratio of [3-3H]glucose
infusion rate (dpm/min) and plasma [3-3H]glucose–specific activity (dpm �

min�1 � �mol�1) during steady state. Hepatic [3-3H]glucose production was
determined by subtracting the steady-state glucose infusion rate from the
Ra/Rd. Whole-body glycolysis was determined by linear regression from the
increase of plasma 3H2O from 80 to 120 min (measured at 80, 85, 90, 100, 110,
and 120 min). 2-[14C]DG uptake in skeletal muscle was calculated from plasma
2-[14C]DG area under the curve at 80, 85, 90, 100, 110, to 120 min and tissue
2-[14C]DG-6-phosphate content using ion-exchange columns (Poly-Prep no.
731-6211; Bio-Rad, Hercules, CA) as previously described (4,23,24).
Assays from plasma. Glucose concentrations were determined with a glucose
analyzer (Beckman, Fullerton, CA), and triacylglycerol and nonesterified fatty
acid levels with a Kobas Mira Analyzer (Roche Diagnostics). Plasma insulin was
measured via radioimmunoassay. Plasma [3-3H]glucose, 2-[14C]DG, and 3H2O
radioactivity were determined from deproteinized plasma samples (somogyi
filtrates) before and after 3H2O was completely evaporated from the supernatant.
3H and 14C radioactivity were assessed by use of a liquid scintillation counter
(Ultima Gold; Packard Instrument, Meriden, CT).
Intramuscular triacylglycerol content. The extraction procedure for tissue
triacylglycerol was adapted from methods described previously (25,26).
Triacylglycerol content of each sample was measured in duplicate after
evaporation of the organic solvent using an enzymatic method (Sigma
Diagnostics, St. Louis, MO).

B
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FIG. 2. Tg IRS-1 Ser3Ala, but not Tg IRS-1 WT, mice were protected
from high-fat diet–induced glucose intolerance during IPGTT. A: Growth
curves. Body weights were measured weekly under control diet and
high-fat diet feeding regimens. At age 7–8 weeks, mice were started on a
high-fat, safflower oil–based diet (27% safflower oil, 59% fat-derived
calories) and maintained for 8 weeks. u with solid line, WT control diet;
F with solid line, Tg IRS-1 Ser3Ala control diet; u with dotted line, WT
high-fat diet; F with dotted line, Tg IRS-1 Ser3Ala high-fat diet. B:
IPGTT. A total of 1 g/kg of 10% glucose was injected in control diet–fed
Tg IRS-1 Ser3Ala mice (F with solid line) and littermate control mice (u

with solid line). A total of 1 g/kg of 10% glucose was also injected in
high-fat–fed Tg IRS-1 Ser3Ala (F with dotted line), Tg IRS-1 WT (� with
dotted line), and littermate control (u with dotted line) mice. C: Area
under the curve of insulin concentration during IPGTTs. Results are
expressed as means � SE (WT, n � 11; Tg IRS-1 Ser3Ala, n � 16; Tg
IRS-1 WT, n � 8). *P < 0.05 vs. WT high-fat diet.
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Insulin signaling. To assess insulin-signaling molecules, Tg IRS-1 Ser3Ala,
Tg IRS-1 WT, and WT mice were treated with 4 weeks of high-fat diet and
gastrocnemius muscle was harvested 15 min after intraperitoneal insulin
injection (0.6 units/kg). Western blot and immunoprecipitation were per-
formed as described previously (27). Briefly, samples were homogenized in a
buffer containing 50 mmol/l Hepes (pH 7.4), 150 mmol/l NaCl, 1 mmol/l EDTA,
1% Triton X-100, 2 mmol/l sodium vanadate, 100 mmol/l NaF, 20 mmol/l
sodium pyrophosphate, 20 mg/ml of aprotinin, and 1 mmol/l phenylmethylsul-
phonyl fluoride. One milligram of lysate was subjected to immunoprecipita-
tion and incubated with 4 mg of anti–IRS-1 or –IRS-2 antibody (Upstate
Biotechnology) for 2 h at 4°C and then with protein A/G agarose (Santa Cruz)
overnight. The beads were washed three times before immunoblot analysis.
Samples were denatured with Laemmli sample buffer for 5 min at 95°C, and
the supernatant was separated using 10% SDS gel (Bio-Rad Laboratories) and
electrotransferred onto polyvinylidene fluoride membranes (Amersham Phar-
macia Biotech). Samples were probed with anti-phosphotyrosine (4G10-HRP;
Upstate Biotechnology) and anti-p85 antibody (Upstate Biotechnology).
IRS-1– and IRS-2–associated PI3-kinase assays were performed in 4 mg
muscle protein extracts according to methods previously described (28).
Western blotting was performed as described previously (27). Forty micro-
grams of homogenized samples were blotted on polyvinylidene fluoride
membranes. The membrane was probed with antibodies against phospho-Akt
(Ser473) (1:1,000; Cell Signaling), IRS-1 (1:1,000; Upstate Biotechnology),
IRS-1pSer307 (1:1,000; Cell Signaling), and IRS-1pSer612 (1:1,000; Cell Signal-
ing) overnight at 4°C. Antibodies against IRS-1pSer307 and IRS-1pSer612 were
diluted in the enhancer solution (Can Get Signal Solution; Toyobo, Osaka,
Japan). Equal protein loading was confirmed by reblotting of the membranes
with a goat polyclonal antibody to pan-actin (1:1,000; Santa Cruz Biotechnol-
ogy) or anti-Akt antibody (1:1,000; Cell Signaling). Images were analyzed and
quantified with Quantity One (Bio-Rad Laboratories).
Statistical analysis. All data are expressed as means 	 SE. Two-tailed
Student’s t tests were performed on data at a minimum P 
 0.05 threshold.

RESULTS

High-fat diet increased serine phosphorylation of
IRS-1. To evaluate previous reports regarding increased
serine phosphorylation on IRS-1 in skeletal muscle, we
tested Ser307 and Ser612 residues using high-fat–fed mice
and ob/ob mice. We found slight increases on Ser307 and
Ser612 but decreased total IRS-1 protein in ob/ob mice
(Fig. 1A).
Generation of IRS-1 Ser3Ala mutant transgenic and
Tg IRS-1 WT mice. To investigate the role of serine
phosphorylation on IRS-1 in mediating fat-induced insulin
resistance, we generated skeletal muscle–specific trans-
genic mice with triple mutations in Ser302, Ser307, and
Ser612 to Ala using the 1.2-kb enhancer/promoter region of
the myosin light-chain-2 gene (Fig. 1B). Total IRS-1 protein
expression levels were analyzed in multiple insulin target
organs. We observed �100% overexpression of IRS-1 ex-
clusively in skeletal muscles in transgenic mice compared
with their WT littermates (Fig. 1C and D). To address
whether the phenotype of Tg IRS-1 Ser3Ala protection

against fat-induced insulin resistance depended on the
Ser3Ala mutation of IRS-1, and not on the overexpres-
sion of IRS-1 per se, we also generated mice over-
expressing WT IRS-1 (Tg IRS-1 WT) as an alternative
control (Fig. 1B). Using the same approach, we created
a line of Tg IRS-1 WT mice that expressed IRS-1 WT
protein in skeletal muscle approximately twofold more
than the WT littermates (Fig. 1C and D).
Metabolic phenotype in standard diet–fed Tg IRS-1

Ser3Ala and their littermates. Growth curves of Tg
IRS-1 Ser3Ala and WT mice were comparable between
standard diet–fed groups (Fig. 2A). Tg IRS-1 Ser3Ala
mice displayed no differences in any basal parameters
(Table 1) and had similar plasma glucose responses fol-
lowing an intraperitoneal glucose challenge when fed a
control standard diet (Fig. 2B). The body composition of
these mice, analyzed by 1H-nuclear magnetic resonance
spectroscopy, were similar in both genotypes (77.0 	
0.6% of muscle and 8.5 	 0.6% of fat in WT vs. 75.8 	
1.0% of muscle and 9.4 	 1.3% of fat in Tg IRS-1
Ser3Ala; P � 0.28 and P � 0.50, respectively). Over-
expression of mutated IRS-1, but not WT IRS-1, rescued
high-fat diet–induced glucose intolerance. To determine
whether the Ser3Ala mutation of IRS-1 would protect
mice from fat-induced insulin resistance in skeletal
muscle, we fed WT, Tg IRS-1 Ser3Ala, and Tg IRS-1 WT
mice a high-fat diet containing 27% safflower oil for 4
weeks. Tg IRS-1 Ser3Ala and WT mice increased their
whole-body fat content in a comparable fashion (data
not shown) but gained slightly more body weight than
WT mice (Fig. 2A). Tg IRS-1 WT gained similar body
weight after 4 weeks of high-fat regimen (30 	 0.5 g at
age 12 weeks). There were no differences in fasting
plasma glucose, cholesterol, triacylglycerol, and non-
esterified fatty acid concentrations among the three
groups, yet plasma insulin concentrations were 23%
lower in the Tg IRS-1 Ser3Ala mutant than the WT mice
(Table 1). Intramuscular triacylglycerol content after
high-fat feeding showed no difference between the two
genotypes (Table 1). When IPGTT experiments were
performed after 4 weeks of high-fat feeding, Tg IRS-1
Ser3Ala mice displayed a markedly improved glucose
tolerance (Fig. 2B), despite no differences in plasma
insulin concentrations (Fig. 2C), compared with both
WT and Tg IRS-1 WT mice fed a similar high-fat diet.
Overexpression of mutated IRS-1 rescued high-fat
diet induced insulin resistance in skeletal muscle. To
determine which tissue was responsible for the enhanced

TABLE 1
Plasma metabolites and hormones in Tg IRS-1 Ser3Ala, Tg IRS-1 WT, and littermate control mice fed a safflower oil diet or a control
diet for 4 weeks

Control diet High-fat diet

WT Tg IRS-1 Ser3Ala WT
Tg IRS-1
Ser3Ala

Tg IRS-1
WT

n 5–9 10–12 8–12 8–12 6
Glucose (mg/dl) 165 	 7 143 	 12 129 	 11* 112 	 17 122 	 31
Insulin (�U/ml) 19.7 	 3 21.0 	 1.4 21.3 	 1.5 16.5 	 1.8*† 22.0 	 1.8
Cholesterol (mg/dl) 88 	 5.1 77 	 3.5 82 	 7 92 	 6 74 	 7
Triacylglycerol (mg/dl) 70 	 11 89 	 11 56 	 3 57 	 2 61 	 5
Nonesterified fatty acids (mEq/l) 0.63 	 0.04 0.61 	 0.04 0.33 	 0.04* 0.32 	 0.05* 0.36 	 0.05*
Intramuscular triacylglycerol

content (�mol/g tissue) 1.50 	 0.40 ND 2.39 	 0.34* 3.11 	 0.52* ND

Data are means 	 SE. *P 
 0.05 vs. WT control diet. †P 
 0.05 vs. WT high-fat diet.
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glucose tolerance in the Tg IRS-1 Ser3Ala mice, we
performed hyperinsulinemic-euglycemic clamp experi-
ments in age-matched WT and Tg IRS-1Ser3Ala mice
after 8 weeks of high-fat diet treatment. Tg IRS-1 Ser3Ala
mice manifested greater insulin sensitivity, as reflected by
a 34% increased in glucose infusion rate required to

maintain euglycemia during the clamp (Fig. 3A). Further
analysis of plasma and skeletal muscle tracer data re-
vealed a 50% increase in insulin-stimulated 2-deoxy-D-[1-
14C]glucose uptake in both the gastrocnemius muscles
(274.2 	 39.9 nmol � g�1 � min�1 vs. 414.9 	 46.3 nmol �
g�1 � min�1; P 
 0.05) and the quadriceps muscles (287.6 	

E
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FIG. 3. Tg IRS-1 Ser3Ala mice were protected from high-fat
diet–induced muscle insulin resistance. A: After 8 weeks of
high-fat feeding (16 � 1 weeks), age-matched mice were food
deprived for 16 h and hyperinsulinemic-euglycemic clamp ex-
periments (2.5 mU � kg�1 � min�1) were performed using Tg
IRS-1 Ser3Ala mice and their littermates. Plasma glucose
concentration was maintained by an intravenous 20% glucose
infusion and glucose infusion rates (GINF) at steady state were
assessed. B: Muscle-specific glucose uptake was analyzed by
enrichment of [14C]-2-deoxy-glucose in Musculus gastrocne-

mius (GAS) (left) and Musclus quadriceps (QD) (right). Re-
sults are expressed as means � SE (WT, n � 12; Tg IRS-1
Ser3Ala, n � 16). C: Insulin-stimulated Akt phosphorylation
(Ser473) in GAS was analyzed 15 min after intraperitoneal
injection of 0.6 units/kg insulin in control diet–fed mice (WT,
n � 6) and high-fat diet–fed mice (WT, n � 16; Tg IRS-1
Ser3Ala, n � 15; Tg IRS-1 WT, n � 3). D: IRS-1–associated
PI3-kinase activity in GAS of high-fat–fed mice (WT, n � 12; Tg
IRS-1 Ser3Ala, n � 8). E: IRS-1 tyrosine phosphorylation (left)
and IRS-1–associated p85 subunit of PI3-kinase (right) were
analyzed 15 min after intraperitoneal injection of 0.6 units/kg
insulin by immunoprecipitation. Results are expressed as
means relative to insulin-stimulated samples of WT high-fat fed
mice � SE.
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48.3 nmol � g�1 � min�1 vs. 0.518.9 	 98.1 nmol � g�1 �
min�1; P 
 0.05) (Fig. 3B). In contrast, there were no
differences in insulin-mediated suppression of hepatic
glucose production between the Tg IRS-1 Ser3Ala and the
WT mice (basal 16.6 	 1.0 vs. 17.6 	 1.2 mg � kg�1 � min�1,
insulin-stimulated 5.0 	 3.7 vs. 0.1 	 2.8 mg � kg�1 � min�1;
P � 0.27).
Ser3Ala mutation on IRS-1, but not overexpres-
sion of IRS-1, improved insulin signaling. To further
analyze the mechanism for the improved insulin-stimu-
lated muscle glucose uptake in the Tg IRS-1 Ser3Ala
mice, we assessed insulin signaling in vivo after 4 weeks
of high-fat diet treatment. High-fat feeding reduced
insulin-stimulated Akt phosphorylation in gastrocne-
mius muscle after 15 min of intraperitoneal insulin
injection in WT mice; however, we observed a 32%
increase in Akt phosphorylation in Tg IRS-1 Ser3Ala
mice compared with WT littermates (Fig. 3C). We also
analyzed insulin-induced Akt phosphorylation in Tg
IRS-1 WT, but we did not observe significant improve-
ment in Tg IRS-1 WT (Fig. 3C). We also detected a 20%
increase in IRS-1–associated PI3-kinase activity (Fig.
3D) of Tg IRS-1 Ser3Ala compared with WT mice in
absence of changes in IRS-2–associated PI3-kinase ac-
tivity (data not shown). Furthermore, tyrosine phos-
phorylation of IRS-1 was increased by 88% in Tg IRS-1
Ser3Ala mice compared with WT littermates (Fig. 3E,

left). IRS-1–associated p85 subunit of PI3-kinase was
also 83% higher in Tg IRS-1 Ser3Ala mice (Fig. 3E,
right).
Overexpression of mutated IRS-1 improved glucose
metabolism in old mice and Tg IRS-1 Ser3Ala mice
bred onto an ob/ob background. To analyze the effect of
overexpression of mutated IRS-1 in different insulin resis-
tance models, we tested these mice at age 1 year with an
IPGTT. Tg IRS-1 Ser3Ala mice showed better glucose
tolerance compared with their littermates at age 1 year,
although they had similar insulin concentration during
IPGTT (Fig. 4A and B) and similar body weight (Tg IRS-1
Ser3Ala 48.1 	 0.7 vs. WT 48.5 	 0.3). In addition, we also
examined the effect of backcrossing the Tg IRS-1 Ser3Ala
mice onto an ob/ob background and found lower fasting
plasma glucose concentrations in the Tg IRS-1 Ser3Ala/
ob/ob compared with the WT/ob/ob mice (306 	 23 mg/dl
vs. 218 	 9 mg/dl; P � 0.005) at age 4 weeks. Although
growth curves of IRS-1 Ser3Ala/ob/ob and WT/ob/ob were
comparable (Fig. 4C), fasting glucose of IRS-1 Ser3Ala/
ob/ob tended to be lower throughout their life until age 16
weeks than WT/ob/ob mice (data not shown).

DISCUSSION

Our study demonstrates that serine phosphorylation on
IRS-1 is a key molecular event in the pathogenesis of

A

B

C

FIG. 4. Tg IRS-1 Ser3Ala mice were protected from age-related glucose
intolerance. Plasma glucose (A) and insulin (B) concentrations in 1-year-old
Tg IRS-1 Ser3Ala transgenic and WT littermate mice following an IPGTT (1
g/kg) (WT, n � 12; Tg IRS-1 Ser3Ala, n � 6). A: u WT elder; �, Tg IRS-1
Ser3Ala elder. Results are expressed as means � SE. C: Generation of Tg
IRS-1 Ser3Ala/ob/ob. Growth curves: body weights were measured weekly
under control diet until age 16 weeks (F with dotted line) and compared with
WT/ob/ob (u with dotted line), Tg IRS-1 Ser3Ala/�/� (F with solid line), and
WT/�/� (u with solid line); n � 7–10. *P < 0.05 vs. WT littermate mice.

K. MORINO AND ASSOCIATES

DIABETES, VOL. 57, OCTOBER 2008 2649



fat-induced insulin resistance in vivo. Although IRS-1 has
�70 potential serine/threonine phosphorylation sites, we
observed that mutating the serines at Ser302, Ser307, and
Ser612 to alanines partially, but significantly, protected the
mice against fat-induced insulin resistance in skeletal
muscle. Previous in vitro studies speculated four possible
mechanisms by which serine phosphorylation of IRS-1 can
inhibit the insulin-signaling pathway. First, it has been
reported that serine phosphorylation on Ser302, Ser307, and
Ser318 inhibits the association between the insulin receptor
and IRS-1 because Ser302 and Ser307 exist near the phos-
photyrosine binding domain (155–259), where the insulin
receptor binds to IRS-1 (29–31). Second, serine phosphor-
ylation has been shown to interfere with the tyrosine
phosphorylation of IRS-1 (32). Third, phosphorylation on
Ser612, Ser632, Ser662, and Ser731 has been demonstrated to
inhibit the association between IRS-1 and the p85 subunit
of PI3-kinase (31,33). Finally, serine phosphorylation or
IRS-1 on certain sites such as Ser307 has been shown to
promote protein degradation through the ubiquitin-proteo-
some pathway and/or the suppressor of cytokine-signaling
pathway (34–36). The data in the present study support
the hypothesis that in vivo IRS-1 serine phosphorylation
intereferes with IRS-1 tyrosine phosphorylation by the first
three mechanisms, since we found increased insulin-stim-
ulated IRS-1 tyrosine phosphorylation in the Tg IRS-1
Ser3Ala mice (Fig. 3D), suggesting at least one of three
serine residues regulate interaction between insulin recep-
tor and IRS-1 and/or tyrosine phosphorylation. Further-
more, Tg IRS-1 Ser3Ala mice also showed an increased
association between IRS-1 and the p85 subunit of PI3-
kinase, which reflects increased interaction between IRS-1
and PI 3-kinase likely due to the Ser6123Ala612 mutation
(33,37). On the other hand, our data suggest that IRS-1
serine phosphorylation does not lead to increased IRS-1
degradation by activation of the ubiquitin-proteosome or
suppressor of cytokine-signaling pathway, since IRS-1
protein expression was unchanged after 8 weeks of high-
fat diet treatment (Fig. 1A). These data are also consistent
with recent studies in humans demonstrating unaltered
IRS-1 expression in the muscle of young lean insulin-
resistant offspring of parents with type 2 diabetes (11). In
contrast to these results, we did observed decreased IRS-1
protein expression in ob/ob mice compared with WT mice
(Fig. 1A), suggesting that increased IRS-1 degradation may
occur in the ob/ob phenotype, which is consistent with a
previous study (38).

To address whether the IRS-1 Ser3Ala mutation pro-
tection from fat-induced insulin resistance depended on
the Ser3Ala mutation of IRS-1 and not on the overexpres-
sion of IRS-1 per se, we also generated mice with a similar
twofold overexpression of WT IRS-1 (Tg IRS-1 WT) in
skeletal muscle as an alternative control. In contrast to the
Tg IRS-1 Ser3Ala mice, Tg IRS-1 WT mice were not
protected from high-fat–induced glucose intolerance dur-
ing IPGTT. Furthermore, in contrast to Tg IRS-1 Ser3Ala
mice, Tg IRS-1 WT mice were also not protected from
fat-induced defects in insulin stimulation of Akt phosphor-
ylation in skeletal muscle. These findings are consistent
with a recent study demonstrating that whole-body IRS-1
overexpressing mice were also not protected from insulin
resistance (39). Taken together, these data support the
hypothesis that the protection from fat-induced insulin
resistance observed in the Tg IRS-1 Ser3Ala mice is due
to the Ser3Ala IRS mutation and not due to IRS-1 WT
overexpression.

In summary, our study supports the hypothesis that
high-fat diet–induced insulin resistance in skeletal muscle
is mediated at least in part through increased serine
phosphorylation of IRS-1. This event may be a potential
pharmacological target in the treatment of insulin resis-
tance associated with obesity and type 2 diabetes.
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