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Abstract: Electrochemiluminescence (ECL) has received considerable attention as a powerful an-
alytical technique for the sensitive and accurate detection of biological analytes owing to its high
sensitivity and selectivity and wide dynamic range. To satisfy the growing demand for ultrasensitive
analysis techniques with high efficiency and accuracy in complex real sample matrices, considerable
efforts have been dedicated to developing ECL strategies to improve the sensitivity of bioanalysis.
As one of the most effective approaches, diverse signal amplification strategies have been integrated
with ECL biosensors to achieve desirable analytical performance. This review summarizes the recent
advances in ECL biosensing based on various signal amplification strategies, including DNA-assisted
amplification strategies, efficient ECL luminophores, surface-enhanced electrochemiluminescence,
and ratiometric strategies. Sensitivity-enhancing strategies and bio-related applications are discussed
in detail. Moreover, the future trends and challenges of ECL biosensors are discussed.
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1. Introduction

Electrogenerated chemiluminescence (ECL) is the phenomenon resulting from elec-
trogenerated species undergoing an electron-transfer reaction at the electrode surface,
resulting in the emission of light [1–3]. ECL has received a large amount of attention due to
its advantages of high sensitivity, low background noise, spatial and temporal control, and
no required light source [4–7]. The first detailed ECL studies were reported in the 1960s by
Hercules and Bard [8,9]. Since then, ECL has gradually become a major area of research,
with studies encompassing fundamental studies, reagent development, and analytical
applications. Many reviews on the details and on our comprehensive understanding of
ECL have been published [10–13]. So far, ECL has been widely applied in various fields,
including in food safety, environmental monitoring, and medical diagnosis.

In recent years, ECL biosensors have gradually attracted increasing interest in the field
of bioanalysis. Critically, they show great promise for clinical diagnostics and pharma-
ceutical analysis. Their significant advantages of portability, high sensitivity, and simple
operation promote their further development. Moreover, biosensors can provide fast re-
sponses at low costs [14–16]. Despite their many merits, the development of biosensors for
use in the sensitive and accurate detection of analytes at trace levels with high efficiency and
accuracy in complex conditions has represented a critical need in many areas. Specifically,
the precision and sensitive measurement of protein biomarkers has great significance and
practical value in early diagnosis for disease prediction.

As shown in Scheme 1, biosensing is a process that converts biochemical interactions
into output signals for the quantitative determination of target molecules. Double-stranded
DNA, single-stranded DNA, antigens, and antibodies are normally employed as recognition
elements for biosensor construction. The main signal output modes include single-signal
output and multiple-output. Signal amplification is often considered to be one of the most
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effective strategies for efficient signal transduction and to amplify signal output [17]. Signal
amplification-based biosensors ideally possess the features of enhanced sensitivity and
selectivity and a wide dynamic range compared to conventional biosensors [18]. Currently,
successful signal amplification strategies that are performed in the ECL realm mainly focus
on DNA-assisted amplification strategies, improving the efficiency of ECL luminophores
and surface-enhanced electrochemiluminescence, ratiometric strategies, and so on. In this
review, we have summarized the recently developed and main ECL bioanalysis strategies,
with a more detailed emphasis on advanced DNA signal amplification technologies. Finally,
the future trends and perspectives of strategies in ECL bioanalysis are briefly outlined.

Biosensors 2022, 12, x FOR PEER REVIEW 2 of 17 
 

stranded DNA, single-stranded DNA, antigens, and antibodies are normally employed as 
recognition elements for biosensor construction. The main signal output modes include 
single-signal output and multiple-output. Signal amplification is often considered to be 
one of the most effective strategies for efficient signal transduction and to amplify signal 
output [17]. Signal amplification-based biosensors ideally possess the features of en-
hanced sensitivity and selectivity and a wide dynamic range compared to conventional 
biosensors [18]. Currently, successful signal amplification strategies that are performed in 
the ECL realm mainly focus on DNA-assisted amplification strategies, improving the ef-
ficiency of ECL luminophores and surface-enhanced electrochemiluminescence, rati-
ometric strategies, and so on. In this review, we have summarized the recently developed 
and main ECL bioanalysis strategies, with a more detailed emphasis on advanced DNA 
signal amplification technologies. Finally, the future trends and perspectives of strategies 
in ECL bioanalysis are briefly outlined. 

 
Scheme 1. Overview of signal amplification strategies integrated with ECL biosensors for single-
signal or multiple-signal outputs. 

2. DNA-Assisted Amplification Strategies 
In the past several years, DNA-assisted amplification technologies have received sig-

nificant attention in biosensing because of their unique structure and properties. Benefit-
ing from the advantages of specific Watson–Crick base pairing and their highly flexible 
design, DNA molecules can be self-assembled into various DNA structures, such as into 
DNA dumbbell structures [19], DNA flowers [20], and DNA tetrahedrons [21]. Addition-
ally, signal amplification can be achieved by the governing of the DNA circuits through 
target triggering using the DNA’s programmable operation ability [22]. For example, ECL 
signal enhancement can be achieved through the target trigger 3D DNA walker moving 
continuously and automatically along the designed tracks [23,24]. In short, DNA amplifi-
cation strategies can be classified into two categories: enzyme-assisted amplification and 
enzyme-free amplification strategies. The former involves enzymes and includes classical 
polymerase chain reaction (PCR), rolling circle amplification (RCA) or hyperbranched 
RCA (HRCA), endonuclease- and exonuclease-assisted amplification, and DNAzyme-in-
volved amplification, while hybridization chain reaction (HCR) and DNA walker-based 
amplification without enzymes are examples of nonenzymatic amplification strategies 
[25]. Combining these versatile amplification strategies with biosensors can enable re-
markable signal enhancements. Several examples that have been reported in recent years 
are summarized in Table 1, and the details of the signal amplification strategies are dis-
cussed below. 

Table 1. Examples of representative biosensors based on DNA signal amplification strategies that 
have been developed in recent years. 

Scheme 1. Overview of signal amplification strategies integrated with ECL biosensors for single-
signal or multiple-signal outputs.

2. DNA-Assisted Amplification Strategies

In the past several years, DNA-assisted amplification technologies have received sig-
nificant attention in biosensing because of their unique structure and properties. Benefiting
from the advantages of specific Watson–Crick base pairing and their highly flexible design,
DNA molecules can be self-assembled into various DNA structures, such as into DNA
dumbbell structures [19], DNA flowers [20], and DNA tetrahedrons [21]. Additionally,
signal amplification can be achieved by the governing of the DNA circuits through tar-
get triggering using the DNA’s programmable operation ability [22]. For example, ECL
signal enhancement can be achieved through the target trigger 3D DNA walker moving
continuously and automatically along the designed tracks [23,24]. In short, DNA amplifi-
cation strategies can be classified into two categories: enzyme-assisted amplification and
enzyme-free amplification strategies. The former involves enzymes and includes classical
polymerase chain reaction (PCR), rolling circle amplification (RCA) or hyperbranched RCA
(HRCA), endonuclease- and exonuclease-assisted amplification, and DNAzyme-involved
amplification, while hybridization chain reaction (HCR) and DNA walker-based amplifica-
tion without enzymes are examples of nonenzymatic amplification strategies [25]. Combin-
ing these versatile amplification strategies with biosensors can enable remarkable signal
enhancements. Several examples that have been reported in recent years are summarized
in Table 1, and the details of the signal amplification strategies are discussed below.

Table 1. Examples of representative biosensors based on DNA signal amplification strategies that
have been developed in recent years.

Targets Signal Amplification Strategy Detection Range Limit of Detection Ref.

miRNA bHCR 0.05–500 fM 0.18 fM [26]

pyrophosphatase
Cu+-catalyzed azide–alkyne cycloaddition

(CuAAC) with high-efficiency hybridization chain
reaction (HCR)

0.025–50 mU 8 µU [27]
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Table 1. Cont.

Targets Signal Amplification Strategy Detection Range Limit of Detection Ref.

Bisphenol A Ru(phen)3
2+ can integrate into the grooves of HCR

products (dsDNA) 2.0–50 × 103 pM 1.5 pM [28]

cTnI Au nanoclusters and HCR signal amplification 5–5 × 104 fg/mL 1.01 fg/mL [29]

Human
immunodeficiency

virus DNA

Target DNA triggered RCA signal
amplification (RCA) 100–1 × 108 aM 27.0 aM [30]

HPV DNA
Bovine serum albumin carrier platforms and

hyperbranched rolling
circle amplification

10–1.5 × 104 fM 7.6 fM [31]

Hg2+ Exonuclease III-assisted CRISPR/Cas12a 0–1 × 106 fM 0.45 fM [32]

BT63DNA
ExoIII enzyme-assisted hybridization chain reaction

combined with nanoparticle-loaded
multiple probes

0.1–1 × 104 fM 0.036 fM [33]

MicroRNA A synergistic promotion strategy for 3D DNA
walker amplification 10–1 × 108 aM 2.9 aM [34]

miRNA-141 3D DNA walker-assisted CRISPR/Cas12a
trans-cleavage 1–1 × 107 fM 0.33 fM [35]

SARS-CoV-2 Target DNA-participated
entropy-driven amplified reaction 1–1 × 105 fM 2.67 fM [36]

MicroRNA let-7a
Swing arm location-controllable DNA
walker based on the DNA tetrahedral

nanostructures (DTNs)
10–1 × 108 fM 4.92 fM [37]

8-hydroxy-2′-
deoxyguanosine

Target-induced multi-DNA release and nicking
enzyme amplification strategy 100–1 × 107 fM 25 fM [38]

ochratoxin A Nicking endonuclease-powered DNA
walking machine 0.05–5 nM 0.012 nM [39]

Myocardial miRNA DNAzyme-regulated resonance
energy transfer 10–1 × 107 fM 2.44 fM [40]

carcinoembryonic antigen DNAzyme-driven DNA walker
amplification 1–1 × 108 fg/mL 0.21 fg/mL [41]

5-Hydroxymethylcytosine DNAzyme motor triggered by strand
displacement amplification 1–1 × 106 fM 0.49 fM [42]

MircoRNA-21 Localized DNA cascade reaction (LDCR) in
a DNA nanomachine 100–1 × 109 aM 10.7 aM [43]

2.1. Enzyme-Assisted DNA Amplification Strategies

As they are a type of enzyme, polymerases can catalyze DNA and RNA synthesis.
They can replicate DNA and form long, linear, tandem, or repetitive chains of DNA with
the assistance of a polymerase enzyme from the DNA template, primers, and deoxy-
ribonucleoside triphosphate (dNTP) [44]. Polymerase chain reaction (PCR) remains the
traditional and the “gold standard” enzyme-assisted DNA amplification strategy in bioanal-
ysis due to its high sensitivity and low cost [45]. However, it has significant disadvantages,
including the requirement of sophisticated and complicated processes and the presence
of false-positive signals, which limit its practical use in the ECL domain. As alternative
polymerase-based amplification techniques, rolling circle amplification (RCA) and hyper-
branched RCA (HRCA) have attracted more attention, as they not only inherit isothermal
amplification, but also promote improving the amplification efficiency. RCA requires
a circular probe and DNA or RNA primers. In the presence of polymerases, prolonged
extended ssDNA or double-stranded DNA is synthesized from the primer and the circular
probe, and the ECL signal is enhanced based on the RCA product that it is loaded with or
based on the in situ form abundant in the ECL luminophores. For example, as shown in
Figure 1, two hairpin DNAs (H1 and H2) hybridize with the target DNA, releasing two
output DNAs (W1 and W2) with the aid of exonuclease III. Subsequently, the concate-
nated DNA structure can be opened and can unlock the padlock oligonucleotide probe
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after being hybridized with two output DNAs. Under the action of the T4 DNA ligase,
padlock DNA and other DNA primers are ligated to initiate the RCA reaction. Afterward,
a prolong-extended ssDNA complementary to ruthenium (Ru)-labeled ssDNA is produced.
Therefore, massive ruthenium (Ru)-labeled ssDNA is captured by the RCA products to
generate a remarkable ECL signal, resulting in a large increase in amplification efficiency.
The biosensor shows the highly specific and ultrasensitive detection of human immunod-
eficiency virus (HIV) DNA fragments when the detection limit is down to 27.0 aM [30].
Yen et al. utilized the RCA strategy to produce massive, long ssDNAs with a pH-dependent
i-motif forming sequence, which was able to bind with hemin and catalyze the ECL reaction
with the assistance of luminol/H2O2 solution. Because the i-motif structure is sensitive
to pH change, a novel solid-state sensor for pH detection with a wide dynamic range
from pH 4.0 to 7.4 was proposed [46]. To further improve the reaction efficiency, He et al.
fabricated a high-reproducibility-and-sensitivity ECL biosensor for human papillomavirus
16 E6 and E7 by employing bovine serum albumin as a carrier platform to improve local
steric hindrance and the HRCA strategy. After the addition of the target HPV DNA, HRCA
occurred. Abundant HRCA products with double-stranded DNA (dsDNA) fragments of
different lengths were generated, providing enough double helix space for the insertion of
dichlorotris (1,10-phenanthroline) ruthenium(II) hydrate [Ru(phen)3]2+, which was acting
as an ECL indicator, and releasing a strong and easily detected ECL signal [31]. Most RCA
or HRCA-based ECL biosensors have shown great potential to avoid false-positive signals
while also improving the sensitivity.
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Another commonly used enzymatic amplification technology in the ECL domain is
cleaving enzyme-assisted amplification, which can be divided into two types according
to the function of the enzyme used: (1) endonucleases, including the nicking endonucle-
ase (NEase) and duplex-specific nuclease and (2) exonucleases, including exonuclease I,
exonuclease III, and T7 Exo. Cleaving enzymes are a class of enzymes that preferentially
cleave the phosphodiester bonds of nucleic acids. The released DNA is recycled in the
next round, leading to multiple cycles of signal amplification induced by multiple capture
and release cycles of the target [39,47]. Zhao et al. fabricated an aptasensor for 8-hydroxy-
2′-deoxyguanosine detection for early diagnosis via a target-induced multi-DNA release
and nicking enzyme amplification strategy. Aptamers on magnetic beads were hybridized
with three kinds of short DNA. After the aptamer specifically recognized the target, the
three kinds of short DNA were released, and three-fold signal amplification increases were
obtained. Following that, the Fc-labeled DNA hybridized with the released DNA with the
help of a nicking endonuclease (Nt.AlwI). The substrate strand (Fc-HP) was cleaved into
two parts, and the Fc-labeled DNA could then leave the surface of the electrode, resulting
in a strong ECL intensity. At the same time, the three kinds of short DNA were released
again and were reused to initiate the repeated hybridization–cleavage cycles because of the
nicking endonuclease-assisted recycling amplification [38].

DNAzyme is a functional DNA molecule that shows catalytic activity similar to that
of traditional protein enzymes. DNAzyme normally contains a substrate strand containing
an embedded cleavage site and a binding site for metal ions (e.g., Pb2+, Cu2+, Mn2+, and
Zn2+). The binding of metal ions triggers the catalytic activity of DNAzyme and the sub-
sequent splitting of the substrate strand [40,48–52]. Therefore, as a metal ion-dependent
enzyme, DNAzyme has been incorporated into sensors for the detection of various metal
ions. Currently, DNAzymes are usually designed as a trigger to release the initiator DNA
sequence, with the potential to further initiate other amplification reactions [53]. There-
fore, DNAzymes are often integrated with other DNA amplification strategies to develop
multiple-signal amplification-based biosensors, which can further improve ECL perfor-
mance. By combining DNAzyme with cascading amplification, Sun et al. [54] developed
an ultrasensitive and multi-targeted ECL sensing platform for the analysis of myocardial
miRNAs. Three myocardial miRNAs were successfully detected to have a detection limit
as low as 29.6 aM.

Despite the participation of enzymes greatly improving the sensitivity of biosensors,
enzymes require strict experimental conditions to maintain the catalytic activity, with
examples of conditions including pH and temperature. Furthermore, the involvement of
enzymes increases the experimental costs and the number of complex procedures.

2.2. Enzyme-Free Amplification Strategies

Various nonenzymic DNA amplification technologies, such as hybridization chain
reaction, catalyzed hairpin assembly [55], and entropy-driven catalysis [36], have been
used for the fabrication of enzyme-free biosensing platforms. Among these techniques,
hybridization chain reaction (HCR) has been widely integrated into ECL biosensor develop-
ment to construct nonenzymatic DNA biosensors [56]. Many reviews focused on traditional
linear HCR assembly, and novel forms of HCR have been discussed [57]. Traditional HCR
assembly requires single-strand initiator DNA and two harpin fuel DNAs. Single-strand
initiator DNA hybridizes with the two fuel DNAs to form a long linear double-stranded
DNA polymer under mild conditions, enabling more ECL reagents such as [Ru(phen)3]2+ to
be embedded into the dsDNA or more ECL reagent-labeled DNA to be bound to the DNA,
resulting in remarkable ECL improvement [58,59]. However, HCR’s reaction efficiency is
low due to its restricted presence on the electrode surface, which limits the efficiency of
signal amplification. Lin’s group proposed a sensitive electrochemiluminescence biosensor
based on a click chemistry-triggered hybridization chain reaction for pyrophosphatase
detection in a homogeneous solution. The hybridization chain reaction was processed in
a homogeneous solution, which obviously improved the amplification efficiency [27]. With
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the development of molecular programming, diverse nucleic acid reaction circuits based
on HCR have been proposed to form branched or dendritic nanostructures. Lin’s group
successfully integrated branched hybridization chain reaction (BHCR) into a biosensing
approach (Figure 2). BHCR, which is a derivative of HCR, possesses multiple unique
reaction orientations that greatly accelerate the reaction and improve the amplification
efficiency. Therefore, BHCR not only inherits the properties of the nonenzymatic and
isothermal amplification characteristics of HCR. However, it also possesses the advantages
of rapid reaction kinetics and a high amplification efficiency because of its unique multiple
reaction orientations [60].
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Additionally, benefiting from DNA molecular programming, nanomachine-based
amplification strategies have started to receive attention. Various DNA structures with
different functional properties, such as DNA motors, DNA robots, and DNA walkers, have
been designed and exploited for the construction of high-sensitivity biosensors. Especially,
DNA nanomachines can be integrated for the quantitative detection of biomolecules using
different amplification strategies [61]. As an example, DNA walkers, which are a type of
autonomous nanomachine, show broad special cascade signal enhancement characteristics
that are generated by their autonomous movement along the designed track. To date,
most DNA walkers based on one walking strand are referred to as a single-leg DNA
walkers; therefore, the walking area is limited, and the immediate response is slow. To
overcome the above issue, some efforts have been devoted to the development of ECL
strategies using multipedal DNA walkers by attaching multiple walking strands. It is worth
mentioning that DNA walkers normally need to be driven by other strategies, such as
DNAzyme, endonuclease-mediated hydrolysis, or toehold-mediated strand displacement
(TMDR). As shown in Figure 3, Wang et al. adopted catalytic hairpin assembly (CHA) to
trigger a tripedal DNA walker in the presence of miRNA-21. The tripedal DNA walker
formed a Y-shaped structure with three “legs” and walked on a DNA track, producing
a significant ECL signal. Combining CHA and tripedal DNA walker to develop a dual
signal amplification strategy, high-sensitivity miRNA-21 detection was achieved, with
a superior detection limit of 4 aM and a broad linear range of 10 aM to 1 pM [22].



Biosensors 2022, 12, 750 7 of 17

Biosensors 2022, 12, x FOR PEER REVIEW 7 of 17 
 

of ECL strategies using multipedal DNA walkers by attaching multiple walking strands. 
It is worth mentioning that DNA walkers normally need to be driven by other strategies, 
such as DNAzyme, endonuclease-mediated hydrolysis, or toehold-mediated strand dis-
placement (TMDR). As shown in Figure 3, Wang et al. adopted catalytic hairpin assembly 
(CHA) to trigger a tripedal DNA walker in the presence of miRNA-21. The tripedal DNA 
walker formed a Y-shaped structure with three “legs” and walked on a DNA track, pro-
ducing a significant ECL signal. Combining CHA and tripedal DNA walker to develop a 
dual signal amplification strategy, high-sensitivity miRNA-21 detection was achieved, 
with a superior detection limit of 4 aM and a broad linear range of 10 aM to 1 pM [22]. 

 
Figure 3. Example of the ECL biosensor for miRNA-21 detection based on the DNA walker strategy: 
(A) generation process of the tripedal DNA walker; (B) walking cycles of the DNA walker. Repro-
duced with permission from [22]. Copyright 2020, American Chemical Society. 

3. Efficient ECL Luminophores 
For now, most of the reported ECL biosensors and all commercial ECL assays are 

developed based on the ECL luminescent reagent tris(2,2′-bipyridineruthenium(II) 
([Ru(bpy)3]2+) [22,62]; however, the quantum yield of [Ru(bpy)3]2+ is low, which can limit 
the sensitivity of the assays. Cyclometalated iridium complexes, which exhibit higher lu-
minescence efficiency and long excited state lifetimes, have been reported as alternative 
luminescent reagents for [Ru(bpy)3]2+. The ECL efficiency from (pq)2Ir(acac) is reported to 
be significantly higher than that of [Ru(bpy)3]2+ [63]. Cyclometalated iridium complexes 
also allow the ECL emission to be tuned from the visible region to the UV region, which 
promotes the appearance of resolvable “mixed-ECL” from solutions containing multiple 
luminophores [64]. However, the poor water solubility of iridium complexes limits its 
practical use. 

In the past few decades, experimental and theoretical studies have shown that quan-
tum dots possess unique ECL properties; however, the ECL intensity of QD is unstable 
and weak [65]. To meet the demands for efficient luminophores, nanocarriers loaded with 
QDs demonstrate excellent ECL performance, with signals being obviously amplified. In 
general, silica nanoparticles, carbon nanomaterials, metal organic frameworks (MOFs), 
and transition metal oxides are applied as nanocarriers to load QDs. To date, QD-based 
biosensors have been widely used for ultrasensitive analysis [66–69], which benefits from 
their unique features such as their excellent biocompatibility, water solubility, and low 
toxicity. Zhuo’s group [70] prepared IRMOF−-3 accelerator-enriched QDs 
(CdTe@IRMOF−3@CdTe) using a direct encapsulation method for the trace detection of 
cTnI. With S2O82− as the coreactant, the composites showed enhanced ECL intensity com-
pared to other QD aggregates. Moreover, IRMOF−-3 can be functioned as a coreactant 
accelerator that can further amplify the ECL signal. The developed sensor exhibited a 

Figure 3. Example of the ECL biosensor for miRNA-21 detection based on the DNA walker strat-
egy: (A) generation process of the tripedal DNA walker; (B) walking cycles of the DNA walker.
Reproduced with permission from [22]. Copyright 2020, American Chemical Society.

3. Efficient ECL Luminophores

For now, most of the reported ECL biosensors and all commercial ECL assays are devel-
oped based on the ECL luminescent reagent tris(2,2′-bipyridineruthenium(II)
([Ru(bpy)3]2+) [22,62]; however, the quantum yield of [Ru(bpy)3]2+ is low, which can
limit the sensitivity of the assays. Cyclometalated iridium complexes, which exhibit higher
luminescence efficiency and long excited state lifetimes, have been reported as alternative
luminescent reagents for [Ru(bpy)3]2+. The ECL efficiency from (pq)2Ir(acac) is reported to
be significantly higher than that of [Ru(bpy)3]2+ [63]. Cyclometalated iridium complexes
also allow the ECL emission to be tuned from the visible region to the UV region, which
promotes the appearance of resolvable “mixed-ECL” from solutions containing multiple
luminophores [64]. However, the poor water solubility of iridium complexes limits its
practical use.

In the past few decades, experimental and theoretical studies have shown that quan-
tum dots possess unique ECL properties; however, the ECL intensity of QD is unstable
and weak [65]. To meet the demands for efficient luminophores, nanocarriers loaded with
QDs demonstrate excellent ECL performance, with signals being obviously amplified. In
general, silica nanoparticles, carbon nanomaterials, metal organic frameworks (MOFs), and
transition metal oxides are applied as nanocarriers to load QDs. To date, QD-based biosen-
sors have been widely used for ultrasensitive analysis [66–69], which benefits from their
unique features such as their excellent biocompatibility, water solubility, and low toxicity.
Zhuo’s group [70] prepared IRMOF−3 accelerator-enriched QDs (CdTe@IRMOF−3@CdTe)
using a direct encapsulation method for the trace detection of cTnI. With S2O8

2− as the core-
actant, the composites showed enhanced ECL intensity compared to other QD aggregates.
Moreover, IRMOF−3 can be functioned as a coreactant accelerator that can further amplify
the ECL signal. The developed sensor exhibited a wide dynamic range of 1.1 fg/mL to
11 ng/mL for cTnI, with a limit of detection (LOD) of 0.46 fg/mL (Figure 4).

Recently, certain metal nanoclusters have also been found to possess ECL
properties [71]. To date, gold nanoclusters have emerged as a new class of ECL emit-
ters due to their stable optical and electrochemical properties, monodispersity size, and
low- and well-defined band gap and high atomic accuracy [72]. Nie et al. [73] reported
a novel luminophore, a Au NC-based metal-organic framework (Au NC-based MOF) that
showed 10-fold-enhanced anodic ECL efficiency over aggregated GSH-Au NCs in an
aqueous solution, and when rutin was the model analyte, a low detection limit of 10 nM
was achieved.



Biosensors 2022, 12, 750 8 of 17

Biosensors 2022, 12, x FOR PEER REVIEW 8 of 17 
 

wide dynamic range of 1.1 fg/mL to 11 ng/mL for cTnI, with a limit of detection (LOD) of 
0.46 fg/mL (Figure 4). 

Recently, certain metal nanoclusters have also been found to possess ECL properties 
[71]. To date, gold nanoclusters have emerged as a new class of ECL emitters due to their 
stable optical and electrochemical properties, monodispersity size, and low- and well-de-
fined band gap and high atomic accuracy [72]. Nie et al. [73] reported a novel lumino-
phore, a Au NC-based metal-organic framework (Au NC-based MOF) that showed 10-
fold-enhanced anodic ECL efficiency over aggregated GSH-Au NCs in an aqueous solu-
tion, and when rutin was the model analyte, a low detection limit of 10 nM was achieved. 

Other types of nanomaterials have recently been used in ECL bioanalysis, such as 
graphite-phase carbon nitride (CN) [74], a novel nitrogen-rich two-dimensional carbon 
material, which has a wide range of applications in photocatalysis and biosensing [75,76]. 
Surface-modified CN is of great significance due to its practical application, especially for 
the regulation of its ECL characteristics [77,78]. Ji et al. [79] conducted a systematic scien-
tific investigation on the application of graphite-phase carbon nitride (CN) in the ECL 
field. They destroyed the stacking between layers of CN using a simple mechanical grind-
ing method to obtain CN of a smaller size. The prepared CN nanocrystals not only re-
tained the photoelectric characteristics of the original CN but were also able to overcome 
the CN defects on the surface of the materials, which provided a basis for its further ap-
plication in the field of biosensors. 

In total, various kinds of nanomaterials, including carbon-based nanomaterials, 
metal nanomaterials, and other inorganic or organic nanomaterials, as have been used as 
coreactant or luminophores to enhance ECL performance in biosensing. However, the re-
ported mechanism proposed that the ECL of nanomaterials be generated through both 
the electron and holes when the dots are injected separately onto the surface. The surface 
states of nanomaterials are reflected in the ECL performance. The ECL response can be 
increased by increasing the efficiency of electron–hole recombination via different strate-
gies. 

The ECL is much more sensitive to the surface states of CDs. Thus, developing unique 
luminophores and especially nanomaterials that enhance ECL efficiency as well as enable 
sensitive targets sensing remains a challenging research area, and the development of ad-
vanced nanomaterials is an important research direction in the design of amplified ECL 
biosensors. 

 

Figure 4. (A) Preparation of the signal probe. (B) Possible mechanism of IRMOF−3 accelerator-
mediated enhancement of cTnI detection in the CdTe/S2O8

2− system. Reproduced with permission
from [70]. Copyright 2018, American Chemical Society.

Other types of nanomaterials have recently been used in ECL bioanalysis, such as
graphite-phase carbon nitride (CN) [74], a novel nitrogen-rich two-dimensional carbon
material, which has a wide range of applications in photocatalysis and biosensing [75,76].
Surface-modified CN is of great significance due to its practical application, especially for
the regulation of its ECL characteristics [77,78]. Ji et al. [79] conducted a systematic scientific
investigation on the application of graphite-phase carbon nitride (CN) in the ECL field.
They destroyed the stacking between layers of CN using a simple mechanical grinding
method to obtain CN of a smaller size. The prepared CN nanocrystals not only retained
the photoelectric characteristics of the original CN but were also able to overcome the CN
defects on the surface of the materials, which provided a basis for its further application in
the field of biosensors.

In total, various kinds of nanomaterials, including carbon-based nanomaterials, metal
nanomaterials, and other inorganic or organic nanomaterials, as have been used as coreac-
tant or luminophores to enhance ECL performance in biosensing. However, the reported
mechanism proposed that the ECL of nanomaterials be generated through both the electron
and holes when the dots are injected separately onto the surface. The surface states of
nanomaterials are reflected in the ECL performance. The ECL response can be increased by
increasing the efficiency of electron–hole recombination via different strategies.

The ECL is much more sensitive to the surface states of CDs. Thus, developing unique
luminophores and especially nanomaterials that enhance ECL efficiency as well as enable
sensitive targets sensing remains a challenging research area, and the development of
advanced nanomaterials is an important research direction in the design of amplified
ECL biosensors.

4. Ratiometric Strategies
4.1. Potential-Resolved Ratiometric Strategies

Potential-resolved strategies require two ECL emitters that emit light at different
potentials [80]. The difference in the peak emission potential between the two ECL peaks
should be enough to be easily distinguished without interference [81]. Based on the in-
tensity ratio of the two ECL peaks at different potentials, many ratiometric biosensors
have been established for the detection of prostate-specific antigen (PSA), aflatoxin B1
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(AFB1), dopamine, miRNA, metal cations, and cancer cells, which not only improve the
sensitivity, but also avoid false-positive errors in complex matrices [24,82]. However,
this kind of ratiometric biosensor also requires two coreactants in addition to additional
luminophores [44,83,84], which increase the complexity of the whole experimental process.
Some efforts have been made to develop single-luminophore-based ratiometric sensors [24].
As shown in Figure 5, Cui’s group fabricated a ratiometric biosensor for the determination
of miR-133a. The novel ECL luminophores, graphitic carbon nitrides (g-C3N4) function-
alized by N-(aminobutyl)-N-(ethylisoluminol) (ABEI) (g-C3N4/ABEI), were used as the
sensing interface. g-C3N4 emitted ECL light in the negative potential range at −1.6, while
the ECL emission of ABEI occurred in the positive potential range at +1.2 in the presence of
H2O2. Based on the ECL intensity ratio of the g-C3N4/ABEI, the proposed bioassay pre-
sented a linear range from 0.1 fM to 1.0 pM and a LOD of 48.0 aM. Cao’s group fabricated
a potential-resolved ECL biosensor based on novel nano-luminophores: nano-graphene
oxide wrapped titanium dioxide (nGO@TiO2NLPs), which showed potential-resolved
ECL properties in a neutral aqueous solution using K2S2O8 as a coreactant. These new
luminophores could also be employed as luminescent cathode and anode materials simul-
taneously. In the presence of cardiac troponin I (cTnI), the aptamer protrudes from the
electrode surface owing to its rigidity, leading to a reduction in the charge transfer resistance
of the modified working electrode and a ratio enhancement of the two ECL signals of the
nGO@TiO2 NLPs. According to the increased ECL ratio, cTnI was quantified using the
ratiometric ECL aptasensor, with a linear dynamic range of 1.0 × 10−13–1.0 × 10−10 mol/L.
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4.2. Spectrum-Resolved Ratiometric Strategies

Compared to potential-resolved sensors, spectrum-resolved ECL sensors not only in-
herit the advantages of high accuracy but can also be used in a narrow potential range [85,86].
These sensors require ECL emitters that emit light at different wavelengths [87], and there
should also ideally be overlap between the ECL emission and absorption peaks to allow res-
onance energy transfer (RET) to occur. For example, based on ECL RET, a dual-wavelength
ratiometric ECL sensor was established for the detection of the amyloid-β protein in human
serum [88]. The process is displayed in Figure 6. A couple of emitters, Ru@TiO2@Au
nanomaterial/gold nanoparticle (AuNP)-modified graphitic carbon nitride nanosheets
(g-C3N4NSs), were employed as the energy receptor and energy donor. With the addition
of a target protein, due to the RET effect between the two emitters, the g-C3N4NSs signal
at about 460 nm was gradually quenched, while the signal of Ru@TiO2@Au increased at
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about 620 nm. During the experiment, based on the ratio of I460nm/I620nm, the linearity
range of Aβ42 was found to be from 1 × 10–5 to 200 ng/mL, with a limit of detection (LOD)
of 2.6 fg/mL, which makes the sensor suitable for application in clinical diagnosis.
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5. Surface-Enhanced Strategies

Previous reports have demonstrated that the localized surface plasmon resonance
(LSPR) of metal nanoparticles (such as gold and silver) can significantly enhance the spectral
signal [89,90]. LSPR is a physical phenomenon that is generated when the surface plasma
of noble metal nanoparticles is irradiated by incident light with the same frequency [91].
LSPR can generate a local electromagnetic field around noble metal nanoparticles, thus
enhancing the spectral signal [92]. By controlling the distance between the surface of
noble metal nanoparticles and the ECL luminophore, the intensity of ECL can be greatly
improved [93]. This phenomenon is called surface-enhanced electrochemiluminescence
(SEECL). As shown in Figure 7, credible evidence of this process as well as a detailed
mechanism of it has been presented by Wang and co-workers [94]. The ECL signal of the
Au NP@SiO2-modified electrode was 10 times higher than that of the bare electrode. Since
this initial report on SEECL, a series of ultra-sensitive biosensors based on SEECL have
been developed [90,93,95–98]. For example, an ultra-sensitive biosensor for Hg2+ using
the local surface plasmon resonance (LSPR) of gold nanorods (Au NR) has been proposed.
When Hg2+ is present, the conformation of ssDNA probes changed into a hairpin structure
by forming a T-Hg2+-T structure. [Ru(bpy)3]2+ can be embedded into a hairpin DNA probe
to generate ECL emissions, while the LSPR of Au NRs can enhance ECL emissions. As the
Hg2+ concentration increases, the ECL intensity also increases, and the detection limit of
the sensor reaches 10 fM [99]. The LSPR of metal nanoparticles is also often used to enhance
the electrochemiluminescence of quantum dots. CuZnInS quantum dots are a novel ECL
luminescent material, but they suffer from a low ECL efficiency. Based on CuZnInS
quantum dots (QDs) and gold nanoparticles (AuNPs), Chen et al. [97] developed a novel
DNA electrochemiluminescence sensor for the highly sensitive detection of the epidermal
growth factor receptor (EGFR) gene closely related to lung cancer. The detection range of
EGFR ranged from 0.05 to 1 nmol/L, and the detection limit was 0.0043 nmol/L. Apart
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from Au monomers, Au–Au dimers can be applied in the construction of biosensors to
further improve the signal intensity and the sensitivity due to the surface plasmon coupling
between two Au monomers, resulting in high electromagnetic field enhancement [100].
It is worth noting that the metallic substrates used in most surface-enhanced strategies
are limited to Au nanomaterials. Although Au nanomaterials are easily synthesized and
have good stability, other nanomaterial candidates should be explored for the purposes of
determining additional excellent plasmonic properties. Therefore, it is worth noting that Ag
nanomaterials have also shown excellent plasmonic properties. Cao et al. employed AgNP
nanocrystals as the LSPR source and MoS2 QDs as the ECL emitter, which demonstrated
that Ag nanomaterials can greatly enhance the effects on ECL. The detection limit for
microRNA-21 was 0.2 fM.
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In addition, imaging technology coupled with surface-enhanced electrochemilumines-
cence has been used in biosensing [14,101]. Liu and his team [102] constructed a biosensor
for the determination of Escherichia coli through the mode conversion between resonance
energy transfer (ECL-RET) and surface plasmon-coupled ECL (SPC-ECL) by controlling
the distance between the BN QDs and Au NPs. The BN QDs and Au NPs were separately
modified at the two ends of the hairpin DNA. When there was no target, resonance energy
transfer occurred due to the close distance between the BN QDs and Au NPs, and the ECL
signal of the BN QDs was inhibited by the AuNPs. In the presence of the target, the hairpin
DNA hybridized with the target, and the structure changed to a linear conformation; there-
fore, as the distance between the BN QDs and Au NPs increased, the ECL intensity also
increased. As a result, ECL-RET is replaced by the SPC-ECL effect, and the ECL signal is
enhanced. In addition, the author presents the ECL signal for the first time using a CMOS
camera imaging method and a smartphone. The fabricated biosensor showed a LOD of
0.3 pmol/L, with a linear range from 1 pmol/L to 5 nmol/L.

Compared to traditional biosensors, biosensors based on surface-enhanced strategies
are simpler and more sensitive and show great potential for the detection of ultra-trace
biomarkers for clinic diagnostics. Moreover, biosensors can be more biocompatible owing
to the choice of Au or Ag nanomaterials as an LSPR source. However, real sample analysis
is still a significant challenge.

6. Other Types of Signal-Amplification Strategies

Most biosensors mainly depend on single-signal output, which make them easily
susceptible to other intrinsic and extrinsic factors. Single-signal assays in particular cannot
meet the increasing demands for clinical diagnosis because some diseases are related to
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one or more biomarkers. Therefore, many efforts have been devoted to developing ECL
biosensors based on multiple-signal outputs, which enable multiple analytes to be mea-
sured simultaneously. For example, Su’s group [64] successfully synthesized three novel
ECL emitters, including ruthenium and iridium complexes. Based on the ECL emitters
with different spectral peaks at different potentials, a multiplex immunoassay for the si-
multaneous detection of carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), and
beta-human chorionic gonadotropin (β-HCG) was developed. However, it is challenging
to develop novel luminophores with potential-resolved or spectrum-resolved properties
because the number of luminophores pairs for multiplex immunoassays is limited.

It is well-known that the coreactant process is one of the main mechanisms of ECL.
Thus, the coreactant plays an important role during signal transduction, and the devel-
opment of novel and efficient coreactants is another amplification strategy for biosensor
construction. Nanomaterials, which are emerging as a new class of coreactants, have been
exploited as attractive candidates for inorganic molecules, especially carbon dot-based
nanomaterials. For instance, Wang’ group [103] proved that the use of boron nitride
quantum dots as a coreactant to enhance the ECL of [Ru(bpy)3]2+ resulted in a 400-fold
enhancement being achieved. This is due to amino-bearing groups on the surface of the
quantum dots. Thus, enhanced ECL efficiency is highly related to the surface state of
nanomaterials [104].

7. Conclusions and Perspectives

Signal-amplification-based biosensors have gained great attention and have under-
gone rapid development owing to the requirements for ultrasensitive biosensors and trends
towards early clinical diagnosis. Signal amplification strategies open novel approaches
for developing ultrasensitive bioassays with a wide dynamic range. Specifically, they
offer opportunities for monitoring early diagnosis, monitoring disease progression, and
predicting disease in biomedical diagnoses. Among these strategies, DNA-assisted tech-
niques are the most popular for signal amplification during ECL bioassays due to the
advantages of specific base pairing, programmable operation, and predictable assembly.
Enzyme-assisted DNA amplification strategies have achieved enhanced sensitivity in ECL,
but enzymatic reactions are susceptible to environmental factors, which ultimately affect
the DNA amplification efficiency and limit their application in complex biological systems.
Therefore, the development of low-cost, sensitive, and enzyme-free strategies is the research
direction to achieve future commercialization. However, the commercialization of point
of care testing is still in its early stages. Multiple DNA circuits make the processes more
complicated, and the amplification efficiency at each step is still unknown, affecting the
detection accuracy. Therefore, highly efficient luminophores have been explored to amplify
ECL signals. Finally, ratiometric strategies and surface-enhanced ECL approaches have
been introduced into biosensing, which can not only improve the sensitivity, but can also
increase the accuracy. This review presents the recent progress in ECL biosensors that have
been integrated with various kinds of signal amplification strategies, hoping to provide
guidance for designing novel ECL biosensors.

Based on the above-mentioned strategies, ECL biosensors have the ability to achieve
the ultra-trace level detection of targets. However, most biosensors are only demonstrated
to be successful in their principle of concept and the translation of research into industrial
manufacturing and marketing remains a significant challenge. To achieve commercializa-
tion, there is urgency to develop disposable, low-cost, and lab-on-chip ECL platforms to
conduct tests with a rapid response time and that have high convenience. Specifically, ECL
systems that are autonomous and miniaturized and that show great potential in practical
applications represent future research trends. In addition, the development of various
low-cost photodetectors such as CCD cameras, smartphone cameras, and other imaging
techniques coupled with ECL biosensors can realize multi-component analysis and single-
molecule detection. Single-biomolecule ECL imaging should be the subject of major efforts
to greatly expand ECL applications in bioanalysis.
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