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Lingguizhugan decoction attenuates
doxorubicin-induced heart failure in rats by
improving TT-SR microstructural
remodeling
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Abstract

Background: Lingguizhugan decoction (LGZG), an ancient Chinese herbal formula, has been used to treat
cardiovascular diseases in eastern Asia. We investigated whether LGZG has protective activity and the mechanism
underlying its effect in an animal model of heart failure (HF).

Methods: A rat model of HF was established by administering eight intraperitoneal injections of doxorubicin (DOX)
(cumulative dose of 16 mg/kg) over a 4-week period. Subsequently, LGZG at 5, 10, and 15 mL/kg/d was
administered to the rats intragastrically once daily for 4 weeks. The body weight, heart weight index (HWI), heart
weight/tibia length ratio (HW/TL), and serum BNP level were investigated to assess the effect of LGZG on HF.
Echocardiography was performed to investigate cardiac function, and H&E staining to visualize myocardial
morphology. Myocardial ultrastructure and T-tubule-sarcoplasmic reticulum (TT-SR) junctions were observed by
transmission electron microscopy. The JP-2 protein level was determined by Western blotting. The mRNA level of
CACNA1S and RyR2 and the microRNA-24 (miR-24) level were assayed by quantitative RT-PCR.

Results: Four weeks after DOX treatment, rats developed cardiac damage and exhibited a significantly increased
BNP level compared with the control rats (169.6 ± 29.6 pg/mL versus 80.1 ± 9.8 pg/mL, P < 0.001). Conversely, LGZG,
especially at the highest dose, markedly reduced the BNP level (93.8 ± 17.9 pg/mL, P < 0.001). Rats treated with DOX
developed cardiac dysfunction, characterized by a strong decrease in left ventricular ejection fraction compared
with the control (58.5 ± 8.7% versus 88.7 ± 4.0%; P < 0.001). Digoxin and LGZG improved cardiac dysfunction (79.6 ±
6.1%, 69.2 ± 2.5%, respectively) and preserved the left ventricular ejection fraction (77.9 ± 5.1, and 80.5 ± 4.9,
respectively, P < 0.01). LGZG also improved the LVEDD, LVESD, and FS and eliminated ventricular hypertrophy, as
indicated by decreased HWI and HW/TL ratio. LGZG attenuated morphological abnormalities and mitochondrial
damage in the myocardium. In addition, a high dose of LGZG significantly downregulated the expression of miR-24
compared with that in DOX-treated rats (fold change 1.4 versus 3.4, P < 0.001), but upregulated the expression of
JP-2 and antagonized DOX-induced T-tubule TT-SR microstructural remodeling. These activities improved periodic
Ca2+ transients and cell contraction, which may underly the beneficial effect of LGZG on HF.

Conclusions: LGZG exerted beneficial effects on DOX-induced HF in rats, which were mediated in part by
improved TT-SR microstructural remodeling.
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Background
Heart failure (HF) is a pressing public health issue, and
no curative treatment is currently available. Approxi-
mately 1–3% of the adult population have been diag-
nosed with HF, and the lifetime risk of HF is one in five
for men and women [1]. In addition, HF is a major and
growing problem in most affluent countries because of
aging populations and the prolongation of cardiac pa-
tients’ lives by modern therapies. Once HF is clinically
manifest, the median survival of patients is only 1.7 years
for men and 3.2 years for women, with only 25% of men
and 38% of women surviving for 5 years after diagnosis
[2]. HF has a poor prognosis, and the rate of hospital ad-
mission for HF and the associated healthcare costs have
dramatically increased recently [3–7]. In the United
States, the total medical costs for patients with HF are
expected to rise from $20.9 billion in 2012 to $53.1 bil-
lion by 2030 [7]. Globally, HF is the leading cause of
death due to cardiovascular disease. Although its utility
is limited by the availability of donors, cardiac trans-
plantation is the only viable intervention for end-stage
HF [8]. Thus, both an understanding of the pathogenesis
of HF and the development of novel therapeutic strat-
egies or drugs with improved efficacy are needed.
HF is a complex syndrome caused by structural or

functional impairment of ventricular filling or blood
ejection. Mechanistically, the hallmarks of HF include
abnormal energy metabolism, increased production of
reactive oxygen species (ROS), and defects in excitation–
contraction (E-C) coupling [9]. Energy insufficiency is a
key feature of systolic HF, and mitochondria supply the
myocardium with energy [10, 11].
The pace and strength of cardiomyocyte contraction

is determined by periodic Ca2+ transients, which are
regulated by the Ca2+-induced Ca2+ release (CICR)
mechanism. The CICR is located between L-type Ca2+

channels (LCCs) in the cell membrane/T-tubules
(TTs) and ryanodine receptors (RyRs) in the junc-
tional sarcoplasmic reticulum (SR) [12, 13]. Ca2+ re-
lease by RyRs is modulated by both global Ca2+

transients and local Ca2+ release events, which induce
aggregation of RyR and LCC into discrete CICR units
in the TT-SR junctional structure [14]. During normal
physiological signaling, the Ca2+ influx through LCCs
travels across an approximately 15-nm junctional cleft
and activates RyR Ca2+ release. Junctophilin-2 (JP-2),
a protein that anchors the sarcoplasmic reticulum
(SR) to T-tubules (TTs), is a major target for regula-
tion of E-C coupling [15]. MicroRNA-24 (miR-24) has
been identified as an immediate upstream suppressor
of JP-2 [16]. These structural features of junctions en-
able regulation of RyR Ca2+ release, and they are
therefore important modulators of the CICR and de-
terminants of the contractility of heart cells [17, 18].

In failing heart cells, the reduced contractility is attrib-
utable at least in part to defective CICR signaling, in
which the LCC Ca2+ influx cannot trigger sufficient Ca2+

release from RyRs. Furthermore, the downregulation of
JP-2 caused by elevated miR-24 expression reduced the
TT-SR distance, which is the primary mechanism of E-C
coupling defects [16, 19–22].
The doxorubicin (DOX)-induced HF model has been

used in experimental animal studies [23, 24], and in
these models, the cardiotoxicity of DOX causes cardio-
myopathy and congestive heart failure [25, 26]. DOX
treatment results in the generation of reactive oxygen
species (ROS), DNA mutagenesis, cell membrane dam-
age, and apoptosis [27], while excess ROS promote the
production of free radicals, leading to mitochondrial
damage [28]. In addition, DOX-induced inflammatory
injury is involved in the pathogenesis of HF [29].
Few effective cardioprotective drugs are available, and

the dose-dependent cardiotoxicity of those in use is an
important safety concern. Digoxin, one of the most com-
monly prescribed drugs for the treatment of HF, has
been in use for over two centuries. It prevents DOX-
mediated cardiomyopathy by competitively inhibiting
the binding of DOX to its receptor [30].
Complementary and alternative medicines may be safe

and effective for the treatment of HF. Lingguizhugan de-
coction (LGZG), an ancient Chinese herbal formula
from the Treatise on Cold Pathogenic and Miscellaneous
Diseases, is used for treating phlegm and fluid retention
and for several diseases related to fluid retention [31].
The theory of traditional Chinese medicine holds that
spleen Yang deficiency, as well as phlegm and fluid re-
tention, is related to HF [32]. On this basis, LGZG has
been used for thousands of years to treat cardiovascular
diseases.
LGZG reportedly has hepatoprotective [33–35], anti-

obesity, anti-hypertension [36], anti-inflammatory [37],
and antioxidant [34] activity in vitro or in vivo, so it may
be effective against DOX-induced HF. However, the ef-
fect of LGZG on the development of DOX-induced HF
and its mechanism of action are unclear.
We investigated whether LGZG protects against HF in

rats with DOX-induced HF and explored the underlying
mechanism. We focused on the effect of LGZG on the
TT-SR junctional structure and its modulation of myo-
cardial contractility.

Methods
Preparation of Lingguizhugan decoction
The Lingguizhugan decoction consists of the following
four Chinese medicines: Poria, Ramulus Cinnamomi,
Rhizoma Atractylodis Macrocephalae, and Radix Glycyr-
rhizae. The full Latin binomial names of the components
of Lingguizhugan are listed in Table 1. The ratio of the
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four herbs was 4:3:3:3, and they were obtained from
Sichuan Provincial Hospital of Traditional Chinese
Medicine. Professor Qinwan Huang of the School of
Pharmacy, Chengdu University of Traditional Chinese
Medicine, performed micro- and macroscopic authentica-
tion of the crude components to ensure that they met the
standards of the 2015 Pharmacopoeia of the People’s Re-
public of China. All voucher specimens were deposited at
the College of Basic Medicine, Chengdu University of Trad-
itional Chinese Medicine. High-performance liquid chro-
matography was performed for quality control of the
components of Lingguizhugan (Additional file 1: Figure S2).
The herbal decoction was prepared as described previ-

ously [32]. Briefly, herbal material was placed in a cook-
ing pot containing 500 mL of water and boiled for 30
min, simmered for 20 min, and transferred by filtration.
The final volume of the concentrated decoction was 100
mL.

Chemicals and reagents
DOX was purchased from Sigma (MO, USA; cat.
D1515). The primary antibody against JP-2 was obtained
from Abcam (Cambridge, UK; cat. ab79071). The B-type
natriuretic peptide (BNP) Enzyme-linked Immunosorb-
ent Assay (ELISA) kit was purchased from ZCIBIO
(Shanghai, China; cat. ZC-37019), and digoxin was pur-
chased from SINE (Shanghai, China).

Rats
Adult male Sprague–Dawley rats (180–200 g) were pur-
chased from Chengdu Dashuo Experimental Animal
Center. The animals were housed under standardized
conditions and received commercial rat chew ad libitum.

Treatment groups
The rats were randomized into the following six groups:
(1) saline intraperitoneal injection plus water intragastri-
cally (control, n = 8); (2) DOX intraperitoneal injection
plus water intragastrically (DOX); (3) DOX intraperito-
neal injection plus digoxin (0.026 mg/kg/d) intragastri-
cally (digoxin, n = 8) [38]; (4) DOX intraperitoneal
injection plus Lingguizhugan decoction (5 mL/kg/d)
intragastrically (LD-LGZG, n = 8); (5) DOX intraperito-
neal injection plus Lingguizhugan decoction (10 mL/kg/
d) intragastrically group (MD-LGZG, n = 8) [35]; and (6)
DOX intraperitoneal injection plus Lingguizhugan

decoction (15 mL/kg/d) intragastrically (HD-LGZG, n =
8). The rat HF model was established by repeated intra-
peritoneal injection of DOX [39]. Briefly, DOX (2mg/
kg) in saline was administered intraperitoneally to rats
twice a week for 4 weeks (cumulative dose, 16 mg/kg).
Beginning on the second day after the final dose of
DOX, the indicated treatment was administered orally
daily for 4 weeks.

Sample collection
After treatment for 4 weeks, the rats were euthanized by
cervical dislocation under anesthesia induced by intra-
peritoneal injection of 3% sodium pentobarbital. Blood
samples were collected for ELISA, and heart samples
were collected for histopathological analysis, transmis-
sion electron microscopy (TEM), Western blotting, and
quantitative real-time PCR.

Histopathological analysis
After echocardiography, the heart was removed and cut
into two transverse sections. One section was fixed in
4% paraformaldehyde in 0.1 M phosphate-buffered saline
overnight and then embedded in paraffin. The other sec-
tion (5-μm thickness) was stained with hematoxylin and
eosin (H&E) as described previously [40].

Protein preparation and Western blotting
JP-2 expression in cardiac tissue was assessed by West-
ern blotting according to standard protocols. Briefly,
protein was extracted from cardiac tissue in radioimmu-
noprecipitation assay buffer containing a protease inhibi-
tor and centrifuged (12,000 rpm, 10 min, 4 °C). The
protein concentration in the supernatant was quantified
by bicinchoninic acid assay. Total protein was resolved
by sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis and transferred to polyvinylidene difluoride
membranes. The membranes were incubated with an
anti-JP-2 antibody (1:1000 dilution) overnight at 4 °C.
Images were captured using an ImageQuant LAS4000
Imaging Station (GE), and band densities were quanti-
fied using ImageQuant TL software (GE).

Tem
TEM was performed as described previously [41]. Car-
diac tissue was dissected into 1-mm3 pieces and fixed in
4% paraformaldehyde and 2% glutaraldehyde in 0.1M

Table 1 Full names of the ingredients of Lingguizhugan

Ingredient of Lingguizhugan Full scientific name Major identified compounds

Poria Poria cocos (Schw.) Wolf. β-pachyman; pachymic acid

Ramulus Cinnamomi Cinnamomum cassia Presl. Trans-cinnamic acid

Rhizoma Atractylodis Macrocephalae Atractylodes macrocephala Koidz. Atractylenolide I–IV

Radix Glycyrrhizae Glycyrrhiza uralensis Fisch. Glycyrrhizic acid
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sodium cacodylate buffer (pH 7.2) overnight at 4 °C. Fol-
lowing several washes in buffer, the samples were post-
fixed in 2% osmium tetroxide and 1% uranyl acetate for
2 h, rinsed in water, dehydrated in an ascending ethanol
series followed by 100% acetone, and infiltrated and em-
bedded in Eponate. Ultrathin sections were cut on a
Reichert-Jung microtome (Austria) and mounted onto
200-hex-mesh copper grids. The sections were exposed
to the primary stain (5% aqueous uranyl acetate)
followed by the secondary stain (lead citrate) and then
visualized using a H-600IV TEM. To quantify mitochon-
drial size and number, eight random fields of view were
imaged per group. Mitochondria were identified based
on their morphology, and mitochondrial size was mea-
sured as the average cross-sectional diameter using
Image Pro-Plus 6.0 software.

Elisa
The level of BNP in serum was measured using a BNP
ELISA Kit according to the manufacturer’s instructions.

Echocardiography
Cardiac function was evaluated non-invasively by M-
mode echocardiography as described previously [42].
Briefly, rats were anesthetized with 1% sodium pentobar-
bital and were fixed in the supine position with the front
legs spread. The hairs on the ventral chest and frontal
area were removed. Next, ultrasound transmission gel
was applied to the precordium. Transthoracic echocardi-
ography was performed using an echocardiograph (Acu-
son Sequoia model 512, Siemens) equipped with a 25
MHz linear transducer. Also, the left ventricular end-
diastolic diameter (LVEDD), left ventricular end-systolic
diameter (LVESD), ejection fraction (EF), and fraction
shortening (FS) were determined. The sonographer and
the analyzer were blinded to the group allocation.

Determination of the miR-24 and CACNA1S and RyR2
mRNA levels
Total RNA was extracted from cardiac tissue and cells
using TRIzol™ reagent (Invitrogen, USA) according to
the manufacturer’s instructions. For reverse transcrip-
tion of miRNA, 1 μg of total RNA was used as the tem-
plate, together with the Bulge-Loop™ miRNA RT Primer
(5 μM) (RIBOBIO, China). For reverse transcription,
1 μg of total RNA was used for synthesis of first-strand
cDNA with the iScript™ cDNA Synthesis Kit (Bio-Rad,
USA). The mRNA level of CACNA1S and RyR2 was an-
alyzed by quantitative real-time PCR (Bio-Rad) using the
iScript™ One-Step RT-PCR Kit with SYBR® Green (Bio-
Rad) in a total volume of 20 μL and the gene-specific
primers in Additional file 1: Table S1. To assess the
expression of miR-24, 10 ng of cDNA product were sub-
jected to real-time PCR amplification using the Bulge-

Loop™ miRNA Forward and Reverse Primers (RIBOBIO,
China). The thermocycling program was 95 °C for 5 min,
followed by 40 cycles of 95 °C for 15 s, 60 °C for 30 s, and
72 °C for 30 s, with a final dissociation step to ensure the
specificity of amplification. Each sample was assayed in
triplicate. The small nuclear RNA U6 was used as the
control for quantification of the miR-24 level, and
GAPDH for quantification of the CACNA1S and RyR2
mRNA levels.

Statistics
Quantitative data are presented as means ± standard
error of mean (SEM). Comparisons of multiple groups
were determined by one-way ANOVA with Tukey’s post
hoc test using SPSS 21.0 (SPSS Inc., Chicago, USA). P-
values < 0.05 were considered indicative of statistical
significance.

Results
LGZG improved cardiac function
To determine the effect of LGZG on HF, we administered
DOX (i.p.) to rats for 4 weeks to induce HF. The rats were
next treated with saline, digoxin, or LGZG intragastrically
for 4 weeks (Fig. 1a). LGZG markedly reduced the serum
BNP level in DOX-treated rats (Fig. 1b). Echocardiography
was performed to investigate the effect of LGZG on car-
diac function in rats with HF (Fig. 1c), and the EF, FS,
LVESD, and LVEDD were determined. Cardiac function
in DOX-treated rats was improved by LGZG, as indicated
by EF (68.89% versus 75.82, 77.87, and 80.45%, respect-
ively) and FS (28.33% versus 36.06, 40.5, and 46.17%, re-
spectively) values (Fig. 1d and e). LGZG reduced LVEDD
and LVESD in a dose-dependent manner compared to the
model group (Fig. 2f, g), suggesting attenuation of DOX-
induced cardiac dilation. Therefore, LGZG improved car-
diac function.

LGZG improved DOX-induced HF
LGZG significantly attenuated cardiac hypertrophy in
DOX-induced failing hearts, as indicated by increased body
weight (Fig. 2a) and reduced HWI and the HW/TL ratio
(Fig. 2b, c), suggesting prevention of further cardiac injury.
Therefore, LGZG prevented further aggravation of HF.

LGZG attenuated the changes in myocardial morphology
and ultrastructure
H&E staining showed that LGZG attenuated myocardial
structure disorders of muscle fibers and infiltration of
inflammatory cells in DOX-induced HF (Fig. 3a). Also,
TEM showed disrupted myocardium and disorganized
mitochondria with abnormal cristae structure in the fail-
ing heart (Fig. 3b). Cardiac muscle fibers from control
rats had a normal myocardial ultrastructure, character-
ized by laterally aligned myofibrils with highly organized
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sarcomeres and elongated mitochondria tightly wrapped
in strands between the myofibrils. In contrast, fragmen-
ted and disrupted myofibrils and disorganized sarcomere
arrays were observed in the DOX-treated rats. Exten-
sively fragmented and swollen mitochondria were round
or irregular and abnormally agglomerated or dispersed;
LGZG reversed these mitochondrial abnormalities. In
addition, LGZG decreased the size of swollen mitochon-
dria and suppressed the number of fragmented mito-
chondria (Fig. 3c and d). Therefore, LGZG blocked
DOX-induced changes in cardiac morphology and myo-
cardial ultrastructure.

LGZG improved TT-SR microstructural remodeling
Cardiomyocyte contraction is controlled by CICR between
LCCs in the cell membrane/T-tubules and RyRs in the SR.
In addition, TT-SR junctions are remodeled during HF.
Based on these reports, the microstructure of TT-SR junc-
tions was observed by TEM (Fig. 4a). Treatment with DOX
resulted in a 30% reduction in TT-SR junction length com-
pared to the control. However, different doses of LGZG im-
proved the DOX-induced shortening of TT-SR junctions (5,
17, and 24%, respectively) (Fig. 4b). Similarly, sustained
LGZG treatment reduced the DOX-induced increases in the
cleft distance of TT-SR junctions (Fig. 4c).

Fig. 1 LGZG improved cardiac function. (a) Schematic of HF induction by DOX and the treatment protocol. (b) BNP level as determined by ELISA.
(c) Representative echocardiographic images (scale bar, 0.5 cm). Ejection fraction (EF) and fraction shortening (FS), left ventricular end-systolic
diameter (LVESD), and left ventricular end-diastolic diameter (LVEDD) are shown in (d), (e), (f), and (g), respectively. The experiment was
performed in triplicate. Data are mean ± SEM, n = 8. The observer was blinded to the group assignment. NS, not significant
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Mechanism of the effect of LGZG on TT-SR junctions
The LCC-RyR signaling pathway is dysfunctional during
HF. Thus, we investigated the effect of LGZG on the
LCC-RyR signaling pathway. Quantitative RT-PCR
showed that the mRNA levels of CACNA1S and RYR2
were not significantly different after treatment compared
with before (Additional file 1: Fig. S1A, B). MiR-24,
which is upregulated in HF, is an immediate upstream
suppressor of JP-2 [16]. Because miR-24 suppresses JP-2
and inhibits CICR, resulting in LCC-RyR dysfunction,
we determined by quantitative RT-PCR whether LGZG
promoted JP-2 expression by regulating miR-24. The
results showed that miR-24 was upregulated in DOX-
treated compared to -untreated hearts (control). How-
ever, the level of miR-24 in the LGZG-treated group was
markedly lower than that in the DOX group (Fig. 5a). In
addition, the decrease in miR-24 level was consistent
with the increase in the JP-2 mRNA level (Fig. 4b, c).
This suggests that LGZG promotes JP-2 expression by
regulating miR-24, which may underlie its effect on
HF (Fig. 4d).

Discussion
Traditional treatments for heart failure include diuretics,
followed by angiotensin converting enzyme inhibitors (ACEI)
or beta-blockers, and patients with no contraindications can
use aldosterone antagonists [43]. Despite advances in ther-
apy, HF remains a major health problem worldwide for
which novel therapeutic strategies are needed. Here, we re-
port that LGZG has therapeutic potential for HF.
DOX is an anticancer chemotherapeutic used for

solid tumors and acute leukemia. However, the side
effects of DOX, especially its cardiotoxicity, limit its
utility. DOX causes myocardial architecture and func-
tional abnormalities, including cardiomyocyte hyper-
trophy and death and increased susceptibility to
myocardial infarction, cardiomyopathy, and left ven-
tricular dysfunction. This makes DOX suitable for use
in models of non-ischemic cardiomyopathy and HF.
Thus, we used a DOX-induced model to evaluate the
effect and mechanism of LGZG on HF.
HWI and the HW/TL ratio are used to assess myocar-

dial hypertrophy [44]. As a sensitive marker of cardiac

Fig. 2 LGZG prevented aggravation of DOX-induced HF. (a) Body weight. Effect of LGZGT on HWI and the HW/TL ratio is shown in (b) and (c),
respectively. Values were normalized to the control group. Data are mean ± SEM, n = 8. NS, not significant
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failure, BNP is used for the diagnosis of HF [45], and it re-
flects not only left ventricular systolic dysfunction but also
left ventricular diastolic dysfunction and right ventricular
dysfunction. Echocardiography is a versatile, noninvasive
tool for measuring cardiac function and structure. Our
data are consistent with previous reports that DOX in-
duced signs of cardiomyopathy in the form of increased
HWI, HW/TL ratio, and BNP values, indicating severe

cardiac dysfunction. Interestingly, we found that LGZG at
clinical doses significantly attenuated HWI, the HW/TL
ratio, and abnormal BNP levels in a dose-dependent man-
ner. Also, LGZG reduced LVEDD and LVESD and
increased EF and FS, suggesting prevention of DOX-
induced deterioration of cardiac function.
Various ultrastructural changes occur in DOX-

associated HF, including loss of myofibrils, disarray of

Fig. 3 LGZG attenuated the changes in myocardial morphology and ultrastructure. (a) Representative images of H&E-stained cardiac tissue. (b)
Representative TEM images of cardiac tissue (scale bar, 1 μm). Red arrows, mitochondria; blue arrows, myofibrils. Intermyofibrillar mitochondrial
size and number are shown in (c) and (d). Data are mean ± SEM, n = 8. NS, not significant
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sarcomere structure, dilation of the sarcoplasmic
reticulum, and swelling of mitochondria [46–48]. Thus,
our histopathological and TEM data revealed structural
disorders of myocardial fibers, infiltration of inflamma-
tory cells, fragmented and disrupted myofibrils, and dis-
organized sarcomere arrays. These ultrastructural
changes in the failing heart were significantly attenuated
by LGZG.
Cardiac contractility and relaxation are determined by

the Ca2+ cycle, which is critical for the mobilization of
intracellular Ca2+ in E-C coupling. The Ca2+-triggering
concentration generated by LCCs decays by several or-
ders of magnitude with distance [49, 50]; therefore, the
CICR response is highly dependent on the distance be-
tween LCCs and RyRs. Several models have been pro-
posed to explain the decreased EC coupling gain:
mismatch in LCC and RyR locations, increased gap be-
tween SR and TT membranes, orphaned RyRs due to
TT reorganization, and a decrease in size and/or shift in
position [22]. Consistent with these findings, we found
that the size (length and width) of the TT-SR junction

was reduced in failing cardiomyocytes; this was signifi-
cantly ameliorated by LGZG.
JP-2, a key regulator of TT-SR junctions, is downregu-

lated or mislocalized in all animal models of HF [19, 21]
and in patients with HF. miR-24 is a direct regulator of
JP-2. The high expression level of miR-24 in the failing
heart suppresses JP-2 expression [16, 51, 52]. Consistent
with these findings, we observed a significant decrease in
the expression of JP-2 and a concomitant increase in
that of miR-24 in cardiac tissue in the DOX group; these
effects were reversed by LGZG.
Although we showed that LGZG regulates miRNA and

JP-2 expression and improves cardiac function, we did not
demonstrate a direct effect of LGZG on these factors. In
addition, traditional Chinese medicines are multi-
component and multi-target, so the active components
need to be identified. Interestingly, digoxin showed a simi-
lar effect to LGZG. The cardiotonic effect of digoxin is at-
tributed to cytoplasmic Na+ accumulation, which induces
Ca2+ influx by reverse sodium–calcium exchange (NCX)
[53, 54]. Therefore, we suspect that by improving the

Fig. 4 LGZG improved TT-SR microstructural remodeling. (a) Representative cardiac TEM images of cardiac tissue from the control group showing
selection of a region-of-interest. The junction region (left, red box) was selected and analyzed (right). The TT-SR junctional cleft is marked in
yellow. The cleft distance and length of TT-SR junctions were measured as the curvilinear width and length of the yellow line. The average cleft
distance and length of junctions are shown in (b) and (c). Data are mean ± SEM, n = 8. NS, not significant
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calcium ion pathway, promoting myocardial contractility,
and ultimately regulating the expression of miR-24 and
JP-2 by feedback may be the mode of action of digoxin.
However, further investigation is needed.

Conclusions
Taken together, our findings demonstrate that LGZG in-
hibits miR-24 expression and promotes that of JP-2, im-
proving TT-SR microstructural remodeling and attenuating
DOX-induced HF. These results suggest the factors tar-
geted by LGZG to ameliorate HF, and they provide experi-
mental evidence for LGZG treatment of related diseases.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12906-019-2771-6.

Additional file 1: Fig. S1. LGZG did not affect the mRNA level of CACN
A1S and RyR2. (A) RyR2 and (B) CACNA1S mRNA level by quantitative
real-time PCR. The experiments were performed in triplicate. Data are
mean ± SEM, n = 8. NS, not significant. Fig. S2. HPLC for quality control of
the components of LGZG. (A) The representative ingredients of LGZG in-
clude pachymic acid, trans-cinnamic acid, atractylenolide I, glycyrrhizic

acid, which are used for quality control. (B) HPLC was preform to analysis
of LGZG. Table S1. Primer sets used for real-time PCR.
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