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Summary
Non-alcoholic fatty liver disease (NAFLD) is reaching epidemic proportions, with a global prevalence
of 25% in the adult population. Non-alcoholic steatohepatitis (NASH), which can lead to cirrhosis,
has become the leading indication for liver transplantation in both Europe and the USA. Liver
fibrosis is the consequence of sustained, iterative liver injury, and the main determinant of out-
comes in NASH. The liver possesses remarkable inherent plasticity, and liver fibrosis can regress
when the injurious agent is removed, thus providing opportunities to alter long-term outcomes
through therapeutic interventions. Although hepatocyte injury is a key driver of NASH, multiple
other cell lineages within the hepatic fibrotic niche play major roles in the perpetuation of
inflammation, mesenchymal cell activation, extracellular matrix accumulation as well as fibrosis
resolution. The constituents of this cellular interactome, and how the various subpopulations
within the fibrotic niche interact to drive fibrogenesis is an area of active research. Important
cellular components of the fibrotic niche include endothelial cells, macrophages, passaging im-
mune cell populations and myofibroblasts. In this review, we will describe how rapidly evolving
technologies such as single-cell genomics, spatial transcriptomics and single-cell ligand-receptor
analyses are transforming our understanding of the cellular interactome in NAFLD/NASH, and how
this new, high-resolution information is being leveraged to develop rational new therapies for
patients with NASH.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the
Liver (EASL). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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Introduction
Chronic liver disease (CLD) and mortality from end-
stage liver failure are increasing globally and have
become critical public health challenges of our time.
Worldwide, CLD and its complications cause nearly 2
million deaths, i.e. more than 1/30th of all-cause
mortality.1 Europe has the highest relative death
rate related to CLD.2 In the UK, cirrhosis-related
complications, including hepatocellular carcinoma,
are the fastest growing cause of preventable death,
with a 400% increase in standardised mortality since
1970.3 In the US, CLD and cirrhosis are the 12th
leadingcauseof death inall agegroups, but the fourth
leading cause of death in the 45–64 years age group.4

The global epidemic of obesity, diabetes and the
metabolic syndrome has been mirrored by an in-
crease in the number of patients with non-
alcoholic fatty liver disease (NAFLD), with an esti-
mated global prevalence of 25%.5 Non-alcoholic
steatohepatitis (NASH), the progressive form of
NAFLD associated with inflammation, fibrosis and
increased liver-related mortality, affects up to 30%
of all patients with NAFLD.6 NAFLD is becoming the
number one indication for liver transplantation in
Europe and the USA.2,5
Cirrhosis is the common endpoint of liver
fibrosis caused by any iterative liver injury. It is
characterised by progressive fibrosis of the liver
parenchyma with disruption of hepatic architec-
ture, aberrant regeneration, abnormal vasculature
and ultimately, loss of liver function.7 At the his-
tological level, cirrhosis demonstrates major
architectural disruption, with regenerative nodules
separated by fibrous septa.8 Early NASH fibrosis is
thought to begin around the central vein and in
perisinusoidal regions, with progression to more
generalised, portal-portal bridging fibrosis, as seen
in advanced cirrhosis of all aetiologies. Liver
fibrosis can both progress and regress, displaying
remarkable inherent plasticity and reversibility if
the underlying injurious agent is removed. The
natural history of NASH is less predictable than
other aetiologies of cirrhosis, such as hepatitis C,
where progression of fibrosis closely correlates
with the underlying disease activity and resolution
can lead to significant reversal of fibrosis. Steatosis
does not define the degree of fibrosis nor the
progression of the disease, but reversal of fibrosis is
often observed with weight loss of >10% in obese
patients with NAFLD.9,10
cumc.columbia.edu
(R.F. Schwabe).

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Neil.Henderson@ed.ac.uk
mailto:Neil.Henderson@ed.ac.uk
mailto:rfs2102@cumc.columbia.edu
mailto:rfs2102@cumc.columbia.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhepr.2022.100524&domain=pdf


Key points

� Non-alcoholic fatty liver disease (NAFLD) is reaching epidemic pro-
portions, with a global prevalence of 25% in the adult population.

� Non-alcoholic steatohepatitis (NASH), which can lead to cirrhosis, has
become the leading indication for liver transplantation in both Europe
and the USA.

� The liver possesses remarkable inherent plasticity, and liver fibrosis can
regress when the injurious agent is removed, thus providing oppor-
tunities to alter long-term outcomes through therapeutic
interventions.

� This review explores our current understanding of how the molecular
and cellular interactome regulate the fibrotic niche in NAFLD.

� Multiple cell lineages within the hepatic fibrotic niche play major roles
in the perpetuation of inflammation, mesenchymal cell activation,
extracellular matrix accumulation as well as fibrosis resolution.

� We describe how rapidly evolving technologies such as single-cell
genomics, spatial transcriptomics and single-cell ligand-receptor ana-
lyses are transforming our understanding of the cellular interactome in
NASH, and how this high-resolution information is being leveraged to
develop rational new therapies for patients with NASH.

Review
In contrast to many other human chronic liver diseases, NASH
displays a unique pathogenesis as it forms part of the metabolic
syndrome, a multi-system disturbance of metabolic regulation.
Furthermore, the iterative, unresolved inflammation observed in
NASH creates favourable conditions for fibrosis which are self-
perpetuating and indeed become amplified by intrahepatic and
extrahepatic factors such as cellular senescence, hepatocyte
dedifferentiation (with concomitant increases in ductular reac-
tion and progenitor cells), as well as adipose tissue inflammation
and gut-liver axis-driven inflammation.11,12 Lipotoxicity causes
hepatocyte stress and cell death via multiple mechanisms
including altered mitochondrial function, endoplasmic reticulum
(ER) stress, the activation of death receptors and inflammatory
signalling cascades, as well as increased oxidative stress.13 This is
often compounded by oxidative stress from hyperglycaemia
when diabetes is present. When these ‘multiple-hits’ reach a yet
ill-defined threshold of hepatocellular stress and injury, they
activate multicellular circuits involving liver-resident cells,
including hepatic stellate cells (HSCs), Kupffer cells (KCs, i.e.
liver-resident phagocytes) and endothelial cells, as well as a wide
range of bone marrow-derived myeloid and lymphocytic im-
mune cells. To date, it has proven challenging to develop effec-
tive therapeutic strategies for NASH fibrosis that target a singular
cell type or pathogenic mechanism, which emphasises the
importance of a comprehensive understanding of cell-cell in-
teractions in the inflammatory and pro-fibrotic microenviron-
ment. Future effective treatments may require combined
targeting of several pathomechanisms simultaneously, including
pathological cell interactions in the fibrotic niche.10 Furthermore,
in progressive NASH, the topography of the liver micro-
architecture includes areas of regeneration alongside areas of
unresolved inflammation and fibrogenesis, with stage-specific
compositions and interactions in these fibrotic niches.13 In this
review, we will describe how rapidly evolving technologies such
as single-cell genomics are transforming our understanding of
the multicellular pro-fibrotic interactome in NASH, and how
deep insights into the pathogenic mechanisms of human NASH
at the cellular and molecular level are being leveraged to develop
rational new therapies for patients with NASH.
Determining cell-cell interactions in NASH
Given the importance of cell-cell interactions for all aspects of
NASH, there have been many efforts to study these interactions
in vitro and in vivo. Co-culturing cells using conventional 2D
methods or in 3D spheroids allows for functional characterisa-
tion of these interactions,14 but is hampered by the poor repro-
duction of the environment that drives NASH in vivo, with
investigations often limited to 2 subpopulations rather than the
multicellular environment. Furthermore, these culture systems,
in addition to precision-cut liver slice systems, lack flow condi-
tions, thereby hampering the understanding of extrahepatic
mediators (e.g. nutritional products or microbial-associated
molecular patterns from the gut, adipose tissue mediators) and
patrolling immune cells. Some recently engineered perfused
liver-on-a-chip models try to overcome these limitations but can
only partially mirror the natural cell organisation in the fatty
liver.15 Until recently, interactions between cell types in vivo
could only be assessed one at a time through immunohisto-
chemistry and pharmacologic or genetic inhibition studies. With
the advent of single-cell RNA-sequencing (scRNAseq), methods
have been developed to determine the interactions between cell
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types based on the expression of ligand-receptor pairs and re-
positories for these interactions. Despite some dropout inherent
to scRNAseq, a significant percentage of these mRNAs are
captured in every cell, allowing for nearly genome-wide and
largely unbiased analysis of interactions between all cell types
within a given tissue, both in normal and diseased conditions.
Multiple computational tools and associated ligand-receptor
interaction databases have been developed to elucidate these
interactions, with platforms such as CellPhoneDB, CellChat and
ICELLNET taking into account that interactions often occur be-
tween heterodimers or multi-subunit receptors and ligands.16

However, the spatial context of these interactions, which are
often local, has not been sufficiently integrated into these plat-
forms. Integration of spatial transcriptomics into these platforms
is considered a next step to more reliably assess cell-cell
communication.17 Likewise transcriptomics may not accurately
reflect protein expression and does not accurately capture many
metabolites as well as other biologically active ligands, such as
lipids or bile acids, that are not directly encoded by specific
mRNAs, thus requiring integration of proteomics or other
advanced multimodal analyses in the future. CellPhoneDB anal-
ysis has revealed numerous cell-cell interactions in mouse
models of NASH and in patients with cirrhosis, including NASH-
associated cirrhosis, and has revealed mesenchymal cells, mac-
rophages and endothelial cells as having intense interactions
with other cell types.18–20 However, dedicated analyses of these
interactions in different stages of human NASH will be needed to
improve our understanding and targeting of NASH. Newly
developed platforms such as multicellular organoids and liver-
on-a-chip microfluidic systems can be used to further study
these interactions functionally and evaluate therapeutic strate-
gies that target specific ligand-receptor interactions.21,22
Hepatocytes and their interactions
The pro-fibrotic microenvironment in NASH involves complex
interactions of parenchymal and non-parenchymal cells which
drive and perpetuate NASH progression. Pathogenesis can be
viewed from the starting point of hepatocyte injury. Caloric
overload, steatosis, oxidative stress, ER stress and hepatocyte
‘lipoapotosis’ represent first steps in cell-cell communication,
2vol. 4 j 100524



triggering the fibroinflammatory cycle.13,23 Hepatocytes are the
major regulators of lipid metabolism, mediating the conversion
of lipids to stable, non-toxic, macrovesicular fat, which may act
as a buffer to prevent hepatocyte injury. Excess lipids cause
direct toxicity to hepatocytes via oxidative stress, whereby fatty
acid oxidation generates reactive oxygen species that deplete
antioxidant reserves.24 Accumulation of fatty acids leads to the
collapse of the mitochondrial membrane potential, cessation of
electron transport and subsequent activation of pro-apoptotic
signalling via factors such as tumour necrosis factor (TNF)a and
NF-jB (the latter having both pro and anti-apoptotic poten-
tial).25,26 Fatty acids also directly interact with transcription
factors and receptors, such as hepatocyte nuclear factor 4 a
(HNF4a), which regulates metabolism and hepatocyte identity,
and toll-like receptors (TLRs), which regulate the immune
response, contributing to an altered and pro-inflammatory
environment.25,27 In parallel, cholesterol and other mediators
contribute to changes in the transcriptional programmes in
steatotic hepatocytes, leading to an upregulation of develop-
mental pathways that are often seen in bipotential progenitor
cells or ductular cells, such as Notch and TAZ, which can directly
activate pro-fibrotic cell-cell communication between hepato-
cytes and neighbouring cells.28–30

Hepatocyte injury, apoptosis and necrosis promote a sterile
inflammatory response. This includes activation of KCs to clear
necrotic debris, recruitment of lymphocytes and bone-marrow-
derived monocytes, extracellular matrix (ECM) remodelling,
myofibroblast activation, angiogenesis, and hepatocyte regener-
ation and differentiation to replace lost hepatocytes.11,31,32 In
NASH, hepatocytes undergo apoptosis, necroptosis or pyroptosis
(a newly described caspase 1-dependent apoptosis observed in
NASH),33 thereby initiating inflammation in several ways. They
release damage-associated molecular patterns (DAMPs), such as
DNA fragments, histones, ATP, uric acid and cholesterol crystals,
that act as stress signals to activate DAMP receptors, such as
TLRs, P2X and P2Y purinoreceptors and C-type lectin domain
(CLEC)12A, which activate innate immunity and inflammation,
and often exacerbate tissue injury.34 They also secrete inflam-
matory and fibrogenic cytokines either directly, such as inter-
leukin (IL)-1b and IL-18,35,36 or via extracellular vesicles
containing C-X-C motif chemokine ligand (CXCL)10, a ligand for
C-X-C motif chemokine receptor (CXCR)3, and mitochondrial
DNA, a key TLR9 ligand.37 Hedgehog pathway activation is trig-
gered by injured, ballooned and/or TAZ-expressing hepatocytes
in NASH via the release of sonic hedgehog or Indian hedge-
hog.30,38 In addition to regulating liver regeneration, hedgehog
ligands, via their receptor Patched, promote the activation of
HSCs in vitro and in mice, and show a positive correlation with
progression from steatosis to steatohepatitis and myofibroblast
activation in human livers.39,40 Likewise, activation of Notch in
steatotic hepatocytes contributes to the secretion of osteopontin,
which in turn contributes to HSC activation.30

Apoptotic hepatocytes further interact with immune and
mesenchymal cells as they undergo the process of efferocytosis
by phagocytes. Whilst this process has anti-inflammatory po-
tential, as it removes intracellular content which could otherwise
act as DAMPs, efferocytosis also triggers macrophages to release
transforming growth factor (TGF)b. This signalling pathway
positively and negatively modulates inflammation in a number
of ways, including via the activation of HSCs, a key source of scar-
producing myofibroblasts.33,41 Apoptotic bodies from hepato-
cytes can also be engulfed by HSCs and there is evidence that this
JHEP Reports 2022
process leads to the transition of HSCs into myofibroblasts,
potentially establishing a direct connection between hepatocyte
injury and scar formation.42

Finally, hepatocyte senescence appears to be important in
preventing resolution of inflammation, promoting steatosis and
driving fibrosis, as elegantly shown by genetic depletion of
p16Ink4a-expressing senescent cells.43 In response to oxidative
stress, hepatocytes undergo changes including telomere short-
ening, nuclear enlargement and damage to genomic and mito-
chondrial DNA that lead to a senescence-associated secretory
phenotype (SASP).44 Initially, hepatocyte senescence may be
protective, preventing injured cells from proliferating. However,
driven by signalling pathways such as NOTCH1, SASP cells
contribute to a pro-inflammatory microenvironment by
secreting inflammatory cytokines, growth factors and matrix-
degrading enzymes which have been implicated in the pro-
gression of NASH.45,46 In particular, the macrophage chemokines
C-C motif chemokine ligand (CCL)2 and TGFb may promote a
SASP in neighbouring cells.47

There are several recent studies that revealed disease-driving
hepatocyte interactions by single-cell analyses. Wang et al.
identified a number of potential NASH-upregulated signalling
axes, such as TNFRSF11B-TNFSF10, between hepatocytes and
activated HSCs.19 Mederacke et al. uncovered the purinergic re-
ceptor P2Y14 as highly enriched on HSCs and showed that the
P2Y14 ligands UDP-glucose, UDP-galactose and UDP-glucuronic
acid act as danger signals that are released upon liver injury
and promote HSC activation and liver fibrosis.48
Ductular cells and their interactions
The unresolved injury and loss of hepatocytes leads to perturbed
regeneration and the appearance of a “ductular reaction” in
advanced liver diseases including NASH. Cytokeratin (CK)7- and
CK19-expressing ductular cells are significant promoters of
fibrosis and interact with multiple cell types, including HSCs,
portal fibroblasts and a wide range of immune cells.49 The
interaction between the portal mesenchyme and ductular cells is
bidirectional and not only controls the ductular proliferative
state but also promotes mesenchymal proliferation. Ductular
proliferation precedes mesenchymal expansion and is triggered
by soluble factors. Of note, mesenchymal-ductular interactions
inhibit ductular proliferation during recovery, mediated by cell
contact-dependent signals such as Notch2.50,51 Moreover, duct-
ular cells express an array of fibrogenic mediators that have been
shown to be upregulated in the human fibrotic liver.52,53 The
most notable of these are platelet-derived growth factor (PDGF)
BB, TGFb1 and TGFb2, and sonic hedgehog, all of which promote
myofibroblast activation.54–56 In particular, TGFb2 has been
identified as a key promotor of progenitor/cholangiocyte differ-
entiation from the periportal-periductular region in regenerating
human livers post-transplant. This ‘ductular reaction’ is perpet-
uated by pro-inflammatory myofibroblasts which express sur-
vival factors to maintain fibrogenic portal-ductal tract
formation.57 Targeting the pathological interaction between
ductal cells and myofibroblasts has shown some therapeutic
promise. Integrin avb6 is a receptor for the ECM proteins fibro-
nectin and tenascin C and can also activate the potent pro-
fibrogenic cytokine TGFb1. Integrin avb6 is highly expressed by
ductal cells.58 Small molecule inhibition and antibody blockade
of integrin avb6 have both been shown to effectively attenuate
biliary and non-biliary fibrogenesis with reduced proliferation of
3vol. 4 j 100524



Review
cholangiocyte-like progenitor cells and attenuated TGFb1 acti-
vation.59,60 Most of the studies on mesenchymal-ductular in-
teractions and therapeutic concepts were established in non-
NASH settings and therefore need to be further investigated in
NASH models.

Single-cell transcriptomic analysis of NASH allowed for a
broader and higher resolution interrogation of ligand-receptor
interactions between hepatocytes or ductular cells and their
cognate signalling partners (Fig. 1). Single-cell-based studies on
the interactions between cholangiocytes and mesenchymal cells
are emerging,61 but specific ligand-receptor pairs for these
potentially relevant cellular interactions in NASH are still
missing.
Kupffer cells and their interactions
Innate immune cells are central regulators of tissue injury and
repair. Of these, KCs and bone marrow-derived macrophages
(BMDMs, also termed monocyte-derived macrophages) play key
roles in both sensing metabolic injury and disturbed tissue ho-
meostasis in NAFLD as well as propagating fibrogenesis and
fibrolysis. KCs are the resident liver macrophages and in the
context of sterile inflammation, remove cellular debris and ECM
to facilitate regeneration of heathy tissue. Their dysregulation in
NASH can increase chronic inflammation and fibrosis through
the production of cytokines such as TGFb1 and IL-6.62 Both KCs
and BMDMs are activated in acute injury by DAMPs through TLRs
and Nod like receptors (NLRs), as well as by inflammatory cy-
tokines. These processes are significantly upregulated in NASH,
Stressed hepatocytes

Immune cells

H

↑ TNFα
↑ NF-κB
↑ SHH
↑ TNFSF10

DAMPs-TLRs
IL-1β-IL-1R
IL-18-IL-18R
mDNA-P2X, P2Y CLEC12A
CXCL10-CXCR3
CCL2 (SASP)-CCR2

TGF
Amp

Fig. 1. Signalling from injured hepatocytes and cholangiocytes to non-paren
through DAMPs-TLR9, IL-1b, IL-18 and CXCL10 and directly stimulate myofibrobla
Immune cell-mediated mechanisms of myofibroblast activation include TGFb1/2
receptors in red.
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with KCs recruiting large amounts of Ly6Chi blood monocytes
that rapidly differentiate into highly phagocytic macrophages in
mouse models.63 Activation of TLR4 on KCs promotes NF-jB
signalling, causing further amplification of the inflammatory
response, including secretion of cytokines such as TNF-a and
CCL2. Concurrently, NLRP3 activation in KCs promotes IL-1b, a
critical pro-inflammatory cytokine which induces several com-
ponents of the acute phase response.64–66 Fatty acids can also
activate innate immune cells directly via TLR2 and TLR4.67 These
activated phagocytes also produce reactive oxygen species and
nitrous oxide which perpetuates macrophage-mediated tissue
injury.62 Pro-fibrotic macrophages coordinate inflammation and
fibrosis through a range of interactions with myofibroblasts, for
example, amphiregulin, produced by macrophages, activates the
integrin-av-TGFb axis and induces the differentiation of mesen-
chymal cells into myofibroblasts.68
Bone marrow-derived macrophages and their
interactions
Increased recruitment of BMDMs is a crucial event in NASH and
during the chronic phase of inflammation, KCs and BMDMs take
on differing phenotypes. During self-limiting acute hepatic
injury, and after cessation of the acute inflammatory response,
macrophages can adopt a phenotype that promotes resolution
and tissue remodelling. This pro-resolution macrophage
phenotype drives ECM degradation, with upregulation of matrix
metalloproteinase (MMP) expression and downregulation of the
inflammatory transcriptome, including decreased expression
Cholangiocytes/
epithelial progenitor cells

epatic stellate
cells/portal
fibroblasts

Activated
myofibroblasts

TGFβ1/2-TGFβR1/2
SHH-Patched
IHH-Patched
PDGFBB-PDGFRA
UDP-Glucose-P2Y14
UDP-Galactose-P2Y14

β1/2-TGFβR1/2
hiregulin-EGFR

Activation

TGFβ1/2-TGFβR1/2
Integrin αvβ6
PDGF BB-PDGFRA
Osteopontin-CD44

chymal cells in the fibrotic niche. Injured hepatocytes activate immune cells
st differentiation and activation through TGFb1/2, SHH and PDGFRBB signalling.
- and amphiregulin-mediated pathways. Ligands are represented in blue and
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levels of TGFb1.69–71 However BMDMs, which accumulate in
chronic inflammation remain transcriptomically different from
KCs, in a more pro-inflammatory state, as evidenced from mouse
models. These monocyte-derived/bone marrow-dependent
macrophages in NASH livers share striking similarities with
macrophages in related extrahepatic compartments such as the
bone marrow or adipose tissue,72,73 including a subset of “lipid-
associated macrophages” with a unique metabolically activated
phenotype.74

The advent of single-cell RNA-sequencing (scRNAseq) has
resulted in a profound change in our ability to understand the
myeloid cell population within the human hepatic fibrotic niche
at unprecedented resolution. Ramachandran et al. used scRNA-
seq technology to identify a disease-associated TREM2+/CD9+
macrophage population that was significantly expanded in hu-
man cirrhotic livers. Immunofluorescence staining demonstrated
that these TREM2+/CD9+ macrophages were highly enriched in
the fibrotic niche. Analysis of the transcriptome of these scar-
associated macrophages demonstrated a phenotype analogous
to TREM2+/CD9+ BMDMs in mice. In silico trajectory analysis,
based on spliced vs. unspliced mRNA ratios, suggested that these
cells were derived from blood monocytes. Gene ontology of the
top differentially expressed genes identified pro-fibrogenic fac-
tors, such as IL-1B, TREM2 (triggering receptor expressed on
myeloid cells 2), CXCR4, C-C motif chemokine receptor (CCR)2,
CXCL8, TNFSF12 and vascular endothelial growth factor (VEGF)A,
which regulate scar-producing myofibroblasts, upregulate
inflammation and promote angiogenesis. This high-resolution
transcriptomic data also enabled in-depth ligand-receptor ana-
lyses, which identify differentially expressed ligands from cells
within the fibrotic niche and pair them with cognate receptors
expressed in cell populations within the dataset. This can be
used to establish a ‘multi-lineage interactome’. Ligand-receptor
pairs were localised to the fibrotic niche between scar-
associated macrophages expressing TNFSF12 and PDGFB with
myofibroblast receptors TNFSF12A and PDGFRA, respectively.
Cognate, pro-fibrotic myofibroblast receptors were also identi-
fied for secreted phosphoprotein 1 and IL1b.75 Using scRNAseq,
Glass et al. measured significant changes in the gene expression
of KCs in a NASH diet mouse model, including partial loss of KC
identity, expression of TREM2 and CD9 and apoptosis.76 This may
also have more direct consequences for metabolic injury in he-
patocytes, since KCs, or at least their CD206+ESAM+ subset,
actively participate in lipid metabolism.77 Identifying such cell-
cell interactions within the fibrotic niche has clear translational
potential for drug development. An emerging application of
scRNAseq technology is ‘multi-omics’, combining methods such
as scRNAseq and spatial transcriptomics, whereby the single-cell
transcriptomes are mapped on a tissue section. Using these
methods, Guilliams et al. localised unique populations of KCs and
bile duct macrophages. They identified key interactions between
KCs and HSCs via the ALK1-BMP9 and 10 axis and showed that
the bile duct macrophages could be activated by exposure to
lipids.78
Dendritic cells and their interactions
Dendritic cells (DC) closely interact with T cells in their role as
antigen-presenting cells and are subdivided into conventional
DCs (cDC1 and cDC2) and plasmacytoid DCs (pDCs). Overall, DCs
accumulate during NASH, but the data on specific sub-
populations and their function remains controversial. Hepatic
JHEP Reports 2022
cDC1 numbers have been suggested to increase or decrease in
NASH.79–81 Moreover, mice lacking cDC1 due to Batf3 deficiency
display accelerated NASH with increased inflammatory cells.82

On the other hand, a NASH-promoting role of cDC1s was
shown in mice by blocking X-C motif chemokine ligand 1 (XCL1),
a chemokine with a key role in cDC1 recruitment, or by genetic
depletion of cDC1 expressing XCR1, the receptor for XCL1.81 Thus,
the XCL1-XCR1 axis seems to be a key mediator of hepatic cDC1
recruitment in NASH.
Innate lymphoid cells and their interactions
Innate lymphoid cells (ILCs) are a population of tissue-resident
immune cells that lack T- and B-cell receptors, which also
include natural killer (NK) cells in addition to other functionally
diverse ILC subtypes. NK cells are an innate immune cell type
that demonstrate cytolytic activity towards stressed or apoptotic
cells. They are integral modulators of the inflammatory micro-
environment and play an important role in NASH. NK cells are
activated by inflammatory cytokines including IL-12, IL-15 and
IL-18 and subsequently upregulate inflammation via interferon-
c. Importantly, NK cells inhibit and indeed kill activated
mesenchymal cells and myofibroblasts.83 However, myofibro-
blasts that fail to enter senescence and continue to produce scar
tissue are resistant to NK activity and perpetuate fibrosis even
after the inflammatory stimulus has reduced.84,85 Moreover, NK
cells, via crosstalk with macrophages, attenuate NAFLD-induced
fibrosis by regulating M1/M2 polarisation.86 IL-33-mediated
expansion of ILC2s was shown to promote toxin-induced liver
fibrosis through an IL-13-IL4R-STAT6 pathway.87 Similarly, IL-33
treatment aggravated hepatic fibrosis in NASH but at the same
time attenuated hepatic steatosis and serum alanine amino-
transferase.88 However, deficiency of IL-33 did not affect NASH-
induced fibrosis.89 Together, these data suggest complex roles
for IL-33 and ILC-2 in NASH and possibly thresholds for IL-33 that
need to be surpassed to modulate fibrosis. ILC3 significantly in-
crease in fatty liver, and RORgt KI/KI mice, which are deficient in
ILC3, showed increased hepatic steatosis and fibrosis.90 Accord-
ingly, IL-22, which is produced by ILC3 and signals through the
IL-22/IL-22R1/IL-10R2 complex, ameliorated experimental liver
fibrosis by inducing HSC senescence via upregulation of STAT3.91

Unconventional T cells, which mostly recognise lipids, small
molecule metabolites and modified peptides in an MHC-
independent manner, include natural killer T (NKT) cells,
mucosal-associated invariant T (MAIT) cells and cd T cells. In the
liver, unconventional T cells represent the majority of T cells.
With most functional studies done in mice, it is important to
recognise that NKT cells are abundant in livers of mice but rare in
humans, and vice versa, MAIT cells are abundant in human but
rare in mouse livers. Hepatic NKT cell numbers increase in hu-
man and mouse NASH,92 and NASH and fibrosis are reduced in
CD1d-deficient mice, which lack NKT cells. Mechanistically,
several ligand-receptor pairs mediate the effects of NKT cells,
including LIGHT-HVEM (which promotes hepatocyte steatosis)
and CXCL16-CXCR6 (which promotes hepatic NKT cell recruit-
ment and liver fibrosis).93,94 The role of MAIT cells in NASH re-
mains poorly understood. While studies in MR1-deficient mice
(which lack MAIT cells) and Va19TCRTg mice (which have
increased MAIT cells), suggest a pro-inflammatory and pro-
fibrogenic role of MAIT cells in toxic liver fibrosis (mediated by
interactions with HSCs via TNF and its receptors, as shown in co-
cultures95), studies in an methionine-choline deficient diet NASH
5vol. 4 j 100524



Cell Functional
interactions
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Leukocytes
Macrophages, HSCs
MFBs

GCSFR
IL-6R
CD44

IL-17A
ICAM
VCAM
FGF2

Neutrophils, HSCs
Macrophages
Endothelia HSC,
MFBs

IL-17R
MAC1
ITGα4β1
FGFR2

Cytolytic activity:
Injured hepatocytes
Myofibroblasts

IL-12
IL-15
IL-16

Leukocytes
Leukocytes
Leukocytes

IL-12R
IL-15R
IL-16R

IFN-γ
GCSF

Leukocytes
Neutrophils

IFNGR
GCSFR

Orchestrate
differentiation and
activation of immune
cells

CCL5
CXCL9, CXCL10
IL-7
IL-17A

Endothelia, KCs
Innate immune cells
Innate immune cells
Leukocytes

CCR5
CXCR3
IL-7R
IL-17R

TNF-α
IFN-γ
IL-12
IL-2
IL-17A

Leukocytes, HSCs
Leukocytes
Leukocytes
Leukocytes
Neutrophils, HSCs

TNFR1/2
IFNGR
IL-12R
IL-2R
IL-17R

Fig. 2. Immune cell interactome table. Summary of macrophage, neutrophil, NK cell and T lymphocyte populations within the hepatic fibrotic niche, with key
roles in inflammation/fibrosis; activation pathways and ligand/receptor expression are highlighted. The known role and interactions of NKT cells and B cells are
addressed in the text. BMD, bone marrow-derived; HSCs, hepatic stellate cells; KCs, Kupffer cells; MFBs, myofibroblasts; NK(T), natural killer (T).
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model have suggested protective effects.96 cdT cells are liver-
resident cells that are sustained by the microbiota and are
dependent on hepatocyte-expressed CD1d; they are predomi-
nant producers of IL-17A and they are known to contribute to
NAFLD development.97
Platelets and their interactions
In NASH, platelets interact with liver-resident KCs to promote the
recruitment of CD8 T cells and NKT cells, depending on in-
teractions between platelet-expressed GPIba and vonWillebrand
factor, thereby promoting disease.98 Moreover, platelets are a
rich source of growth factors, including PDGF, and thereby pro-
mote proliferation of PDGFR-expressing cells such as HSCs in
non-NASH settings.99
Neutrophils and their interactions
Neutrophils are also important components of the inflammatory
cell response in NASH, which is characterised by the early infil-
tration of neutrophils. The number of these cells, as well as the
neutrophil-to-lymphocyte ratio correlates with serum alanine
aminotransferase levels and significantly predicts fibrosis in
humans.100 There is significant crosstalk between macrophages
and the neutrophils that they recruit during NASH. Macrophages
mediate the adhesion, migration and activation of neutrophils
via CD44, and macrophage antigen 1, L-selectin, E-selectin, P-
selectin and the integrin superfamily. In turn, neutrophils acti-
vate KCs and endothelial cells, resulting in the upregulation of
intercellular adhesion molecules and vascular cell adhesion
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molecules.101 Myeloperoxidases secreted by neutrophils are
associated with steatosis and inflammation.102 Neutrophils are
also the main producer of IL-17A, a cytokine that promotes TGFb
production and upregulates the expression of TGFb receptors on
myofibroblasts. In a positive amplification loop, TGFb in turn
induces the expression of IL-17A, when expressed in the pres-
ence of other pro-inflammatory cytokines.103 These include
caspase 1, NOD receptors, LRR (leucine-rich repeats) receptors,
the NLRP3 pathway and NF-jB, which have all been identified as
upstream activators of the IL-17A–TGFb axis.104
B and T lymphocytes and their interactions
Besides innate immune cells, B and T lymphocytes also play an
integral role in the orchestration of inflammation and fibro-
genesis in NASH. T-lymphocyte-deficient mice do not develop
steatosis or inflammation in fructose-induced NAFLD models.105

NASH livers are characterised by a population of CXCR6+ CD8+ T
cells that are activated upon metabolic stimuli and promote
“auto-aggressive” killing of hepatocytes in an MHC-class-I-
independent fashion.106 In addition to cytotoxic CD8+ T cells,
CD4+ cells orchestrate the differentiation and activation of other
immune cells, they proliferate and localise to the liver paren-
chyma in response to chemokines which include CCL5 and IL-7,
secreted by innate immune cells and shown to be upregulated
in patients with NAFLD.107,108 T helper 1 lymphocytes promote
macrophages to differentiate into their acute inflammatory
phenotype via IFN-c, IL-12 and TNF-a signalling. T helper 17 cells
produce chemokines which are chemoattractant for neutrophils
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Fig. 3. Multi-lineage regulation of myofibroblast formation in the hepatic fibrotic niche. The central red arrow represents activation of mesenchymal cells
into myofibroblasts which deposit ECM and drive scar formation. Macrophages, liver sinusoidal endothelial cells and natural killer cells can all exert regulatory
effects on myofibroblast activation. Furthermore, myofibroblasts can also secrete MMPs that break down and remodel the ECM. ECM, extracellular matrix.
and also secrete IL-17 that exacerbates steatosis and inflamma-
tion.107,109 The role of B lymphocytes in NASH is also emerging,
with respect to both the production of circulatory IgG against
oxidative stress-derived epitopes as well as potential roles
within the fibrotic liver parenchyma itself. B cells exhibiting a
pro-inflammatory phenotype (IL-6 and TNF-a expressing) accu-
mulate in the liver lobules of rodent NASH and NASH gut dys-
biosis models.110,111 The immunological microenvironment of the
hepatic fibrotic niche is summarised in Fig. 2.
Mesenchymal cells and their interactions
The major classes of mesenchymal cells in the healthy liver
include HSCs, portal fibroblasts (PFs) and vascular smooth
muscle cells. Following liver injury, hepatic myofibroblasts are
the primary scar-producing cells. Myofibroblasts express high
amounts of fibrillar collagens, ECM proteins, inflammatory cy-
tokines and chemokines. Myofibroblasts have been shown to
differentiate from HSCs or PFs dependent on the model of liver
injury. In rodent models of parenchymal injury, it is predomi-
nantly HSCs that activate and differentiate into myofibro-
blasts.112,113 HSCs are resident perisinusoidal mesenchymal cells
that radiate cytoplasmic projections throughout the space of
Disse. The perisinusoidal fibrosis in early human NASH is
thought to be produced by activated HSCs/myofibroblasts.114
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Upon injury, HSCs become activated, increasing their
contractility, secreting inflammatory mediators, and synthesising
ECM components. In acute injury, wound healing is dynamic and
reversible. Deposition of the ECM is crucial for mechanically
stabilising injured tissue, enabling effective migration of im-
mune, mesenchymal and endothelial cells into the repairing
tissue. However, when injury is repetitive, ECM components
continue to accumulate and fibrosis occurs.115 Hepatocytes,
macrophages, cholangiocytes, endothelial and immune cells can
all promote or inhibit the activation of HSCs via multiple
mechanisms (see Fig. 3). In response to growth factors such as
PDGF from macrophages, connective tissue growth factor (CTGF)
from mesenchyme/endothelial cells, VEGF and TGFb1, quiescent
HSCs differentiate into myofibroblasts.54,59 TGFb1 binding and
phosphorylation of downstream SMAD proteins promotes the
secretion of the fibrillar collagens, type 1 and 3 into the ECM,
replacing the basement membrane collagens. TGFb1 is primarily
secreted by epithelial cells and KCs.116 As the ECM is established
and stiffens, mechanical strain provides a direct mechanism for
the conversion of latent TGFb1 into its active form.115 Myofi-
broblasts continuously regulate matrix deposition and turnover
through the actions of MMPs and tissue inhibitors of metal-
loproteinases (TIMPs).117

Activated HSCs and myofibroblasts produce multiple che-
mokines, including CCL2, CCL3, CCL5, CXCL1, CXCL8, CXCL9 and
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CXCL10 that orchestrate inflammation through leukocyte
recruitment.118 HSCs also secrete macrophage colony stimulating
factor (CSF), IL-6, RANTES, CCR2 and CCR5, amplifying the acute
response to inflammation.119 Macrophages then secrete IL-1b
which may promote the survival of HSCs and increase the pool of
collagen-producing cells.120

HSC-mediated, fibrogenic signalling pathways include TGFA,
keratinocyte growth factor, thrombin, fibroblast growth factor
(FGF) and epidermal growth factor which cause proliferation of
hepatocytes, cholangiocytes and mesenchymal cells.121–125

Similar to macrophages, HSCs also express TLR4 and therefore
play a role in TGFb1 signalling in response to the increased levels
of DAMPs in NASH.126 HSCs modulate the ECM and the formation
of scar tissue via 2 types of collagen receptors, integrins and
discoidin domain receptors (DDRs). Both receptors are inde-
pendently involved in regulation of cell adhesion, differentiation,
proliferation of myofibroblasts and migration of both myofibro-
blasts and macrophages.31 HSCs are also mediators of hepatocyte
regeneration, as the main source of hepatocyte growth factor.127

Other signalling pathways that directly or indirectly activate
HSCs include: TAZ, which is specifically expressed in NASH he-
patocytes;128 Notch, which influences HSC cell fate toward
myofibroblasts; osteopontin, which is induced by Notch and TAZ
signalling129 and hedgehog pathways including Indian hedgehog
and sonic hedgehog, which are expressed in ballooned NASH
hepatocytes and closely correlate with lymphocytic infiltration,
ductular reaction and ECM collagen deposition.38

ScRNAseq allows for high-resolution transcriptomic profiling
of mesenchymal subpopulations during liver fibrosis, and sub-
sequent ligand-receptor analysis of the non-mesenchymal pop-
ulations interacting with these mesenchymal subpopulations.
For instance, scRNAseq data from mouse fibrosis models
revealed that chemokine/cytokine release and ECM production
appears to be diversified between HSC/myofibroblast sub-
populations.130 Ramachandran et al. used this approach to
identify a distinct population of scar-associated mesenchymal
cells in the human liver expressing high levels of fibrogenic
genes and the myofibroblast marker, PDGFRA. These myofibro-
blasts were topographically restricted to fibrotic septae and
ligand-receptor analysis revealed a number of pro-fibrogenic
pathways including TNFRSF12A, PDGFR and Notch. These re-
ceptors were paired to their corresponding ligands in scar-
associated macrophages and scar-associated endothelia.75

ScRNAseq has also been used to categorise murine HSCs into
central vein and portal vein-associated functional zones, with
central vein-associated HSCs as the primary fibrillar collagen
producers in a mouse model of centrilobular fibrosis.41 A further
scRNAseq-based study of mouse hepatic mesenchyme also
demonstrated zonation of HSCs across the healthy liver lobule,
and following induction of NASH, the authors observed 4 distinct
HSC clusters, including 1 representing the classic fibrogenic
myofibroblast. The 3 other HSC clusters comprised a proliferating
cluster, an intermediate activated cluster, and an immune and
inflammatory cluster. Interestingly, livers with NASH regression
had 1 cluster of inactivated HSCs, which was similar to, but
distinct from, the quiescent HSCs.131 MacParland et al. found that
quiescent and activated HSCs were transcriptomically distinct,
with activated HSCs downregulating vitamin A storage-related
genes, such as LRAT (lecithin retinol acyltransferase) and RBP1
(retinol binding protein 1), and upregulating pro-fibrogenic
genes, such as collagen type I a1, TIMP, CTGF, TGFB1 and tenas-
cin C. They also identified a subgroup that may represent
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senescent HSCs, having completed their activation phase,
expressing IL-32, CSF1, TNFSF10, CCL2, IL-6ST. These sub-
populations were identified in healthy human livers, facilitating
exploration of the role of HSCs in liver homeostasis.132 The
transcriptomes of NASH-associated mesenchyme subpopulations
identified using scRNAseq can be analysed in-depth for ligand-
receptor interactions with other cell lineages. Wang et al. iden-
tified a number of potential fibrosis-associated myofibroblast
genes, including AEBP1 (AE binding protein 1), LARP6 (La ribo-
nucleoprotein 6, translational regulator) and PRRX1 (paired
related homeobox 1), as well as pro-fibrotic signalling axes, such
as ITGAV-LAMC1 and NOTCH2-DLL4.19 As well as collagen pro-
duction, ligand-receptor analysis indicates that activated HSCs
play a complex role in fibrotic signalling through the ECM
secretome itself: secreted proteins such as collagen serving both
a structural and a signalling functionwith cognate receptors such
as ITGA1 (integrin subunit a1) or DDR2. They also have activating
receptors for a number of vasoactive proteins such as VIPR1
(vasoactive intestinal protein receptor 1) and AGTR1A (angio-
tensin II receptor type 1a).20

PFs represent an additional mesenchymal population in the
liver, however their role in NASH is much less well studied than
that of HSCs. PFs are a key myofibroblast precursor in cholestatic
liver injury,133 and populations of PFs have been shown to
expand in murine models of biliary injury, expressing high levels
of fibrillar collagen at single-cell resolution.134 These cells are
distinct from HSCs with no vitamin A storage and express unique
markers such as THY1, fibulin (FBLN)1, FBLN2, MFAP4 (microfibril
associated protein 4) and GAS6 (growth arrest specific 6).135–137
Endothelial cells and their interactions
There are several endothelial cell subpopulations that line the
hepatic vasculature and lymphatic vessels. Liver sinusoidal
endothelial cells (LSECs) are localised along the sinusoids and
form an interface between blood arriving from the gut and the
hepatic parenchyma. In health, LSECs regulate anti-inflammatory
and antifibrotic signalling by preventing KC and HSC activation
via nitric oxide, cGMP and VASP (vasodilator stimulated phos-
phoprotein).138 Like KCs, LSECs express TLR4 receptors that
recognise bacterial lipopolysaccharides and also express unique
scavenger receptors such as CLEC4G that mediate endocytosis.139

As well as endocytosis and antigen presentation, LSECs mediate
adhesion and migration of leukocytes into the parenchyma via
chemokines such as vascular adhesion protein 1 (monocyte and
T-cell recruitment), CCL2 (monocyte recruitment), CXCL10 (T-cell
migration) and CXCL16 (NK(T) cell migration). Therefore, LSECs
play a key role in immunomodulation in the liver and many of
these leukocyte migration axes are upregulated in NASH.140,141

One key observation in the progression of cirrhosis is the loss
of LSEC fenestration, termed ‘capillarisation’. Not only does this
contribute to portal hypertension and reduce the efficiency of
the liver to interface with portal blood, but it also prevents the
export of lipids such as VLDL back into the circulation. LSEC
capillarisation is therefore closely linked to steatosis in NASH.
Possible triggers for LSEC capillarisation include gut microbiota
and dietary macronutrients.142 Importantly, capillarisation is
associated with a switch from fibrosis-restricting to fibrosis-
permissive. Moreover, LSECs control the balance between liver
regeneration and fibrogenesis via a pro-regenerative CXCR7-Id1
pathway and a pro-fibrotic FGFR1-CXCR4 pathway.143 Scar-
associated LSECs have been shown by scRNAseq to expand in
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human cirrhosis. These cells have a PLVAP+ and ACKR1+ tran-
scriptome and demonstrate a number of pro-inflammatory
ligand-receptor interactions, such as TGFB1-TGFBR3, JAG1-
NOTCH1 and CCL2-ACKR1.75

ScRNAseq has also revealed that, like hepatocytes, LSECS
appear to be highly zonated in homeostasis and lose this zona-
tion in NASH cirrhosis. Portal-central zonation is in part medi-
ated by the Wnt-b-catenin pathway and influenced by the
intestinal microbiome. LSECs in pericentral regions have been
shown to be more vulnerable to damage associated with
cirrhosis.144–146 This may partly explain why restoration of a gut
microbiota associated with health has been shown to reverse
portal hypertension in rat models of NASH.147
Long distance interactions in NASH: Gut dysbiosis,
adipose tissue and bile acids
In NASH, an interplay of genetic, metabolic and microbiological
factors combine to progress liver pathology from steatosis to
fibrosis in what is seen as a ‘multiple hit’ model. ‘Dysbiosis’,
defined as an altered disease-associated microbiome, has been
shown to increase with the severity of NASH in both rodents and
in humans. This is paralleled and closely related to increased
intestinal permeability, bacterial translocation into the portal
system and activation of pro-inflammatory pathways.148 In
chronic liver disease, bacteria and microbial products, collec-
tively known as microbiota-associated molecular patterns,
translocate across the intestinal barrier owing to intestinal bar-
rier disruption. Microbiota-associated molecular patterns such as
bacterial lipopolysaccharide accumulate in the portal vein and
have been shown to act as ligands for TLR2 and TLR4. These
activate pro-inflammatory pathways leading to secretion of cy-
tokines and chemokines from various cell types in the liver,
including endothelia, myofibroblasts and hepatocytes.125,149,150

All known human TLRs are expressed by HSCs, indicating the
importance of their interaction with the gut microbiome.150,151 In
mouse models, the severity of experimental liver fibrosis can be
attenuated either by blocking TLR4 signalling or reducing mi-
crobial load with antibiotics. TLR4 also downregulates a TGFb1
decoy receptor, thereby sensitising HSCs to TGFb1.152 TLR4 sig-
nalling includes a signalling adaptor called TRIF (alternatively
called TICAM1). TRIF deletion in a model of diet-induced NASH
increased hepatic fibrosis but reduced hepatic steatosis.153 Gut
dysbiosis also leads to changes in bacterial choline metabolism
and subsequent dysregulation of farnesoid X receptor (FXR) and
FGF19 that leads to myofibroblast activation.154 Moreover, the
gut microbiota is linked to NASH via immune cells with key
functions in the regulation of NASH and fibrosis, such as cdT and
MAIT cells, as discussed above.97

The metabolic syndrome also alters and upregulates fibrotic
cell-signalling in the liver. For example, fatty acids amplify the
inflammatory response by interacting with transcription factors
such as HNF4a and TLRs.155,156 The adipokine, Leptin, which is
produced by adipocytes and increased in obesity, amplifies pro-
fibrotic signalling during liver injury in several ways, including
increased production of TGF-b1 from KCs,157 and direct effects on
HSCs.158 Targeting the sequalae of the metabolic syndrome is a
potential therapeutic strategy with peroxisome proliferators-
activated (PPAR) receptors inducing fatty acid oxidation and
reducing metabolic strain. The PPARc nuclear receptor also
downregulates collagen expression as well as HSC activation.159
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A further feature of progressive liver fibrosis is the disruption
of bile acid (BA) homeostasis. Alongside their role in absorption
of lipids and lipid-soluble vitamins, BAs act as ligands. BAs
suppress their own synthesis by binding to BA receptors, most
prominently the FXR, which is critical for regulating their
enterohepatic circulation. BA receptors have multiple down-
stream functions, including lipid regulation, glucose metabolism,
modulation of inflammation and fibrosis. FXR is expressed in the
intestine, where it contributes to the gut-liver axis through
release of FGF19. In addition, scRNAseq has revealed that high
expression of FXR contributes to HSC activation and collagen
production in cholestatic liver disease.160 Another important BA
receptor is TGR5 (also known as GPBAR1), a surface receptor that
has been linked with steatosis and inflammation, which has a
direct role in NLRP3 macrophage polarisation in NASH.161

Furthermore dysregulated BA homeostasis alters the immune
cell composition. In a recent study, patients with NAFLD were
found to have taxonomic alterations in the intestinal microbiome
favouring short chain fatty acid-producing bacteria, higher faecal
levels of choline metabolites and reduced numbers of regulatory
T cells.162 The FXR agonist obeticholic acid has demonstrated
clinical efficacy in NASH, with improvements in liver steatosis,
liver inflammation and fibrosis on sequential biopsies.163
Conclusions and future strategies
Despite advances in our understanding of the pathophysiology of
NASH, there are still no FDA- or EMA-approved therapies for
NASH or NASH-induced liver fibrosis. There are currently only 2
licensed antifibrotic medications (nintedanib and pirfenidone) in
the fibrosis space, both developed to treat idiopathic pulmonary
fibrosis.164 However, recent step changes in scientific approaches
and methodologies including the rapidly evolving field of single-
cell genomics (Table 1), have enabled investigation of the cell
states and subpopulations which inhabit the human hepatic
fibrotic niche at unprecedented resolution. It is hoped that these
approaches will help drive a new era of precision medicine in the
search for effective therapies for NASH, and many other forms of
liver disease. Furthermore, multimodal single-cell approaches
are swiftly gaining traction within hepatology, allowing ‘combi-
nation readouts’ from the same cell, for example simultaneous
acquisition of transcriptomic and epigenomic information, again
maximising our ability to identify the key therapeutic targets in
pathological cells.165,166 In addition, linkage of genome-wide
transcriptomic information with spatial context is now
possible, with the advent of spatial transcriptomics, allowing ‘on-
slide’ RNA-sequencing of tissue sections at ever-increasing res-
olution as the technologies in this area advance and mature.167

Again, deploying these types of technologies should help drive
forward precision medicine in hepatology. Together, these ap-
proaches may provide a vast array of novel candidate targets. For
example, ligand-receptor analysis (using curated databases of
ligand-receptor interactions) can simultaneously compare genes
expressed within different cellular subpopulations present
within the NASH fibrotic niche. This interactome modelling of
ligand-receptor pairs between pathogenic subpopulations in
NASH and other human liver diseases could therefore provide a
molecular framework for the therapeutic targeting of key path-
ogenic cell populations.168,169 Interrupting disease-promoting
cell-cell interactions via specific ligand-receptor pairs may
improve key aspects of NASH such as fibrogenesis and
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Table 1. Summary of some of the current single-cell genomics technologies.

Technology Examples Application Advantages/Disadvantages

Single-cell
RNA-sequencing

10X Chromium® Allows rapid and
high-throughput single-cell
RNA-sequencing

Single-cell transcriptome resolution at scale
Potential for cell-type and cell-stress bias from live cell isolation
during tissue digest

Single-nuclei
RNA-sequencing

10X Chromium® Allows rapid and high-throughput
single nuclei RNA-sequencing

Can use frozen tissue, excellent utility in single hepatocyte
transcriptome generation
Potentially lower read depth (although recent head-to-heads with
single-cell RNAseq are comparable)61

Multiome
transcriptome-epigenome
sequencing

Single-cell
ATAC-seq

Combined epigenetic and
transcriptomic profiling from
the same cell

Can also be combined with single-cell RNA-sequencing data-
bases to analyse epigenetic regulation of genes and identify
regulators such as transcription factors.
ATAC-seq data can potentially be very sparse.

Spatial
transcriptomics

10X Visium®

MERFISH
Maps gene expression
(genome wide – Visium,
or high plex – MERFISH)
spatially within FFPE or
frozen tissue sections

Allows interrogation of in situ gene expression at very high plex
or genome-wide.
A very rapidly evolving field with current pros and cons to most
approaches – best approach depends on the biological question.

Ligand-receptor
interactome analysis

CellPhoneDB
Nichenet

Identifies ligand-receptor
or regulatory gene interactions
within a single-cell database

Can be applied to large transcriptomic databases to identify
significant ligand-receptor interactions between different cell
subpopulations. Will likely be very useful algorithms in the
context of spatial transcriptomic databases as well.
Putative ligand-receptor interactions require wetlab validation/
interrogation.

High-throughput CRISPR
perturbed phenotype analysis

Perturb-seq Analysis at scale of
CRISPR-mediated gene perturbations
at single-cell resolution

High-throughput functional analysis of the transcriptome with
potential to underpin precision drug design.

ATAC-seq, assay for transposase-accessible chromatin using sequencing; FFPE, formalin fixed paraffin embedded; MERFISH, multiplexed error-robust flouesence in situ
hybridisation.
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inflammation. Likewise, understanding key regulatory pathways
within specific disease-promoting cell populations or sub-
populations may enable the pharmacological or genetic targeting
of these populations. High-throughput methods which enable
investigation of the function of specific genes within an inter-
actome are gaining prominence. Perturb-seq facilitates the
analysis of thousands of CRISPR-mediated gene perturbations at
single-cell resolution and can also be applied to common and
rare cell populations.170 These latter technologies also have
enormous potential for precision drug design. Analysis of cell
trajectories, in combination with above analyses on ligand-
receptor interactions and regulatory pathways, may pave the
way for treatments that interrupt differentiation of specific cell
types into disease-promoting states, or, vice versa, stimulate
trajectories towards a regression/resolution-promoting state.
Better understanding of epigenetic regulation of disease-
promoting mechanisms may enable the development of thera-
pies that target the epigenome in NASH. Furthermore, bio-
informatic methodologies are continually being refined to keep
pace with the rapid advances in multimodal dataset acquisition.

Global, highly collaborative and publicly accessible multi-
modal databases, such as the Human Cell Atlas, are also playing a
very important role in disseminating data, and importantly,
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making it easily accessible and usable to researchers around the
world.171 It is now commonplace for research groups to release
their single-cell datasets in easy-to-use web browser formats,
thereby maximising utilisation of these expansive datasets
within the scientific community. Likewise, a wide range of
constantly updated analysis tools for ligand-receptor in-
teractions, gene regulatory network analysis, cell trajectories and
drug mechanism of action, amongst many others, will un-
doubtedly improve our understanding of NASH in the coming
years. Multiomic approaches that integrate transcriptomic,
epigenetic and spatial analyses will allow us to precisely define
the constituents of the cellular interactome of NASH and increase
our understanding of how these various subpopulations within
the fibrotic niche communicate and interact to drive and also
resolve fibrosis. The convergence of these novel approaches
represents an extraordinary opportunity to perform functional in
silico analyses of the cellular and molecular mechanisms that
regulate human liver disease at unprecedented resolution. In
sum, these developments should pave the way towards the
rational design of effective new therapies for patients with
NASH, targeting specific cell-cell communication pathways,
possibly with combination therapies tailored to specific stages of
liver disease.
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