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Neuroblastoma has extraordinary diversity in its presentation and
clinical course, and prognosis is often associated with age of diagno-
sis. Younger children tend to have better outcomes, where spontane-
ous regression can be observed without any therapeutic intervention
[1]. In contrast, indolent or chronic neuroblastoma in older children
and adolescents is characterized by protracted disease that is refrac-
tory to chemotherapy [2]. Alterations of the chromatin remodeler
ATRX are the most common recurrent event in this indolent clinical
subtype, which is associated with overall poor survival and lacks
effective therapies [3,4]. In this article of EBioMedicine, George et al.
utilize an isogenic cellular system to screen for compounds that tar-
get ATRX-deficient neuroblastoma [5]. Their study sheds light on a
promising therapeutic strategy consisting of a combination of ola-
parib (a PARP inhibitor) and irinotecan (a topoisomerase I inhibitor),
both clinical compounds.

ATRX mutations were first identified in neuroblastoma in 2012
through genome sequencing efforts [3,4]. Approximately 30�40% of
tumours in older children harbour ATRX alterations, half of which are
point mutations leading to loss of ATRX product, and the other half
comprise large deletions of the amino terminal chromatin binding
modules creating an in-frame fusion protein [3,6]. ATRX plays a role
in a myriad of nuclear processes, ranging from its role in histone vari-
ant deposition [7] to maintenance of genome stability. This includes
the regulation of repetitive DNA such as pericentric and telomeric
heterochromatin [7,8], G-quadruplex structures [9], and relevant to
this study, various aspects of the DNA damage response [10].

To tease apart the specific impact of ATRX loss, George et al. under-
took a strategy of generating an isogenic system whereby ATRX was
knocked out by CRISPR-Cas9 genome editing in an ATRX wild type
neuroblastoma cell line. While attempted knock out of ATRX alone
failed to produce null clones (suggesting ATRX loss is detrimental in
ATRX wild type neuroblastoma cells), removing TP53 concomitantly
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allowed the authors to create an isogenic cellular model for drug
screening. Such a system is critical for studying ATRX-altered neuro-
blastoma, as the availability of ATRXmutant cell lines as well as patient
samples remains limited. Furthermore, the use of an isogenic model
ensures that effects of heterogeneous genetic backgrounds do not con-
found the output of a screen. With this tool in hand, the authors first
demonstrated that ATRX deficiency results in increased DNA damage,
defects in homologous recombination at telomeres, and impaired rep-
lication fork processivity. These findings are in keeping with previous
reports in the developing forebrain where ATRX deletion leads to
PARP and ATM activation upon the loss of replication fork protection
by ATRX and subsequent cell death of neural progenitor cells [10].

With the characterized isogenic system in hand, George et al. per-
formed a drug screen with a diverse set of over 400 compounds. Consis-
tent with the above cellular phenotypes, they identified sensitivity of
ATRX-deficient cells to ten compounds, five of which were DNA damage
modulators, including each of the three clinical PARP inhibitors included
in the screen. Sensitivity to PARP inhibition was further confirmed with
siRNA knock down. Next, to explore drug combinations, the authors
examined sensitivity to chemotherapy agents utilized in relapsed neu-
roblastoma patients and found that the combination of olaparib + irino-
tecan was more effective than single agent treatment in ATRX deficient
cells, as well as in ATRX in-frame fusion neuroblastoma cells. This com-
bination was further demonstrated to be effective in vivo through xeno-
graft assays using an ATRX in-frame fusion PDXmodel.

Collectively, this study implicates a vulnerability of ATRX-altered
neuroblastoma to defects in homologous recombination, revealing
combination treatment of irinotecan and PARP inhibition as a poten-
tial new therapeutic approach that can be rapidly translated to the
clinic. These findings are consistent with PARP inhibition as a syn-
thetic lethality in other cancers with DNA damage repair defects,
such as BRCA1/2-deficient tumours. Importantly, the combination of
PARP inhibitor and irinotecan resulted in tumour regression and may
be effective in other ATRX mutant paediatric cancers such as osteo-
sarcoma and glioblastoma [7]. Whether this therapeutic combination
would be beneficial for other indolent types of neuroblastoma, or in
patients, remains to be seen. However, given the lack of therapies for
ATRX-altered neuroblastoma patients who do not respond to chemo-
therapy, this study provides an alternative strategy that can be
further explored clinically.
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