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Abstract

With the recent advances in the field of alternate agriculture, there has been an ever-grow-

ing demand for aquaponics as a potential substitute for traditional agricultural techniques for

improving sustainable food production. However, the lack of data-driven methods and

approaches for aquaponic cultivation remains a challenge. The objective of this research is

to investigate statistical methods to make inferences using small datasets for nutrient control

in aquaponics to optimize yield. In this work, we employed the Density-Based Synthetic

Minority Over-sampling TEchnique (DB-SMOTE) to address dataset imbalance, and Extra-

TreesClassifer and Recursive Feature Elimination (RFE) to choose the relevant features.

Synthetic data generation techniques such as the Monte-Carlo (MC) sampling techniques

were used to generate enough data points and different feature engineering techniques

were used on the predictors before evaluating the performance of kernel-based classifiers

with the goal of controlling nutrients in the aquaponic solution for optimal growth.[27–35]

Introduction

The food production challenges that the world faces on a daily basis due to globalization and

rapid industrialization, have led to increased applications of Aquaponics [1, 2] as a viable alter-

native to traditional agricultural techniques for improving sustainable food production, given

its efficient and sustainable method of water management. The environmental, economic,

social, and ethical aspects of these techniques have been of great focus lately, and the varieties

of food products emerging from these techniques have been of keen interest. Another major

advantage of aquaponics over conventional farming techniques is that it utilizes only 2 to 10%

of the water required in traditional vegetables or crop production and has the potential to pro-

duce 10 times more output without the use of harmful chemicals and pesticides [3]. There

have been a few studies in which laboratory set-ups have been used to optimize nutrients for

growing plants in hydroponic environments [4] through controlled set-ups but not a lot has
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been done to implement them on a larger scale. Although aquaponics has been a topic of

research for nearly two decades, very little has been done to automate the process of nutrient

control for optimal growth of both fish (the key source of nutrients for an aquaponic farm)

and plants in a commercial set-up. All the work until now has been focused on implementing

various data-analysis techniques to optimize yield in small controlled set-ups which have been

highlighted in the next paragraph.

In the last few years, there have been some advancements in the field of Smart Aquaponics

where the environmental, as well as the plant growth parameters, have been monitored using

vision-based approaches in a controlled IoT environment. In [5], Arvind et. al. proposed an

approach to automatically control the dynamics of the aquaponic system by using an autoML

algorithm to improve plant and fish growth and help monitor the system using a cloud plat-

form. The sensor data was collected ten times every day and the fish count was extracted using

the R-CNN instance segmentation which was used as a feature to train the algorithm. Simi-

larly, in [6], an IoT-based real time sensing and actuation system has been designed to control

the nutrients in an aquaponic set-up depending on the output of a pre-trained ML algorithm

which outputs the appropriate nutrient concentrations according to the season in which the

lettuce was grown. In [7], features were extracted from lettuce leaves in a smart aquaponic set-

up and a comparative study of the three ML estimators: K-Nearest Neighbor (KNN) [8], Logis-

tic Regression [9], and Linear Support Vector Machine (L-SVM) [10] was conducted to detect

the diseases that the crop can incur in its lifetime. However, very little research has been done

to automate the control of nutrients in aquaponic solutions. The objective of this work is to

suggest a recommendation system for regulation of certain chemical nutrients in the aquapo-

nic solution using Machine Learning (ML).Sodium, bicarbonate and chloride concentrations

in the aquaponic solution are used as inputs along with the month in which these observations

were recorded, and a set of rules have been suggested for optimal growth of both plants and

fish in a single set-up.

One of the major limitations that is faced while designing an intelligent system for regulat-

ing the nutrient parameters in aquaponic solutions is the lack of data. This study was addressed

in [11] where Dhal et al. used Bolstered Error estimation techniques in conjunction with many

linear and non-linear classifiers to find the ideal classification technique for regulating nutri-

ents in coupled aquaponic set-ups using small datasets as training datasets. To overcome this,

proper feature selection techniques are required. Joundi et al. [12] used an integrated ML

approach applying Recursive Feature Selection with Cross-validation (RFECV) which incor-

porated Linear SVC, Random Forest Classifier and ExtraTressClassifier to select robust fea-

tures as per their feature importance for ischemic stroke detection. In [13], Chen et al.

proposed XGBoost to reduce feature noise and perform dimensionality reduction through gra-

dient boosting and used average gain as an estimate to improve protein-protein interactions.

Another important consideration while designing an ML approach with dearth of data is data

augmentation by generating synthetic data points. This was addressed by Dahmen et al. in

[14] using SynSys, an ML-based synthetic data generation method to generate synthetic time-

series data that is composed of nested sequences using hidden Markov models and regression

models that are trained on real datasets. Similarly, in [15], Radford M. Neal proposed many

techniques of probabilistic inference using Markov-Chain Monte-Carlo methods where the

underlying structure of the existing data was used to compute the mean and covariance matri-

ces to generate synthetic data.

Another issue when making inferences with small datasets is the problem of imbalanced

classes which one may encounter while making inferences both in the case of supervised and

unsupervised learning. In [16], Beckmann et al. demonstrated the efficiency of KNN under-

sampling as a technique for creating a balance between the majority and minority classes.
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Similarly, in [17], the problems of missing values, class imbalance, and high dimensionality in

the case of small datasets as well as how under-sampling the majority class provides better sen-

sitivity have been addressed.

Lastly, before deciding on the classifier that would achieve the best classification accuracy,

visualizing the data can be useful. In [18], Nasser et al. demonstrated Kernel PCA as a visuali-

zation tool by looking at the scatter plot of the projected data and distinguishing different clus-

ters within the original data. Similarly, in [19], Abid et al. proposed contrastive PCA as a tool

to identify low-dimensional structures in datasets where data has been collected under differ-

ent conditions. Next, before doing a comparative study of the classifiers at hand, a study of the

different feature engineering techniques can be considered as it may prove useful in improving

the classification accuracy of the dataset. Elaborating further on this, Tsagris et al. in [20] pro-

posed a method of data-based power transformation for compositional data by neglecting the

compositional constraint and applying standard multivariate data analysis, or by applying logs

of the ratios of the components to transform the data. Similarly, in [21], Bogner et al. con-

ducted a Normal Quantile Transformation (NQT) [22, 23] in many hydrological and meteoro-

logical applications to make the observed and simulated data conform to Gaussian

distribution patterns. In the end, a comparative study of several deterministic kernel-based lin-

ear and non-linear classifiers like the Adaboost classifier [24], Gradient Boosting classifier

[25], and Linear Support Vector Machine (L-SVM) [26] can be considered to determine the

ideal classifier for inferencing on these small datasets for optimizing aquaponic water

management.

Following the steps mentioned above in the pipeline, it would be possible to achieve the

main aim of the study which is to determine the optimal approach that should be used for

nutrient optimization in aquaponic systems. This study can also be used to draw inferences in

domains where the size of the dataset is very small.

Methodology

The dataset used in this case for analysis was recorded from three different aquaponic facilities

in East-Central Texas, one from each county: Grimes, Brazos, and Caldwell. The data was col-

lected over the course of a year from June 2020 to June 2021, roughly every week, and was sent

to the Soil, Water, and Forage Testing Laboratory Facility at Texas A&M University, College

Station, TX for nutrient profiling. Two samples were collected from each of these aquaponic

facilities, one from the fish tank and the other from the chamber where the plants were grown.

The data collected from both of these chambers were appended onto a single dataset and vari-

ous data analysis techniques like selecting the optimal features, generating synthetic data, engi-

neering the existing features, and choosing the optimal classifier were used to make a single

ML model that can be used for the entire aquaponic system to automate the growth of plants

and ensure optimal yield.

In Table 1, how each nutrient was extracted from the aquaponic solution is described in

detail.

These parameters were coupled with some intrinsic chemical properties of the aquaponic

solution and weather parameters for each date when these observations were recorded, to

develop a complete dataset which is described in the next section. A comprehensive overview

of the approach used in the paper has been stated in Fig 1 below.

Construction of the dataset

The initial dataset used in this case had a total of 201 observations and 32 predictors. Eleven

chemical concentrations have been used as predictors in this case: calcium, magnesium,
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sodium, potassium, boron, carbonates, bicarbonates, sulfate, chlorides, nitrates, and phospho-

rus (all of them measured in ppm.); 8 chemical properties of the aquaponic solution: pH, con-

ductivity (umhos/cm), two measures of hardness (one measured in grains CaCO3/gallon and

other measured in ppm CaCO3), alkalinity (ppm CaCO3), Total Dissolved Salts (ppm), SAR

and Charge Balance; and 4 heavy metal concentrations: Iron, Zinc, Copper and Magnesium

(all measured in ppm.).A total of 5 weather predictors for each greenhouse were also appended

to the dataset: Wind speed (miles per hour), Temperature (K), Humidity (%), Pressure (mm)

and Precipitation (inch).

In addition to this, a total of 4 categorical predictors were also used. The month in which

the data were recorded was grouped into 5 categories for analysis. The observations recorded

from January through March, April through May, June through August, September through

Table 1. Method for measurement of chemical parameters used in Texas A&M Soil, Water and Forage Testing

Laboratory, College Station, TX [27–35].

Sl.

No.

Name of the Chemical Components Method of Measurement

1 Calcium, Magnesium, Sodium, Potassium, Boron and

heavy metal concentrations (Iron, Zinc, Copper, and

Manganese) [All of these measured in ppm]

Inductively Coupled Plasma Analysis (ICP

Analysis)

2 Carbonate and Bicarbonate concentrations [ppm] Acid titration using sulfuric acid

3 Chloride concentration [ppm] Ion chromatography method

4 Nitrate concentration [ppm] Reduction to nitrates using a cadmium column

followed by spectrophotometric measurement

5 pH Using hydrogen ion-selective electrode

6 Conductivity (measured in umhos/cm) Using a conductivity probe

https://doi.org/10.1371/journal.pone.0269401.t001

Fig 1. A pipeline of the approach used in the paper for prescribing recommendation rules.

https://doi.org/10.1371/journal.pone.0269401.g001
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October, and November through December were categorized into Category 1,2,3,4 and 0

respectively and were stored as MONTH_CLASS in the dataset. Similarly, the county in which

the data was recorded was one-hot encoded into three categories where Brazos, Caldwell, and

Grimes counties were stored as PLACE_CLASS_0, PLACE_CLASS_1, and PLACE_CLASS_2

respectively.

Feature selection

As stated above, making inferences on a small dataset with a large number of predictors does

not produce accurate classifiers, due to the Curse of Dimensionality [36]. For this reason, vari-

ous feature selection techniques were used to reduce the size of the dataset to 7 predictors.

After using the pairwise correlation matrix to remove the chemical predictors which had sig-

nificant correlation among them, the ExtraTreesClassifier with 250 estimators was used to find

the feature importance of these attributes and eliminate the predictors which had less than 5%

importance in the analysis. Finally, the XGBoost algorithm with Recursive Feature Elimination

was used to rank the predictors and select the top chemical predictors which were coupled

with categorical predictors for the entire analysis.

Dataset balancing and synthetic data generation

As the entire dataset was initially treated as an unsupervised approach using K-Means to clus-

ter them, there is a high probability of an imbalance in the classification of the data due to the

extremely small size of the dataset. That is why, the DB-SMOTE algorithm was used to create

more samples from the minority class to have a balance in the dataset before generating syn-

thetic data.

For the generation of synthetic data, two variants of the Monte-Carlo (MC) sampling tech-

nique were used. As the entire approach is considered as a binary classification problem, the

first case of synthetic data generation uses a method in which a separate mean and covariance

matrix is generated for each class, sub-categorized by the MONTH_CLASS in which the obser-

vations were recorded. The second case of synthetic data generation uses a similar technique

in which the mean and covariance matrix is shared between both classes. Both these

approaches have been elaborated on in the next part of the paper.

Feature engineering and choice of optimal classifier

There have been numerous applications where engineering new features out of the existing

ones can improve classification accuracy, especially when dealing with small datasets. That is

why, the following four techniques of feature transformations have been used in this case:, (i)

Normal Quantile Distribution on the entire dataset with the number of quantiles as 100 and

the output distribution as uniform, (ii) Applying Power Transformation [37] on the numerical

predictors, (iii) Applying Power Transformation on the numerical predictors and clipping the

highest and lowest quantiles of data and (iv) Ranking the numerical predictors and applying

Normal Distribution transformation on all the predictors.

For each of these cases, a comparative analysis of the performance of three kernel-based

classifiers (Adaboost classifier, Linear Support Vector Machine with varying values of penalty

parameter, and Gradient Boosting Classifier) have been tested by dividing the data into five

splits and repeating the process fifteen times to decide the optimal classifier. Based on the cho-

sen classifier, a set of rules have been prescribed to regulate the nutrient concentrations in the

aquaponic solution for optimal growth of both fish and plants in a unified set-up.
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Results

The initial size of the dataset used in this study was 201 observations x 32 predictors. However,

as stated before, the size of the dataset was reduced to 7 predictors before comparing classifier

performance. To begin with the analysis, a pairwise correlation matrix [38] was constructed

using Factor Analysis [39], and the list of predictors which were removed for having more

than 90% correlation between them are as follows: Magnesium (ppm), Hardness (grains

CaCO3/gallon), Hardness (ppm CaCO3), Alkalinity (ppm CaCO3), Total Dissolved Salts

(ppm) and Copper (ppm).

After this, ExtraTreesClassifier [40] with 250 estimators and a depth of 5 was applied to the

numerical predictors in the dataset to find out the feature importance and eliminate the pre-

dictors which contributed less than 5% importance in the analysis. The importance of each

numerical feature has been stated in Table 2.

Based on the features that have been highlighted in the above table, a decision was taken to

remove the following predictors from the analysis as they yielded less than 5% importance:

Calcium (ppm), Potassium (ppm), Boron (ppm), Sulfate (ppm), Phosphorus (ppm), Conduc-

tivity (umhos/cm), Iron (ppm), Zinc (ppm), Manganese (ppm), Charge Balance, Temperature

(K), Humidity (%), Pressure (mm) and Precipitation (inch). After removing these 14 predic-

tors, there were a total of 7 numerical predictors on which RFE with XGBoost classifier was

used to select the top three numerical predictors. Therefore, the final set of numerical predic-

tors used in the analysis were Sodium (ppm), Bicarbonate (ppm), and Chloride (ppm) to

which four categorical predictors were appended namely the one-hot encoded PLACE_CLASS

storing the county in which the observations were recorded and the other storing the month

when these observations were taken.

Table 2. Feature importance values of the predictors in the analysis given by the ExtraTreesClassifier.

Sl. No. Name of the Predictor Feature Importance (%)

1 Calcium (ppm.) 3.4

2 Sodium (ppm.) 8.42

3 Potassium (ppm.) 3.34

4 Boron (ppm.) 3.37

5 Bicarbonate (ppm.) 8.80

6 Sulfate (ppm.) 3.58

7 Chloride (ppm.) 9.28

8 Nitrate-N (ppm.) 5.13

9 Phosphorus (ppm.) 3.32

10 pH 8.79

11 Conductivity (umhos/cm) 4.78

12 SAR 6.40

13 Iron (ppm.) 3.68

14 Zinc (ppm.) 4.35

15 Manganese (ppm.) 4.68

16 Charge Balance 2.65

17 Temperature (K) 3.68

18 Humidity (%) 4.79

19 Wind speed (mph) 5.77

20 Pressure 0.73

21 Precipitation 0.96

https://doi.org/10.1371/journal.pone.0269401.t002
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Next, the Synthetic Minority Overestimation technique with a 3-NN classifier has been

used to create a balance between both the classes in the dataset before generating synthetic

data. The first case of synthetic data generated using the MC technique involves the creation of

a different Mean and Covariance matrix between both the classes and has been shown in

Table 3.

Therefore, the total number of synthetic data points generated with different mean and

covariance matrices between the classes is 816. Likewise, as stated above, the second case of the

MC approach takes into account a shared mean and covariance matrix between both the clas-

ses and the generation of synthetic data using that approach has been stated in Table 4.

As observed from the above table, the number of synthetic data points generated with

shared mean and covariance matrices between the classes is 804. This takes the total size of the

dataset to 1620 observations x 7 predictors which have been used in the next part of the paper

for analysis.

As discussed above, feature engineering may play an important role when inferencing with

small datasets. That is why, a comparative study of the four feature engineering techniques on

the deterministic classifiers (Adaboost, Linear SVM with varying values of penalty parameter

(C), and Gradient Boosting classifier (GB classifier)) have been done in reference to the base-

line model [Figs 2–6]. For these techniques, each classifier is trained and tested on 5 splits of

data with 15 repeats, and the aggregate testing accuracy is recorded. Based on the results, the

ideal Feature Engineering technique with the classifier has been chosen to suggest recommen-

dations for the prescribed set-up. The Standard Deviation observed in case of each of the clas-

sifiers is 0.02 at maximum which is not significant from a statistical perspective.

Comparing the deterministic models at hand, it seems that Linear SVM went on to perform

well on the dataset with minimum Standard Deviation between its accuracies. However, with

Table 3. Synthetic data generation using the MC technique where the mean and covariance matrices are not shared between the classes.

Sl. No. Class Month Class Place Class Original Number of Datapoints in the Dataset Number Of Synthetic Datapoints generated

1 1 4 0 12 50

1 10 40

2 25 100

2 1 3 0 3 12

1 0 0

2 5 20

3 0 0 0 30 120

1 15 60

2 45 190

4 0 1 0 11 44

1 8 32

2 21 84

5 0 2 0 7 28

1 6 24

2 3 12

6 0 3 0 0 0

1 0 0

2 0 0

7 0 4 0 0 0

1 0 0

2 0 0

https://doi.org/10.1371/journal.pone.0269401.t003
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maximum accuracies hovering around 70% for the classifiers, the predictors have been trans-

formed using various Feature Engineering techniques which have been discussed in Figs 3–6.

From Fig 3, it can be stated that the overall accuracies for all the Adaboost classifier and

Linear SVM with different values of penalty vary between 70 to 75%, except for Gradient

Boosting classifier which has an aggregate accuracy of 68%. In order to improve the classifica-

tion accuracy, the variance between the numerical predictors is stabilized so that the output

distribution is more normally distributed which also improves the Pearson correlation among

the variables. This has been addressed in Fig 4.

From Fig 4, it can be observed that the aggregate accuracies for all the three classifiers do

not show any significant improvement in classifier performance, with even further

Table 4. Synthetic data generation using the MC technique where the mean and covariance matrices are not shared between the classes.

Sl. No. Month Class Place Class Original Number of Datapoints in the Dataset Number Of Synthetic Datapoints generated

1 0 0 29 116

1 15 60

2 46 184

2 1 0 11 44

1 8 32

2 21 84

3 2 0 7 28

1 6 24

2 3 12

4 3 0 3 12

1 0 0

2 5 20

5 4 0 12 48

1 10 40

2 25 100

https://doi.org/10.1371/journal.pone.0269401.t004

Fig 2. Classification results using baseline model (without any feature engineering techniques).

https://doi.org/10.1371/journal.pone.0269401.g002
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degradation when the value of penalty parameter for the Linear SVM is increased beyond 70.

To address this, there has been an attempt to remove the outliers in the dataset by clipping the

lowest and highest quantiles of data. The classification results of the analysis have been

included in Fig 5.

In the last method of data transformation, the numerical predictors i.e. Sodium (ppm),

Bicarbonate (ppm), and Chloride (ppm) are assigned a rank by the algorithm, and then a

Gaussian Quantile Transformation is applied to the entire dataset with the number of quantiles

as 1000 and output distribution as uniform which has been stated in Fig 6 below.

Fig 3. Classification results using quantile transformation on the dataset (applying normal quantile distribution

on the dataset with the number of quantiles set to 100 and output distribution as uniform).

https://doi.org/10.1371/journal.pone.0269401.g003

Fig 4. Classification results using power transformation on the numerical predictors and later appending the

categorical predictors to the dataset.

https://doi.org/10.1371/journal.pone.0269401.g004
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Therefore, based on the above simulation results, a decision was taken to proceed with

power-transforming the numerical predictors in the dataset namely, Sodium (ppm), Bicarbon-

ate (ppm), and Chloride (ppm) so that the variance is reduced between the predictors. The

lowest and the highest quantiles of the data were also clipped so that the outliers are removed

from the dataset. After this, a Linear SVM classifier with a penalty parameter set to 1 was

decided as the ideal classifier in this case as it yielded 75.18% aggregate accuracy on the test set

with 5-fold cross-validation, with the algorithm repeated for 15 times.

Fig 5. Classification results using power transformation on the numerical predictors and clipping the lowest and

highest quantiles of data.

https://doi.org/10.1371/journal.pone.0269401.g005

Fig 6. Classification results using gaussian transformation on the dataset after ranking the numerical predictors.

https://doi.org/10.1371/journal.pone.0269401.g006
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Discussion

As described above, a set of rules have been recommended for each class, which are shown in

the decision tree schematic in Fig 7.

The decision tree stated above recommends a system based on the output of the Machine

Learning model trained on historical data that has been collected for a year. It states the appro-

priate concentration of nutrients that should be maintained in the aquaponic solution based

on the time of the year for optimal growth of plants and fish in the integrated set-up.

Based on the above results, if the predicted class is 0 and the month of cultivation varies

between November and March (peak winter months) and April to May (spring and early sum-

mer months), the potassium concentration in the aquaponic solution is maintained at about

1 ppm as it is an important nutrient for protein synthesis in plants [41]. Similarly, if the pre-

dicted class is 1 and the months of cultivation are from June to October (peak summer months

and onset of fall season), the potassium concentration is increased to 7 ppm to make up for the

loss of nutrients from the aquaponic solution due to evaporation. Further elaborating on this,

potassium plays an important role in the nitrogen metabolism of plants and maintaining the

root-shoot ratio, net photosynthetic rate, and root activity. Therefore, considering the histori-

cal data, maintaining the abovementioned concentration of potassium is vital to sustain plant

growth. For the growth of fish in the system, the concentration of potassium is not a limiting

factor since the amount of potassium provided through fish feed would be enough to sustain

fish growth [42].

As the plants grown here complete one growth phase in 21 days, Boron concentration

needs to be maintained at the levels stated above to ensure optimal root growth of plants. For

class 0, the recommended level of Boron for plants grown from November to March is 1 ppm.

Fig 7. Decision tree stating the recommended rules based on the output from the Machine Learning system.

https://doi.org/10.1371/journal.pone.0269401.g007
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This is because most of the green leafy vegetables are grown during these months and having a

high concentration of Boron is a must for cell wall formation and stability, maintenance of

structural and functional integrity of biological membranes, and movement of sugar or energy

into growing parts of plants [43]. Maintaining an optimum concentration of Boron is also

important for the uptake of Potassium and Phosphorus, which are two important macronutri-

ents for plant growth. Maintaining a high concentration of Boron is reported to be important

for stimulating fish growth as well [44].

The recommended concentrations of Calcium for each of the predicted classes are shown

in Fig 1. If the predicted class is 0 and the months of cultivation are from April to May, then

the concentration of Calcium is maintained at 27 ppm since it is the period when tomatoes

begin ripening, Calcium deficiency at this stage is known to result in blossom-end rot [45].

Except for this period, the concentration of Calcium is maintained at a moderate level for the

healthy growth of leafy vegetables, as shown in Fig 2. For fish growth, maintaining an optimal

concentration of Calcium is important for their skeletal development throughout the course of

their life cycle [46], and recommended Calcium levels are optimal depending on the months

in which fish is cultivated.

If the predicted class is 1 and the time of cultivation is the peak summer months or the early

part of the fall season, the Iron concentration in the aquaponic solution is maintained at a

higher level due to the rapid rate of evaporation, which may happen during the season. This is

important as Iron deficiency would result in a lack of chlorophyll production, resulting in

poor crop yield and quality, and an increase in chances of bacterial infection [47]. For fish

growth, Galbraith et al. [48] reported that the addition of ferrous compounds resulted in a

sharp decline in the mortality rate of fish from hatching to maturity. Iron supplementation in

the aquaponic solution could likely have improved overall fish survival in the current study,

but it was not explicitly studied.

The main advantage of the decision tree developed here is to provide a recommendation

system that is dependent on a few basic parameters of the aquaponic solution i.e. sodium,

bicarbonate, and chloride concentrations which are given as input parameters in the Machine

Learning algorithm, and based on the month in which the observations are recorded, the

model outputs an appropriate concentration of Potassium, Boron, Iron and Calcium that

should be maintained in the aquaponic solution. In aquaponics, the lack of technologies for

the automation of nutrient application has long been a limitation for improving efficiency to

support wider adoption. This work is an improvement over the existing research in this field

which mostly focuses on monitoring plant and fish growth in a controlled set-up. This work is

the first of its kind to propose a recommendation system for automatically controlling nutrient

concentrations in aquaponics to be used on a commercial scale.

However, a system based on these recommendations is yet to be implemented on a com-

mercial scale to prove its efficacy. The current approach takes into consideration the method

of inferencing using Machine Learning models which are trained and tested on a synthetic

dataset. In the future, more efforts need to be made on devising techniques for inferencing

with limited original data rather than generating synthetic data. An actuation set-up can also

be built based on these recommendations for real-time monitoring and regulation of these

nutrient concentrations in aquaponic solutions.

Conclusion

From the above experimental results, it can be concluded that to predict the optimal nutrients

required for fish and plant growth in a single aquaponic set-up, Monte-Carlo (MC) techniques

have been used for synthetic data generation, followed by power-transforming the numerical
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predictors and clipping the highest and lowest quantiles of data as feature engineering meth-

ods. Based on the data that was used to design the approach, Linear Support Vector Machine

with penalty parameter set to 1 was chosen as the ideal classifier as it yielded more than 75%

accuracy on the test data set. A set of recommendation rules have been prescribed in the dis-

cussion on how certain concentrations of nutrients in the aquaponic solution are regulated

based on the predicted class and the month in which the plants are grown. In addition to this,

this paper can also be used for designing approaches for other domains with sparse data.

Acknowledgments

I am grateful to Ms. Sharon Wells, owner of Aquatic Greens Farm, Bryan; Mr. Robert Wolff,

owner of Wolff Family Farms, Caldwell and Mr. Joe Leveridge, owner of Texas US Farms,

Grimes County for their cooperation and providing access to their aquaponic farms for experi-

mentation. Their inputs have served as the basis for all inferences carried out in the paper.

Author Contributions

Conceptualization: Sambandh Bhusan Dhal, Ulisses Braga-Neto, Stavros Kalafatis.

Data curation: Sambandh Bhusan Dhal.

Formal analysis: Sambandh Bhusan Dhal.

Methodology: Sambandh Bhusan Dhal.

Project administration: Ulisses Braga-Neto, Stavros Kalafatis.

Software: Sambandh Bhusan Dhal.

Supervision: Muthukumar Bagavathiannan, Stavros Kalafatis.

Validation: Sambandh Bhusan Dhal.

Visualization: Sambandh Bhusan Dhal.

Writing – original draft: Ulisses Braga-Neto, Stavros Kalafatis.

Writing – review & editing: Ulisses Braga-Neto, Stavros Kalafatis.

References
1. Pillay T. V. R. (2008). Aquaculture and the Environment. John Wiley & Sons.

2. Pillay T. V. R., & Kutty M. N. (2005). Aquaculture: principles and practices (No. Ed. 2). Blackwell

publishing.

3. AlShrouf A. (2017). Hydroponics, aeroponic and aquaponic as compared with conventional farming.

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 27(1),

247–255.

4. Mahanta S., Habib M.R., Moore J.M., 2022. Effect of high-voltage atmospheric cold plasma treatment

on germination and heavy metal uptake by soybeans (glycine max). Int. J. Mol. Sci. 23, 1611. https://

doi.org/10.3390/ijms23031611 PMID: 35163533

5. Arvind C. S., Jyothi R., Kaushal K., Girish G., Saurav R., & Chetankumar G. (2020, December). Edge

Computing Based Smart Aquaponics Monitoring System Using Deep Learning in IoT Environment. In

2020 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1485–1491). IEEE.

6. Dhal S.B., Jungbluth K., Lin R., Sabahi S.P., Bagavathiannan M., Braga-Neto U., et al. 2022. A

machine-learning-based IoT system for optimizing nutrient supply in commercial aquaponic operations.

Sensors 22, 3510. https://doi.org/10.3390/s22093510 PMID: 35591199

7. Alejandrino, J., Concepcion, R., Lauguico, S., Tobias, R. R., Almero, V. J., Puno, J. C., et al. (2020,

November). Visual classification of lettuce growth stage based on morphological attributes using unsu-

pervised machine learning models. In 2020 IEEE REGION 10 CONFERENCE (TENCON) (pp. 438–

443). IEEE.

PLOS ONE An overview of machine learning classifier pipelines for inferencing on very small datasets

PLOS ONE | https://doi.org/10.1371/journal.pone.0269401 August 16, 2022 13 / 15

https://doi.org/10.3390/ijms23031611
https://doi.org/10.3390/ijms23031611
http://www.ncbi.nlm.nih.gov/pubmed/35163533
https://doi.org/10.3390/s22093510
http://www.ncbi.nlm.nih.gov/pubmed/35591199
https://doi.org/10.1371/journal.pone.0269401


8. Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003, November). KNN model-based approach in clas-

sification. In OTM Confederated International Conferences" On the Move to Meaningful Internet Sys-

tems" (pp. 986–996). Springer, Berlin, Heidelberg.

9. Dreiseitl S., & Ohno-Machado L. (2002). Logistic regression and artificial neural network classification

models: a methodology review. Journal of biomedical informatics, 35(5–6), 352–359. https://doi.org/10.

1016/s1532-0464(03)00034-0 PMID: 12968784

10. Forman, G., Scholz, M., & Rajaram, S. (2009). Feature shaping for linear SVM classifiers. In Proceed-

ings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining

(pp. 299–308).

11. Dhal S. B., Bagavathiannan M., Braga-Neto U., & Kalafatis S. (2022). Nutrient optimization for plant

growth in Aquaponic irrigation using machine learning for small training datasets. Artificial Intelligence in

Agriculture.

12. Joundi R. A., Martino R., Saposnik G., Giannakeas V., Fang J., & Kapral M. K. (2017). Predictors and

outcomes of dysphagia screening after acute ischemic stroke. Stroke, 48(4), 900–906. https://doi.org/

10.1161/STROKEAHA.116.015332 PMID: 28275200

13. Chen C., Zhang Q., Yu B., Yu Z., Lawrence P. J., Ma Q., et al. (2020). Improving protein-protein interac-

tions prediction accuracy using XGBoost feature selection and stacked ensemble classifier. Computers

in Biology and Medicine, 123, 103899. https://doi.org/10.1016/j.compbiomed.2020.103899 PMID:

32768046

14. Dahmen J., & Cook D. (2019). SynSys: A synthetic data generation system for healthcare applications.

Sensors, 19(5), 1181. https://doi.org/10.3390/s19051181 PMID: 30857130

15. Neal R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods (pp. 93–1).

Toronto, ON, Canada: Department of Computer Science, University of Toronto.

16. Beckmann M., Ebecken N. F., & de Lima B. S. P. (2015). A KNN undersampling approach for data bal-

ancing. Journal of Intelligent Learning Systems and Applications, 7(04), 104.

17. Poolsawad N., Kambhampati C., & Cleland J. G. F. (2014, July). Balancing class for performance of

classification with a clinical dataset. In proceedings of the World Congress on Engineering (Vol. 1, pp.

1–6).

18. Nasser, A., Hamad, D., & Nasr, C. (2006, September). Kernel PCA as a visualization tools for clusters

identifications. In International Conference on Artificial Neural Networks (pp. 321–329). Springer, Berlin,

Heidelberg.

19. Abid A., Zhang M. J., Bagaria V. K., & Zou J. (2018). Exploring patterns enriched in a dataset with con-

trastive principal component analysis. Nature communications, 9(1), 1–7.

20. Tsagris M. T., Preston S., & Wood A. T. (2011). A data-based power transformation for compositional

data. arXiv preprint arXiv:1106.1451.

21. Bogner K., Pappenberger F., & Cloke H. L. (2012). The normal quantile transformation and its applica-

tion in a flood forecasting system. Hydrology and Earth System Sciences, 16(4), 1085–1094.

22. Rish, I. (2001, August). An empirical study of the naive Bayes classifier. In IJCAI 2001 workshop on

empirical methods in artificial intelligence (Vol. 3, No. 22, pp. 41–46).

23. Reynolds D. A. (2009). Gaussian mixture models. Encyclopedia of biometrics, 741, 659–663.

24. An, T. K., & Kim, M. H. (2010, October). A new diverse AdaBoost classifier. In 2010 International confer-

ence on artificial intelligence and computational intelligence (Vol. 1, pp. 359–363). IEEE.

25. Natekin A., & Knoll A. (2013). Gradient boosting machines, a tutorial. Frontiers in neurorobotics, 7, 21.

https://doi.org/10.3389/fnbot.2013.00021 PMID: 24409142

26. Suthaharan S. (2016). Support vector machine. In Machine learning models and algorithms for big data

classification (pp. 207–235). Springer, Boston, MA.

27. Franson M.A.H. (ed.). 1989. 4500-H+ pH Value. Standard Methods for the Examination of Water and

Wastewater. American Public Health Association, Washington, D.C.

28. Franson M.A.H. (ed.). 1989. 2510 CONDUCTIVITY. Standard Methods for the Examination of Water

and Wastewater. American Public Health Association, Washington, D.C.

29. Franson M.A.H. (ed.). 1989. 4500-NO3- NITROGEN (NITRATE). Standard Methods for the Examina-

tion of Water and Wastewater. American Public Health Association, Washington, D.C.

30. Keeney D.R. and Nelson D.W. 1982. Nitrogen—inorganic forms. p. 643–687. In: Page A.L., et al. (ed.).

Methods of Soil Analysis: Part 2. Agronomy Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI.

31. J.D. Pfaff, C.A. Brockhoff and J.W.0’ DeH, The Determina- tion of Inorganic Anions in Water by Ion

Chromatography. Method 300.0, 1991, U.S. Environmental Protection Agency, Environmental Monitor-

ing Systems Lab., Cincinnati, Ohio, USA.

PLOS ONE An overview of machine learning classifier pipelines for inferencing on very small datasets

PLOS ONE | https://doi.org/10.1371/journal.pone.0269401 August 16, 2022 14 / 15

https://doi.org/10.1016/s1532-0464%2803%2900034-0
https://doi.org/10.1016/s1532-0464%2803%2900034-0
http://www.ncbi.nlm.nih.gov/pubmed/12968784
https://doi.org/10.1161/STROKEAHA.116.015332
https://doi.org/10.1161/STROKEAHA.116.015332
http://www.ncbi.nlm.nih.gov/pubmed/28275200
https://doi.org/10.1016/j.compbiomed.2020.103899
http://www.ncbi.nlm.nih.gov/pubmed/32768046
https://doi.org/10.3390/s19051181
http://www.ncbi.nlm.nih.gov/pubmed/30857130
https://doi.org/10.3389/fnbot.2013.00021
http://www.ncbi.nlm.nih.gov/pubmed/24409142
https://doi.org/10.1371/journal.pone.0269401


32. Franson M.A.H. (ed.). 1989. 3120 METALS BY PLASMA EMISSION SPECTROSCOPY. Standard

Methods for the Examination of Water and Wastewater. American Public Health Association, Wash-

ington, D.C.

33. Franson M.A.H. (ed.). 1989. 2320 ALKALINITY. Standard Methods for the Examination of Water and

Wastewater. American Public Health Association, Washington, D.C.

34. Franson M.A.H. (ed.). 1989. 2340 HARDNESS. Standard Methods for the Examination of Water and

Wastewater. American Public Health Association, Washington, D.C.

35. Fresenius W., Quentin K.E. and Schneider W. (eds.) 1988. 3.2.9. Carbonic acid, hydrogen carbonate

and carbonate. Water Analysis. Springer-Verlag Berlin Heidelberg.

36. Braga-Neto U. (2020). Fundamentals of Pattern Recognition and Machine Learning (pp. 1–286).

Springer.

37. Howarth R. J., & Earle S. A. M. (1979). Application of a generalized power transformation to geochemi-

cal data. Journal of the International Association for Mathematical Geology, 11(1), 45–62.

38. Chang, D. J., Desoky, A. H., Ouyang, M., & Rouchka, E. C. (2009, May). Compute pairwise manhattan

distance and pearson correlation coefficient of data points with gpu. In 2009 10th ACIS International

Conference on Software Engineering, Artificial Intelligences, Networking and Parallel/Distributed Com-

puting (pp. 501–506). IEEE.

39. Fabrigar L. R., & Wegener D. T. (2011). Exploratory factor analysis. Oxford University Press.

40. Fang G., Xu P., & Liu W. (2020). Automated ischemic stroke subtyping based on machine learning

approach. IEEE Access, 8, 118426–118432.

41. Xu X., Du X., Wang F., Sha J., Chen Q., Tian G., et al. (2020). Effects of potassium levels on plant

growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seed-

lings. Frontiers in Plant Science, 11, 904. https://doi.org/10.3389/fpls.2020.00904 PMID: 32655607

42. Storey N. (2017, November 30). 6 Things you need to know about Potassium in Aquaponics.

43. Mosaic Crop Nutrition. Importance of Boron in Plant Growth.
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