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Browning seriously affects the quality of fresh-cut fruits, and its mechanism was

thought to be polyphenol oxidase (PPO) in the past. A way of non-different PPO

browning was found in our previous studies. However, the landscape of this browning

way is still unclear in “Fuji” apples. Multi-omics (methylomics, transcriptomics, and

proteomics) methods were performed to the global profiles of DNA methylation and

gene and protein expression. We employed two natural bud mutation varieties of

apple as materials and found a positive correlation between browning index (BI) and

methylation (5mC%, MdCMT3, and MdCMT3c) and a negative correlation between

BI and demethylation (MdROS1 and MdDME). DNA methylation inhibitor 5-azacytidine

can delay apple browning. Further analysis showed that methylated-NCA1 and OMT1

increased significantly in apple browning. Methylated-NCA1 might inhibit NCA1 gene

expression and resulted in the decline of catalase activity, thereafter significantly

increased apple browning. These findings insight into a new pathway and landscape

that DNA hypermethylation significantly accelerated the browning in “Fuji” apple.

Keywords: apple, browning, DNA methylation, multi-omics landscape, NCA1

HIGHLIGHTS

- Apple browning was closely related to DNA methylation, and DNA methylation level
significantly increased with the increase of browning.

- Multi-omics (methylomics, transcriptomics, and proteomics) landscape is displayed in
apple browning.

INTRODUCTION

Apple is one of the favorite fruits of mankind and originated in China (1, 2). Apples have high
nutritional value and help to improve human health (3). In recent years, with the increasing
demand for fresh, healthy, convenient, and nutritious fruits by consumers, fresh-cut fruits have
gradually become a new aspect with the fastest development in the food industry (4). However,
the storage problem of fresh-cut fruits is very serious mainly due to excessive tissue browning.
Browning affects the appearance, flavor, and nutritional value which causes significant economic
losses (5). Therefore, it is of great value for improving the quality of fruit that uncover the reasons
and mechanisms of apple browning.
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About 20 years ago, the higher activity of polyphenol oxidase
(PPO) was found that is a main reason of apple browning
(6–9). In recent years, antibrowning apple (Arctic R© Apples)
was developed by reducing the expression of PPO gene (10).
However, fruit browning is a complex process which is affected
a variety of external (temperature, light, etc.) and internal
factors (genes, proteins, and metabolites including flavonoids
and polyphenols) (8, 9). In the past three years, our team found
that bud mutation apples have a significant difference at the
level of browning, but there is no difference in the activity of
PPO (11). This browning difference may be caused by epigenetic
factors such as DNA methylation. Moreover, treatment with
the DNA methylation inhibitor 5-azacytidine (5′-Aza) was
found to induce accumulation of anthocyanin compounds
in peach flesh, demonstrating a functional impact of DNA
demethylation on polyphenol levels in peach flesh (12). DNA
methylation regulates gene expression and affects plant growth
and development (13–17), and also fruit maturation (18–24).
The level of DNA methylation was gradually increased during
the fruit maturation which indicated DNA hypermethylation was
crucial for the maturation in sweet orange (25). Research on
DNA methylation has moved from model plants to more crops
(26). The multi-omics provides a comprehensive approach to
understand biological processes that integrate DNA methylation
with other omics, including transcriptomics, proteomics, and
metabolomics (27, 28). The embryonic development of cotton
fiber (29), leaf senescence (30), and tomato pathogen response
(31) was studied by means of multi-omics. In apple, the results of
multi-omics studies are mainly in quality control (32), flower bud
development (33), and DNA methylation on the accumulation
of soluble sugars and organic acids (34). Therefore, multi-omics
has played an increasingly important role in the study of plants
and apples.

In this study, we analyzed a positive correlation between
browning index (BI) and methylation (5mC%, MdCMT3,
and MdCMT3c) and a negative correlation between BI and
demethylation (MdROS1 and MdDME). Moreover, multi-omics
that includes methylomics, transcriptomics, and proteomics
analysis has been showed that methylated-NCA1 and O-
methyltransferase 1 (OMT1) significantly increased in apple
browning. We proposed that methylated-NCA1 might inhibit
to NCA1 and resulted in the decline of catalase (CAT) activity,
thereafter significantly increasing apple browning. This work has
provided a new point and evidence for understanding the process
of browning.

MATERIALS AND METHODS

Apple Collection
Fruits of two “Fuji” apple types (Malus domestica Borkh.),
“flushed-skin color pattern” (abbreviated as P-type) and “striped-
skin color pattern” (abbreviated as T-type), were hand-harvested
from the orchard located in Beijing of China on October, 2019.
Fruits were selected for uniformity in maturity stage, size, and
shape and also the absence of mechanical damage and disease.
Freshly harvested apples were transported immediately to the
Institute of Food Science and Technology, Chinese Academy of

Agricultural Sciences (Beijing, China), and stored in dark at 4◦C
until for use.

Sample Treatment and Experiment Design
Each apple was cut into eight pieces after peeling and then were
put in a fresh-keeping box in a refrigerator for 2 h. The T-type
apples were cut into 1-cm3 pieces and immersed in 50mM 5′-
Aza solution (5′-Aza, dissolved in 10% DMSO solution), whereas
the control sample (CK) was immersed in 10% DMSO solution.
The photos were taken and the BI value was measured after 2 h.

The Determination of BI
The BI value of apples was measured using a DigiEye Electronic
Eye (DigiEye Digital Imaging System, Verivide, USA) according
to the CIEL∗a∗b∗ within 5 h of storage. At the first 3 h, we
measured every half an hour and measured every hour after
3 h. Two apple types measured immediately after cutting were
as 0-h samples and measured after cutting after 2 h were as 2-
h samples. Then, the samples were labeled as P0, T0, P2, and
T2, respectively. After the BI measurement was completed, apple
samples of P0, T0, P2, and T2 were cut into small pieces, placed
in liquid nitrogen for quick freezing, and stored in a refrigerator
at−80◦C. BI was calculated according to Eq. (1) (35).

BI =
100 ×

[[

[a2+(1.75×L)]

[(5.645×L)+a2−(3.012×b)]

]

− 0.31
]

0.172
(1)

The Determination of CAT Activity
Apples were ground with 800 µL extraction buffer (10mM Tris-
HCl, 150mMNaCl, 2mMEDTA, and 0.5% polyvinylpyrrolidone
PvP-30), centrifuged at 10,000 g for 10min at 4◦C, and the
supernatant liquid was used to determine the CAT activity. The
CAT activity determination kit (Beyotime Biotechnology Co.,
Ltd., Shanghai, China) was used to test the CAT activity according
to the instructions and the previous study (36). The supernatant
liquid (40 µL) was mixed with 250mM H2O2 solution, reacted
at 25◦C for 4min, and CAT reaction stop solution was added
to terminate the reaction. The mixture was added into the
working color solution, incubated at 25◦C for at least 15min, and
measured the absorbance at 520 nm. CAT activity was expressed
in units/g. One unit of CAT activity was defined as the ability to
catalyze the decomposition of 1 µmoL of H2O2 per minute.

DNA Methylation Detection by LC-MS/MS
According to Friso et al. (37) method, 1 µg of DNA was
denatured by heating at 100◦C for 3min and subsequently chilled
in refrigerator at 4◦C for 10min. One-tenth volume of 0.1M
ammonium acetate (pH 7.5) and 2 units of DNase I (NEB, USA)
were added. Themixture was then incubated at 37◦C for 3 h. Two
units of alkaline phosphatase (NEB, USA) were subsequently
added. The incubation was continued for an additional 3 h at
37◦C. Thereafter, the mixture was incubated overnight at 37◦C
with 40 units of exonuclease I (Takara Biomedical Technology
Co., Ltd., Beijing, China). The complete lysis mixture was placed
in a refrigerator at 4◦C for LC-MS/MS detection.
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Bis-Sequence for DNA Methylomics
DNA extraction was performed according to CTAB method
(38–40). Bis-sequence was performed by Shanghai BIOZERON
Co., Ltd. Before bisulfite treatment, 25 ng lambda-DNA was
added to the 5 µg genomic DNA. Then, the mixed DNA was
fragmented with a Sonicator (Sonics &Materials) to 300 bp.
Differentially methylated regions (DMRs) were searched using
a 200 bp sliding-window with 50 bp as step-size by R methyl
Kit package. Windows with the false discovery rate (FDR) less
than 0.05 and an over 2-fold change in the methylation level were
retained for DMR.

Transcriptome Analysis by
RNA-Sequencing
Total RNA was extracted from 0.4 g frozen flesh samples using
a Quick RNA Isolation Kit (Huayueyang Biotech Co., Ltd.,
Beijing, China) according to the manufacturer’s instructions. The
concentration and integrity of RNA samples were determined
and assessed by NanoDrop One spectrophotometer (Thermo
Fisher Scientific Inc., Waltham, MA, USA) and 1% (w/v) agarose
gel. RNA-seq transcriptome libraries were prepared following
TruSeqTM RNA sample preparation Kit from Illumina (San
Diego, CA, USA), using 1µg of total RNA (41). The differentially
expressed genes (DEGs) between two samples were selected using
the following criteria: the logarithmic of fold change was greater
than 2 and the FDR should be less than 0.05. To understand
the functions of the DEGs, GO functional enrichment and
KEGG pathway analysis were carried out by Goatools (https://
github.com/tanghaibao/Goatools) and KOBAS (http://kobas.cbi.
pku.edu.cn/home.do). DEGs were significantly enriched in GO
terms and metabolic pathways when their Bonferroni corrected
p-value was less than 0.05.

Proteomics Analysis Using Label-Free
Nano-LC-MS/MS
The experiments of proteomics were performed by Beijing
ZhengDa Health Biomedical Technology Co., Ltd. The protein
in the sample was extracted by sonication using denaturant
and was cut into peptides by trypsin. Then, the sample was
desalted using a C18 reversed-phase chromatography column.
Data acquisition was based on liquid chromatography–tandem
mass spectrometry. Orbitrap Fusion Lumos coupled Easy-nLC
1200 liquid chromatography system (Thermo Fisher Scientific,
USA) was used to separate peptides. The raw data obtained by
mass spectrometry were analyzed with the Proteome Discoverer
2.2 (Thermo Fisher Scientific, USA) using the integrated
SEQUEST (42).

Quantitative Real-Time Polymerase Chain
Reaction (qPCR) and Gene Expression
Analysis
EF-1α serves as reference gene from the previous studies (43–
45) and methylated genes are according to the previous study
(46). The 10 pair primers of targeted genes were designed
by Primer Premier 6.0 software (PREMIER Biosoft, Palo Alto,
CA, USA) and shown in Supplementary Table S2. Primers

were synthesized by Beijing Tsingke Biotechnology Co., Ltd
(Beijing, China).

Total RNA was isolated using 0.4 g frozen flesh samples
using the Quick RNA isolation Kit (Huayueyang Biotech
Co., Ltd., Beijing, China) according to the manufacturer’s
protocol. The concentration of RNA samples was determined
by NanoDrop One spectrophotometer (Thermo Fisher Scientific
Inc., Waltham, MA, USA), and integrity was assessed on 1%
(w/v) agarose gel. The RNA samples with an A260/A280 ratio
of 1.8–2.2 were used for qPCR. RNA reverse-transcription was
performed after concentration normalization used QuantScript
RT Kit (Tiangen Biotech Co., Ltd., Beijing, China).

The qPCR was performed on Bio-Rad CFX96 system (Bio-
Rad Laboratories, Hercules, CA, USA). The total reaction volume
of 20 µL contained 4 µL of diluted cDNA template, 0.8 µL
of each primer (forward and reverse), 10 µL of SYBR Green
fluorescent dyes, and 4.4 µL of ddH2O. The qPCR amplification
procedure was set as 95◦C for 3min, 40 cycles of 95◦C for 10 s,
and 60◦C for 30 s. One additional step was set at temperature 65–
95◦C with 0.5◦C increase per second after the last cycle for melt
curve analysis. All qPCR was completed with three biological
replications, and the means of three replications were used as
final quantification values. The 2−11CT method was used for
gene relative expression levels.

Data Analysis and Drawing
Each sample has 3 replicates for DNA methylation,
transcriptome, and proteomic experiments, 6 replicates for
CAT activity and qPCR experiments, and 12 replicates for BI
experiments. Graphing and data analysis were performed using
GraphPad Prism 8.0. Pairwise comparisons were performed
using t-test, and multiple comparisons were performed using
ANOVA test. p-Value < 0.05 indicated significant differences.
Statistical analysis data are presented as means ± standard error
of the mean (SEM). The principal component analysis (PCA),
correlation analysis, and Circos were performed in R language.
To understand the functions of the DEGs and differentially
expressed proteins, KEGG pathway analysis was carried out by
KOBAS (http://kobas.cbi.pku.edu.cn/) (47).

RESULTS

A Strong Positive Correlation Between
DNA Methylation and Browning
P-type and T-type apples are natural mutants from the bud
mutation variety of “Fuji”. These two types of apples belong to
the same variety (the same genetic background) and have the
same growing environment (in the same orchard). However, the
browning has significantly different and increased at 2 h time
point after cutting in two types of “Fuji” apples (Figure 1A).
For the 2 h time point, BI of the T-type apples were significantly
higher than the P-type apples (p < 0.001) (Figure 1B). Pursuing
the speculation that differential DNA methylation may impact
apple browning, we used LC-MS/MS to determine 5mC% from
four groups of apple samples (P0, P2, T0, and T2). For both P-
type and T-type apples, there was a significant increase in the
5 mC% between the 0 and 2 h time points. Further, whereas
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FIGURE 1 | Relationship between browning and methylation in “Fuji” apples. (A) Photos of browning status of P-type and T-type “Fuji” apples at 0 and 2 h after

cutting. P0, P-type apples at 0 h; P2, P-type apples at 2 h; T0, T-type apples at 0 h; T2, T-type apples at 2 h. (B) BI values. Note that for the color block in the upper

right-hand corner, an increasing trend is indicated in red whereas a decreasing trend is indicated in green, the extent of a change is indicated by the color intensity

[Nota Bene: the same coloring system is used (C,D)]. (C) 5 mC% of the genome in apples. The color block in the upper right-hand corner indicates an increase in red

and a decrease in green. (D) Expression of known DNA methylation-related genes in apple. The nine genes shown here are MdMET1, MdDRM2, MdDRM3,

MdCMT2, MdCMT3, MdCMT3c, MdDDM, MdROS1, and MdDME. The color block in the upper right-hand corner indicates an increase in red and a decrease in

green. (E) Correlation matrix for BI and methylation-related data. Pearson’s correlation analysis was performed between BI values, the 5 mC%, and the expression

levels of the 9 genes in (D). In the figures, ns indicates no significance, *p < 0.05, **p < 0.01, ***p < 0.001.

there was no difference in the 5 mC% between the P-type and
T-type apples at the 0 h time point, the 5 mC% was significantly
increased in the T-type apples at the 2 h time point (p < 0.05)
(Figure 1C).

These differential methylation results motivated us to use
qPCR to assess the expression levels of nine genes with known
DNA methylation-related function genes including MdMET1,
MdDRM2, MdDRM3, MdCMT2, MdCMT3, MdCMT3c,
MdDDM, MdROS1, and MdDME in the P-type and T-type
apples (Figure 1D). MdCMT3 and MdCMT3c encode a DNA
methyltransferase that was significantly increased and higher
in T-type apples (p < 0.001). But MdCMT3c was a significant
decline in P-type apples. MdROS1 and MdDME that encode
demethylated genes have significantly increased and are higher
in P-type apples.

We used a Pearson’s correlation analysis to assess potential
relationships among these data and found that BI is strongly
positively correlated with 5 mC%,MdCMT3, andMdCMT3c and

negatively correlated with MdROS1 and MdDME. In addition,
5mC% is negatively correlated with MdROS1 (Figure 1E).
To further confirm the relationship between methylation
and browning, T-type apples were treated with 5′-Aza (a
DNA methyltransferase inhibitor) and found that the BI was
significantly decreased as shown in Supplementary Figure S1.

Collectively, these results indicate that the extent of DNA
methylation increased during the first 2 h of apple browning
and the higher the expression of methylation-related genes. The
higher the expression of demethylation-related genes, the slower
the browning. The results revealed that browning was positively
and strongly correlated with the increase of methylation.

The Profiles and Types of Methylation by
Methylomics
To obtain more detailed information about methylation during
apple browning, we performed single-base whole-genome Bis-
sequencing of the P0, P2, T0, and T2 samples and obtained

Frontiers in Nutrition | www.frontiersin.org 4 February 2022 | Volume 8 | Article 800489

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Wang et al. DNA Methylation Regulates Apple Browning

FIGURE 2 | The global profiles of methylation and three types of methylation in “Fuji” apples. (A) Methylation profiles on 17 chromosomes. Circle plot of three

methylation types on 17 chromosomes in apple. mCG, mCHG, and mCHH from left to right, and P0, P2, T0, and T2 from inside to outside in each circle. (B) Mean

levels of the three methylation types were plotted on the violin. From left to right are mCG, mCHG, and mCHH. (C) Methylation levels among promoter, gene body, and

downstream regions and their 1kb regions. From left to right are mCG/CG, mCHG/CHG, and mCHH/CHH.

a map of the distribution of methylation across the apple
chromosomes. There are three main types of methylation (CG,
CHG, and CHH) and CHH has a higher ratio (Figure 2A). We
performed a violin chart of the different types of methylation
levels, and it is obvious that the methylation levels of the
two types of apples are more concentrated in the browning,
and the P-type apples have decreased, whereas the T-type
apples have increased. But there is no significant difference
(p > 0.05) between them (Figure 2B). The distribution of
different methylation types in the upstream and downstream
of the gene can also be seen that the methylation level
is the highest in the promoter region, followed by the
downstream region, and the gene body region is the lowest
(Figure 2C).

Distribution and Classes of Methylation on
Chromosome
The methylation classes were displayed by a Sankey diagram
(Figure 3). The results showed that the hypermethylation has
96 and the hypomethylation has 87 after the browning of P-
type apples (P2/P0). The P2/P0 comparison indicated that the
greatest extent of browning-related hypomethylation occurred
on Chr06, whereas the hypermethylation was most obvious on
Chr04 and Chr17. The proportion of hypermethylation is more
than 86% after browning in T-type apples. Therefore, there was a
significant hypermethylation after browning in the T-type apples.
Hypomethylation mainly occurred on CG and CHG. There are
obvious enhancements throughout the chromosomes. But for
the comparison of T2/P2, we found that there is little difference
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FIGURE 3 | The flow of different methylation types on the 17 chromosomes in three groups. (A) The Sankey diagram in P2 vs. P0. (B) The Sankey diagram in T2 vs.

T0. (C) The Sankey diagram in T2 vs. P2. The green lines are hypomethylation (down) and the yellow lines are hypermethylation (up). The left is chromosome (Chr),

and the middle is methylation type including CG, CHG, and CHH. The right is change type including hypomethylation (down) and hypermethylation (up).
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between hyper- and hypomethylation. The increase is mainly
reflected in CHH, which is distributed on each chromosome.

DEGs Analysis by Transcriptome
We profiled the transcriptomics of the P0, P2, T0, and T2
samples using RNA-sequencing. The PCA of RNA- sequencing
is shown in Figure 4A. After identifying the DEGs (p < 0.05),
we found that there were 79 common genes with significant
differences among the three comparisons (P2/P0, T2/T0, and
T2/P2, Figure 4B). The longitudinal clustering is the samples,
and the clustering of samples in the 4 groups is very well by
heatmap and cluster analysis on these 79 genes (Figure 4C).
The horizontal clustering is the genes, and changes in genes
are mainly divided into two categories, one is the genes that
increase significantly, and the other is the genes that decrease
significantly after browning. Finally, KEGG enrichment analysis
was performed on the three comparative differential genes
(Figures 4D–F) and found that after browning, whether it is
P-type or T-type apple, plant–pathogen interaction is the most
significant pathway to increase, and linoleic acid metabolism is
significantly increased (Figures 4D,E).

Different Proteins by Proteomic Analysis
Proteomic analysis obtained a total of 1,976 proteins in 12
samples through label-free proteomic technology. PCA results
showed that P2 and T2 had significant differences, indicating
that the two types of apples had significant protein differences
after browning (Figure 5A). Venn analysis was performed on
three comparisons and three proteins are OMT1, transketolase,
and Glyco_hydro_18 (Figure 5B). OMT1 is methyltransferase
and significantly increased after browning in T-type apples
(p < 0.05). The heatmap is key different proteins in the
four groups, and T2 had a significantly increased (Figure 5C).
KEGG enrichment analysis revealed significant changes in
metabolic pathways such as biosynthesis of amino acids, carbon
metabolism, biosynthesis of secondary metabolism, and the
TCA cycle, in P2/P0 (Figure 5D). In T2/T0, the significantly
altered metabolic pathways were pentose and glucuronate
interconversion (Figure 5E); in T2/P2, the significantly altered
metabolic pathways were sulfur metabolism and cyanoamino
acid metabolism (Figure 5F).

Multi-Omics Combined Analysis and
Landscape of Apple Browning
The multi-omics analysis provides an opportunity to fully and
clearly understand the browning process. Here, we employed
transcriptomics and proteomics to discover the information
of gene and protein expression affected by methylation,
which provides clear landscape for the understanding of
browning. PCA was performed on all methylomic data
(Figure 6A) and divided them into different methylation types
for PCA (Supplementary Figure S3). This analysis indicated
little difference in terms of methylation between the two types
of apples prior to any browning, but there were obvious
methylation differences after browning. We then assessed
DMRs, and one notable trend was that the total number of
methylated regions is mainly in the CHH type and increases
after browning (Figure 6B). The highest ones are mainly the

difference between T2 and T0, and the difference between T2
and P2. KEGG analysis was performed on the differentially
methylated genes (p < 0.05) of P2 and T2 with significant
differences (Supplementary Figure S4), and it was found that
there were significant changes in genes in a variety of metabolic
pathways, protein export, phagosome, biosynthesis of secondary
metabolites, carbon metabolism, and fatty acid metabolism (p <

0.01). The Venn analysis of the differential genes in methylation
and transcriptome (T2/T0 and T2/P2 have common different
genes) found that there are 9 genes that have differences in both
methylation and gene expression (Figure 6C). According to the
up- and downregulation of these 9 genes, Venn analysis was
carried out, and it was found that NCA1 and HOS1 genes had
methylation upregulation and expression downregulation (NCA1
and HOS1), and IDD7 is opposite (Figure 6D). Venn diagram
from the proteomics analysis showed that three proteins (OMT1,
transketolase, and Glyco_hydro_18) with the same differential
accumulation trend in the P2/P0, T2/T0, and T2/P2 comparisons
(Figure 6E). CAT activity analysis showed that it increased in
P-type and decreased in T-type apples, and significantly higher
in the P-type than T-type apples (Figure 6F, enzyme). The
methylation level of NCA1 increased significantly and the gene
expression decreased significantly (Figure 6F), whichmay inhibit
the activity of CAT (p < 0.05). Therefore, we summarized the
different results and drew a Circos diagram in apple browning
(Figure 6G). When the initial browning occurred, the damage
caused by cutting to cells led to a rapid expression of enzymes and
genes, especially methylation-related genes. The rapid increase
in methylated genes MdCMT3 and MdCMT3c was due to the
increase in genemethylation level leading to a significant increase
in DNA methylation (5 mC%). NCA1 was methylated by OMT1
that provided more methylation catalytic activity resulting in the
decrease in the expression level of NCA1 gene. The decline of
NCA1 leads to inhibition of CAT activity, which accelerated apple
browning. Multi-data changed significantly in the T2 group, and
the highest proportion is displayed in the Circos diagram, which
also had the highest BI (Figure 6G, Supplementary Table S3).

DISCUSSION

Apple browning is complex reaction and has a strong relationship
with PPO. In our previous study, a new browning way of non-
different PPO was discovered in P-type and T-type “Fuji” apples
from natural budmutations. Additionally, the two types of apples
had the same growth environment and genetic background, and
this browning difference might be related to DNAmethylation in
epigenetics. 5′-Aza can delay the non-different PPO browning.
Therefore, the difference may be related to epigenetics, such
as DNA methylation. The relationships of the changes in
genes and proteins of apple during browning are analyzed
by multi-omics including methylomics, transcriptomics, and
proteomics obtained.

Previous studies found that fruits’ DNA demethylase
genes were significantly decreased and underwent DNA
hypermethylation process in orange fruit ripening (25). The
methylation of histidine–lysine demethylase H3K27 encoded
by SlJMJ6 gene to activate the expression of ripening-related
genes and regulate fruit ripening, and SlJMJ6 accelerated the
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FIGURE 4 | The results in transcriptome. (A) PCA of RNA-seq. (B) Venn diagram of the transcriptome analysis. (C) Heatmap of DEGs from RNA-seq. (D–F) KEGG of

DEGs from RNA-seq in P2 vs. P0, T2 vs. T0, and T2 vs. P2, respectively.
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FIGURE 5 | The results in proteomics. (A) PCA of proteomics. (B) Venn diagram of the proteomics analysis. (C) Heatmap of differentially expressed proteins from

proteomics. (D–F) KEGG of differentially expressed proteins from proteomics in P2 vs. P0, T2 vs. T0, and T2 vs. P2, respectively.

fruit maturation of tomato by the upregulation of a large
number of maturation-related genes (48). DNA methylation
might be involved in the parent-of-origin effects and affected
tomato fruit quality (49). As a result, browning is a process
after fruit ripening, and DNA methylation is closely related to
fruit maturation.

The level of DNA methylation is determined by methylation
and demethylation transferases in browning apples. Maintenance
of DNA methylation depends on the cytosine-rich region
and is catalyzed by DNA methyltransferases in plants. The
METHYLTRANSFERASE 1 (MET1) is an ortholog of the
mammalian DNA (cytosine-5)-methyltransferase 1 (DNMT1)
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FIGURE 6 | Multi-omics analysis results and browning landscape in “Fuji” apples. (A) PCA of all methylation data. Four groups are P0 (red), P2 (green), T0 (blue), and

T2 (purple). (B) Differential methylation numbers. The number of all DMRs is displayed. In the histogram, the blue ones are all DMRs, the orange ones are intergenic

(Continued)
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FIGURE 6 | regions, and the green ones are independent genes. Below the horizontal axis, the red on the left is hypermethylation, and the green on the right is

hypomethylation. Below, different colors are used to indicate different types of methylation, namely CG, CHG, and CHH. The bottom is three comparisons, from left to

right are P2/P0, T2/T0, and T2/P2. Differential methylation regions are p < 0.05, fold change > 2. (C) The Venn analysis of methylation and RNA-seq. There are nine

common differential genes. (D) Venn diagram for up- and downregulated methylation genes and DEGs from RNA-seq. Two genes (NCA1 and HOS1) are the

upregulation of methylation and the downregulation of gene expression. One gene (IDD7) is the downregulation of methylation and the upregulation of gene

expression. (E) Venn diagram from the proteomics analysis. Three proteins (OMT1, transketolase, and Glyco_hydro_18) with the same differential accumulation trend

in the P2/P0, T2/T0, and T2/P2 comparisons. (F) The methylation level and expression of NCA1 gene, and CAT activity (p < 0.05). (G) Circos diagram in “Fuji” apples

browning. The red, orange, green, and blue on the right represent P0, P2, T0, T2, and T2, respectively. The different colors on the left represent the different indexes of

four groups. The data of each proportion are shown in Supplementary Table S3. In the figures, ns indicates no significance, *p < 0.05, **p < 0.01.

and affects DNA replication and methylates (13, 50). We
found that the expression level of MdMET1 was significantly
increased in T-type apples compared to P-type apples, suggesting
that DNA methylation was likely elevated in T-type apples.
The DNA methyltransferase DOMAINS REARRANGED
METHYLASE 2 (DRM2) and DNA methyltransferase
DOMAINS REARRANGED METHYLASE 3 (DRM3) enzymes
catalyze de novo DNA methylation in a sequence-independent
manner (51). DRM2 maintains methylation through RNA-
directed DNA methylation or by CMT2 (52). In our results,
MdDMR2 had a significant downregulation in P-type and T-type
apples, but MdDMR3 had a significant upregulation in T-type
apple after browning. DNA methylation in a symmetric CG
context is maintained by MET1, whereas CHG methylation is
maintained by CHROMOMETHYLASE 3 (CMT3) or CMT2
(53, 54). CMT3c is a CMT-type cytosine DNA methyltransferase
3c. In our experiments, MdCMT2, MdCMT3, and MdCMT3c
genes were significantly upregulated in P-type and T-type
apples, which suggests a likely increase in CHG and CHH
methylation in both types. DNA methylation can be removed
by active demethylases. REPRESSOR OF SILENCING 1
(ROS1) is a 5-methylcytosine DNA glycosylase/lyase that
inhibits homology-dependent transcriptional gene silencing by
demethylating (55). DEMETER (DME) mediated active DNA
demethylation and by downregulation of the DECREASED
DNA METHYLATION 1 (DDM1) in the Arabidopsis thaliana
(56, 57). Our results indicated that MdROS1 and MdDME were
significantly upregulated in P-type apples after browning.

The catalytic process of methylation and methylated genes
may play an important role in the non-different PPP browning.
The upregulated OMT1 can provide more methyl substrates
to support DNA methylation. OMT1 is required for the
production of methylated phenylpropenes in apples (58). We
detected that increased accumulation of OMT1 proteins was
significantly upregulated, especially in T-type apples. NCA1 gene
has increased methylation levels and decreased expression in
the process of browning. NCA1 is a molecular chaperone of
the CAT, which can maintain the activity of CAT. When NCA1
is inhibited, CAT activity decreases (36). We found that CAT
activity significantly decreased after browning in T-type apples,
but P-type apples had higher CAT activity, and there was no
significant decline in P-type apples.

In conclusion, our data support that upregulated methylation
led to NCA1 hypermethylation and inhibited NCA1 gene
expression. The high expression of OMT1 provides more methyl
substrates to significantly increase the methylation level, which
inhibited CAT activity and led to more quickly browning. In the

future, we will combine metabolomics to uncover the pathways
and mechanisms of non-different PPO browning to provide
better approaches for quality and storage of fresh-cut apples.
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