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This research focuses on the signal processing required for a sensory system
that can simultaneously localize multiple moving underwater objects in a
three-dimensional (3D) volume by simulating the hydrodynamic flow
caused by these objects. We propose a method for localization in a simulated
setting based on an established hydrodynamic theory founded in fish lateral
line organ research. Fish neurally concatenate the information of multiple
sensors to localize sources. Similarly, we use the sampled fluid velocity via
two parallel lateral lines to perform source localization in three dimensions
in two steps. Using a convolutional neural network, we first estimate a two-
dimensional image of the probability of a present source. Then we determine
the position of each source, via an automated iterative 3D-aware algorithm.
We study various neural network architectural designs and different ways of
presenting the input to the neural network; multi-level amplified inputs and
merged convolutional streams are shown to improve the imaging perform-
ance. Results show that the combined system can exhibit adequate 3D
localization of multiple sources.
1. Introduction
Fish are able to accurately sense nearby moving or vibrating objects in water via
a lateral line organ [1]. This organ consists of superficial neuromasts (SNs)
and canal neuromasts (CNs). The SNs are located externally on the skin and
detect the outside flow velocity, whereas the CNs are located underneath the
skin in small canals, which filter out low frequencies [2]. As a result, the CNs
are sensitive to external flow acceleration in directions parallel to the canals
of the organ. Fish are able to use the mechanosensory input elicited by these
neuromasts for a variety of tasks, including tracking down prey [3] or
coordinating their movements, e.g. in schooling [4].

This biological ability has inspired the development of flow-sensing arrays
called artificial lateral lines (ALLs) to perform what is known as hydrodynamic
imaging: mapping objects and obstacles via fluid flow interactions. Several ALL
set-ups are used for wake detection [5] and source localization [6–8], usually
benchmarked by their ability to localize a vibrating dipole source. Most ALL
sensor configurations are focused towards a two-dimensional (2D) localization
problem, while some use out-of-line sensor placement and template-matching
methods to localize a phase-locked vibrating source in three dimensions [9].

The present research contributes to the development of algorithms for ALL
hydrodynamic imaging systems as it is the first of its kind to consider localizing
multiple objects in three dimensions using machine learning. The field of
machine learning might provide the means to tackle these problems, since
the resulting systems have exhibited impressive sensory-processing capabilities
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Figure 1. Illustration of a situation with a single sphere in a plane with
the excitation pattern of a dense neuromast array at d = 0. (Online version
in colour.)
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in a wide range of tasks that require a high degree of
generalization, such as computer vision [10] and speech
recognition [11].

To feasibly explore a number of different configurations
of the artificial neural network, we consider a simulated
environment in which objects in motion generate a velocity
potential field, which is measured as fluid flow by the ALL.
The underlying inviscid hydrodynamic flow model for the
local velocity potential is supported by experimental findings
in fish lateral line research [12–14]. In practice, this model
may be compromised to create an adequate image of the
near surroundings since it neglects vorticity and other poss-
ible issues that arise in reality. This demands a system that
can cope with a highly dynamic environment and, from the
point of view of supervised learning, should generalize well
to unseen situations.

In this research, we apply machine learning to explore the
applicability of ALL hydrodynamic imaging systems to create
local images of moving objects by using simulated ALL
inputs. We define the problem as the prediction of a prob-
ability function that can be related to the likelihood of a
sphere to be in a certain position. This 2D probability function
is then used to produce an estimate of the three-dimensional
(3D) location using an iterative localization algorithm.

We test several configurations of a convolutional neural
network (CNN) to determine the influence of several
design choices. While one-dimensional (1D) inputs with
CNNs have been used before [11,15], these applications per-
form dimensionality reduction. In our case, we use the
CNN to transform a 1D signal to a 2D probability grid,
which requires alterations to a standard CNN architecture.
This dimensionality upscaling and specifically its application
to the ALL is completely novel.

In §2, we discuss the hydrodynamic model and related
research that is relevant to our approach. Section 3 elaborates
on the details of the 3D source location-encoding model and
the general CNN architecture. In §3.4 we discuss the com-
parative experiments that were conducted to measure the
accuracy of our models for locating multiple sources and
report the results in §4. Finally, we discuss our findings and
list directions for future research in §5 and conclude in §6.
2. Background
First, we discuss other research on source location encoding
with a lateral line organ. Then, we elaborate on the research
and insights considering CNNs that inspired the development
of our method.

2.1. Source location encoding by the lateral line organ
Source localization involves arrays of multiple sensors that
measure a projection of the local fluid velocity potential in
response to an object moving relative to the array.

Findings by Münz [16] and Bleckmann et al. [17] show
that the hair cells in each neuromast sensor are aligned in
one direction. This causes these sensors to effectively measure
a 1D projection of the local pressure gradient as caused by, for
instance, a moving object. When these objects are located in
the vicinity of the array and they are sufficiently large, the
effects of viscosity can be neglected [18]. These findings
were used in [12] to develop a theoretical model and
method to compute the pressure gradients between two
lateral line canal pores. This model describes the neural exci-
tation of neuromasts along the lateral line, also known as an
excitation pattern. Figure 1 illustrates the resulting excitation
pattern along a dense neuromast array as generated by a
moving sphere.

In [12,13], it was demonstrated that the information about
the location of a vibrating source is encoded in the spatial
characteristics of the excitation pattern along the lateral line
sensors. More specifically, Ćurčic-́Blake & van Netten [12]
demonstrate that the excitation of the sensors along the
array can be determined from a combination of two wavelets

ceven(s, x, d) ¼
1� 2((s� x)=d)2

[1þ ((s� x)=d)2]5=2
(2:1)

and

codd(s, x, d) ¼
�3((s� x)=d)

[1þ ((s� x)=d)2]5=2
, (2:2)

where s is the position of the neuromast along the x-axis and
(x, d ) is the position of the sphere. Here, x denotes the source
position relative to the array and d is its distance. The actual
fluid velocity measured by a neuromast as produced by a
moving sphere can be obtained through

v(s, x, d) ¼ Wr3

2d3
(codd sinw� ceven cosw), (2:3)

where W is the sphere’s absolute velocity, r is its radius and w

is its direction with respect to the array. Note that the left
factor of the right-hand side of this equation causes the
fluid velocity to scale in a nonlinear way with respect to
the distance (d) to the array.

2.2. Object localization using artificial lateral lines
Traditionally, template-matching methods have been used to
create a 2D heat map [6] and in some cases a 3D volume [9] of
a single source. More recently, artificial neural networks have
been used for single source localization using both physical
[19,20] and simulated [21,22] sensor arrays.

2.2.1. Two-dimensional localization
For 2D localization of a single sphere, a classical lateral line
geometry is often used, where all sensors are positioned equi-
distantly on a single line. Using the inviscid hydrodynamic
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model described in the previous section, one can readily
determine the velocity potential at each of the sensors in
this ALL from the relative location and motion of a source
S(i): the forward problem,

F(S(i)) ¼ uobs: (2:4)

The concatenation of these locally measured fluid vel-
ocities uobs at each sensor is known as a velocity pattern,
analogous to the excitation pattern. The effective problem
statement that ALL set-ups face is the inverse problem;
from the measured velocity pattern, reconstruct the relative
position and motion of a source,

F�1(uobs) ¼ S(i): (2:5)

This inverse problem (F−1) has been tackled via template-
matching and beamforming methods [6]. These methods use
a library of modelled or measured velocity patterns and a cor-
relation scheme to retrieve the source location of a newly
presented velocity pattern.

An example of Capon’s beamforming is described in
detail in [23]. Here, the authors make use of an outer-product
correlation matrix between the sensors for a single time step.
The second key component is a vast 3D library (x, d, w) of
modelled velocity patterns for a range of possible source
locations and orientations. This matrix and library are then
used to create a heat map with Capon’s method. The pre-
dicted location is finally determined by finding the
maximum in this heat map.

In addition to these beamforming methods, non-convolu-
tional neural networks have been used for 2D localization. A
multi-layer perceptron (MLP) with one hidden layer having
24 nodes was applied to an ALL array consisting of six sen-
sors in a row [19,20]. Here, the position of a vibrating
sphere was varied and reconstructed in a 2D plane. In [21],
the localization performance for a single source in a 2D
plane was assessed for three different types of neural net-
works: the MLP, an echo state network, and an extreme
learning machine (ELM); the last proved to be optimal. This
type of network was also used in [14] to localize both
moving and stationary vibrating sources in a 2D plane.
Recently [24], the ELM architecture was compared with a
recurrent network architecture (LSTM) for objects moving
in a straight line in a 2D plane. To the authors’ knowledge,
the present work is the first effective demonstration of a
CNN architecture for localizing a source with an ALL.
2.2.2. Three-dimensional localization
The problem space around the classic ALL geometry is circle
symmetric; one cannot discriminate distance in the y plane
versus distance in the z plane. Other sensor geometries that
break this symmetry are required to extend this problem to
3D localization.

In [9], a cross geometry was introduced on a cylinder,
where nine 1D-sensitive sensors were positioned in a straight
line with three sensors perpendicular at either side of the
centre of the array. To localize the source in a 3D volume
around the lateral line set-up, they extended the beamform-
ing algorithm [23] to work with a five-dimensional library
containing the (x, y, z) location and orientation (azimuth θ
and zenith ϕ angles). As in [23], the location of the source
was selected from the maximum in the 3D heat map
volume. A slightly different approach is needed for localizing
multiple sources.

In [25], two sources are positioned in a simulated 3D
basin with several geometries of 16 sensors placed at the
bottom of this basin. There, an artificial neural network was
tasked to reconstruct a 3D heat map volume using the
sampled fluid velocity at each sensor’s location. Yet, because
the chosen geometries were spatially uncorrelated, the net-
work could not make use of the spatial properties encoded
in velocity patterns as sampled in a line.

Our chosen sensor geometry of two ALLs with equidi-
stant sensors retains the ability to make use of the spatial
properties [12,13], while allowing 3D localization. These
spatial properties make this problem well suited to be learned
by CNNs.

2.3. Convolutional neural networks
CNNs have received increasing attention in machine learning
research in recent years. These networks are especially suited
for 2D data-driven tasks for images such as the ImageNet
Large-Scale Visual Recognition Competition (ILSVRC) in
image classification, detection and visual segmentation
tasks [10,26–28]. Other than computer vision, CNNs have
also been applied to 1D signals in speech recognition [11]
and haptic tactile classification [15].

CNNs differ from the more standard MLPs [29] in their
more efficient architectural design and were initially pro-
posed in their current form by LeCun et al. [30]. A key
insight behind the development of this kind of network archi-
tecture is that the pixels in an image are spatially correlated.
This means that meaningful features of an image, such as
edges, corners and colour transitions, can be found in small
subregions. This allows small 2D filters to be tuned for detect-
ing these meaningful features. These filters can be tuned
more easily, since they are trained using the larger collection
of subregions rather than the whole image.

A CNN is usually made up of several convolutional
layers, interlaced with pooling layers to reduce the dimen-
sions of the convolutional stream. Typically, additional
convolutional layers converge to filters that hierarchically
extract more abstract features [31]. In the extreme case, an
image can be reduced via several convolutional and pooling
layers to a single output neuron for binary classification.

Our alterations to the standard implementation of the
CNN are further described in §3.3.
3. Methods
This section elaborates on source location encoding in three
dimensions, the exact simulation implementation, the global
architecture of the CNN used and its tested variations, and the
algorithm for iterative location decoding in three dimensions.
An overview of the whole process is shown in figure 2.

3.1. Location encoding in three dimensions
We first consider the situation of a single sphere in a 2D plane,
after which we extend it to multiple spheres and a 3D volume.

3.1.1. Spheres in a plane
With a single sphere in a plane, the object motion is described by
a speed W and direction w. When a sensor array is positioned at
d = 0, we can determine the fluid velocity at each sensor s using
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Figure 2. Schematic of the task and processing pipeline. The simulation generates examples of objects in motion, accompanied by a 2D projection of object
probability and the 1D velocity pattern at each array. The overall task is to localize these objects using the 1D velocity patterns as input in two steps: estimating
the 2D probability grids of a source present and then determining the coordinates of the object in three dimensions using these grids. (Online version in colour.)
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the source’s position (x, d ) via the fluid flow model as described
by equation (2.3).

With the location of the source encoded in the velocity pat-
tern, we can localize the source by effectively decoding this
profile. If only a single sphere is considered, localization can be
treated as a regression problem in which an inverse method pre-
dicts the components of a position vector p. However, if the
number of spheres is arbitrary, the problem cannot be formulated
as a regression problem any more. Instead, we replace the target
regression values by a probability function f, as illustrated in
figure 3, that is defined over a plane

f (a) ¼ max
i

� exp �kp(i) � ak2
2 � r2

 !
, (3:1)

in which p(i) represents the position vector of the ith sphere and ρ
is a smoothing factor. The vector a is any coordinate for which
we want our model to predict the likelihood of a source present.

We thus have two instances of the 2D target probability func-
tion, one for each array, for which we define the following
discrete domain for array A:

DA ¼ {(x, dA) j x [ {�1:5, �1:5þ dx, . . . , 1:5}, dA [ {0, dd, . . . , 2}}:

(3:2)

Figure 3 depicts a discretized example target function for two
sources in a single plane. We choose the domain for x to be
from −1.5 to 1.5 in 32 parts and for dA from 0 to 2 in 22 parts.
This fully encompasses the bounded space of motion for the
source (see §3.1.2).
3.1.2. Moving spheres in three dimensions
In order to extend the problem to three dimensions, we consider
a planar projection for each spherical source that is defined by
the location of sensor array A and the R3 position vector p of
the source.

To conveniently work out the planar projection of source
motion with respect to the sensor array, we construct the source’s
velocity vector v in R3. Next, we project this source velocity v on
the plane spanned by the array A and the source position p to
determine a projected velocity vector vA.

We know that the velocity component parallel to the array A,
assuming the array is aligned with the x-axis, is simply vAx ¼ vx.
The orthogonal velocity component vAd requires taking into
account both the y and z components of the position and
velocity vector. This orthogonal component is spanned along
pyz ¼ [0, py � Ay, pz]

` and is thus given by

vAd ¼ v �
pyz

kpyzk
: (3:3)
The third velocity component that is orthogonal to the projected
plane has no contribution to the measured fluid velocity at the
sensor array and is therefore neglected in this study.

From the parallel and orthogonal components of the
projected velocity vector vA, it is trivial to obtain the absolute vel-

ocity WA and angle wA. Finally, we find dA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(py � Ay)

2 þ p2z
q

and substitute the projected parameters in equations (2.1), (2.2)
and (2.3), fully defining the 1D velocity pattern for array A for
any source in a R3 volume.

3.1.3. Resolving three-dimensional ambiguity
If we only use a single sensor array, we can estimate the xA
coordinate and distance dA of a source with respect to array A.
This evidently causes ambiguous situations where the source
could be anywhere in a ring around this array, since the y and
z coordinate of the object are combined in dA.

By adding a second array, we have two instances of the prob-
ability function, one for each sensor array. Both instances map to
toroidal shapes that intersect at the source’s target position, as
indicated in figure 4, thereby collapsing the ambiguity. For sim-
plicity and without loss of generality, we will assume that the
first array, A1, is placed at y =−0.5 while the second array, A2,
is placed at y = 0.5.

3.2. Data synthesis
We simulate spherical sources moving within a bounded R3

space in a basin, generating fluid flow that is measured by the
arrays as fluid velocity (m · s−1). This bounded space (figure 5)
is fully encompassed by the discretized domain DA.
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3.2.1. Source motion
For our data synthesis, we consider a simulated environment
in which multiple spheres move through a basin V measuring 3 ×
3 × 1.5 m3 (figure 5). A source is allowed to move in a bounded
spacewith x, y∈ [−1, 1] and z∈ [0, 1]. Each spheremoveswith a con-
stant speed W of 0.05 m · s−1 and their direction of motion is
described by two angles (ϕ, θ), where ϕ is the azimuthal angle in
the x, y-plane and θ is the polar angle with respect to the positive
z-axis.Thedirectionofmotionof each sphere is changedaccording to

ftþ1 ¼ ft þ unif[�1 rad, 1 rad]
and utþ1 ¼ ut þ unif[�1 rad, 1 rad]: (3:4)

In case the source is about to move outside the bounded
space, we let it ricochet as in [21]. Here, the reflected angle is
the same as the incident angle.

At any point in time, at least one and at most two spheres can
be in the basin. Spheres disappear with a probability of 5% each
time step while reappearing at a random location with the same
probability. This results in a dataset where one source is present
53% of the time, while in the other cases two sources are present.

3.2.2. Velocity pattern sampling and noise
The velocity patterns are sampled from two simulated sensor
arrays placed at the bottom of the basin. We obtain these velocity
patterns via the fluid model described in §2.1. For each sensor
array, we can simply sum the contributions from each sphere
because of the properties of the assumed potential flow.
We then introduce relative noise on top of these sampled vel-
ocity patterns, via a noise level parameter n. This allows us to
make fair comparisons of the network for different signal-to-
noise levels. The parameter n expresses a ratio of the input’s
(i.e. the water velocity) standard deviation, denoted s8. The com-
putation of this standard deviation considers the velocity
patterns for all time steps and all sensors in both arrays. The
noise is added by sampling from a normal distribution with
mean 0 and a chosen variance of n � s8.

3.3. CNN implementation
The neural network receives 1D velocity patterns of both sensor
arrays and is tasked to approximate two probability grids, one
for each array. Table 1 and figure 6 provide an overview of the
default CNN architecture, which is further discussed in the
following subsections.

3.3.1. Input mapping
The magnitude of the sampled velocity patterns can have a con-
siderable dynamic range, given the cubed relation with the
distance to the source; see equation (2.3). To normalize and
map this dynamic range of the input, we squeeze the activa-
tion at the first hidden layer in the range of [−1, 1] by using
the hyperbolic tangent function.

As a first input augmentation, we consider feeding both atte-
nuated and amplified versions of the input to the first hidden
layer before normalization. The hyperbolic tangent function
shows differences in its output more clearly when its input is
around 0. Therefore, using different amplification levels simul-
taneously will allow the network to capture the dynamics at
different magnitudes more adequately than a system with a
single amplification level.

As an alternative augmentation to the inputs, we also con-
sider an aspect of time-delay neural network architecture that
effectively introduces history. In the network architecture, we
vary a time-delay frame parameter, τ. When τ = 1, we only use
the current velocity pattern for each array, so no effective history
is added. In case of τ > 1, the input is constructed via concatenat-
ing velocity patterns of previous time steps. It is hypothesized
that using past velocity patterns will help the model to interpret
otherwise ambiguous situations during testing. Moreover, it
might also help to reduce the impact of input noise.

From this point forward, we consider the amount of sensors
that sample a velocity pattern as the width of the input, i.e. 32.
The additional past velocity patterns that are added as effective
history are considered depth slices of the input.

3.3.2. Convolutional streams
The velocity patterns from both arrays are sampled at equidistant
locations. This geometry introduces a spatial relation between
the shape of the velocity patterns and the position of the
source (see §2.1). The convolutional layers in this neural network
architecture are especially suited to parse this type of data, since
these layers effectively perform 1D convolutions that can make
use of this spatial relation.

The convolutional layers are used in combination with the
rectified linear unit (ReLU) activation function: f (x) =max (0, x)
[32]. The usage of the ReLU activation function reduces the van-
ishing gradient problem and provides sparsity to the feature
representations in the network, which in turn helps for linear
separability of features within a layer [32].

To maintain the local spatial relations throughout the convo-
lutional stream, only convolutional layers are used, as opposed
to regular CNNs which also incorporate pooling layers. The
series of convolutional layers combine to convolutional streams,
one for each sensor array. These streams start at the input
(index 0) and end at the output layer (index 5). Both streams



Table 1. Overview of the default neural network architecture. Where two kernel sizes are listed, each is used for half of the kernels. When the streams are
merged, the kernels concatenate so that the total number of kernels per layer is unaffected.

layer description output merged/split kernels per stream kernel size activation function

input split τ — x

conv. 1 split 32 5,7 tanh (x)

conv. 2 split 64 5,7 max (0, x)

conv. 3 merged 2×64 5,7 max (0, x)

conv. 4 merged 2×64 5,7 max (0, x)

output layer — 24 5 sigmoid (x)

A1

A2

input conv. 1 conv. 2

conv. 3 conv. 4

output

32t 64

2×64 2×64

24

f1(D1)ˆ

f2(D2)ˆ

Figure 6. Illustration of the default network architecture. The colour of each layer indicates to which stream it belongs. In this case, the third and fourth layer are
merged to allow the two streams to exchange information. (Online version in colour.)
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have the identical task to map an input velocity pattern to its
probability grid as the desired output. Hence, we can use the
exact same weights for each convolutional stream that predicts
one of the two probability functions. In other words, we can
share the convolutional streams’ weights. Sharing the weights
results in reusing the same kernels in both streams. Disabling
sharing allows separate filter kernels to be trained for each
convolutional stream.

The convolutional layers all have a width of 32 ( just as the
input) and a stride of 1. This width is maintained by zero pad-
ding the input of each convolution at both ends. The depth of
the convolutional layer determines the number of filter kernels.

In addition to weight sharing, we can also merge both convo-
lutional streams. This creates a single stream that is responsible
for predicting the probability output for both sensor arrays.
The streams are merged by concatenating the outputs of
hidden layers at a certain layer index, which doubles the layer
depth from that point on. In our experiments, we vary this
layer index, shifting the merging point. After this merging
point, the subsequent layers will receive information from both
sensor arrays.
3.3.3. Output mapping
For each sensor array and accompanying convolutional stream,
we have one target probability function. At the end of the convo-
lutional stream, two different methods are used and compared to
map the activation to the output layer. By only using convolu-
tions, we have maintained local spatial relations; this enables
us to use the last convolutional layer directly for this mapping.
We also investigate replacing the last (output) layer with a
fully connected layer. This type of layer may uncover patterns
that stretch over a wider part of the sensor arrays, at the increased
risk of overfitting. In both cases, the output layer has a width of
32 and a depth of 24, reflecting the chosen discretization of the
domain DA.

Since our target output has values in the range [0, 1], we
decided to use a sigmoid function 6(x) ¼ 1=(1þ exp (�x)) at
the output layer, which ensures that the output is in that range.
3.4. CNN optimization
This section describes the default CNN settings, how we train the
CNN and the chosen architecture variations for these settings.

3.4.1. Optimization criterion
The CNN is trained to estimate two 2D discretized probability
functions based on two sampled velocity patterns, one from
each array. The network minimizes a custom loss function that
takes into account the true and predicted probability as well as
a weight regularization term. The exact definition of the loss
function that we minimize is

C(A, a) ¼ f̂A(a) � log fA(a)
þ (1� f̂A(a)) � log (1� fA(a)) , (3:5)

S(A) ¼
X
a[DA

�C(A, a), (3:6)

W(w) ¼ 1
2

X
i

w2
i (3:7)

and Ltotal ¼ S(A1)þ S(A2)þ lW(w): (3:8)

Equation (3.5) shows the binary cross-entropy loss for a single pos-
ition a for arrayA, where fA(a) is the actual probability and f̂A(a) is
the predicted probability for said position. The binary cross-
entropy loss has the desirable property that, when combined
with sigmoid activations, its gradients are of approximately the
same magnitude across all possible preactivation values.

Equation (3.6) shows the loss for a single array A, which
simply sums the losses over all positions in the corresponding
domain DA.

Equation (3.7) is a regularization term in which w is a vector
that contains all trainable parameters of the neural network. This
term penalizes large weight vectors, making the whole network
less prone to overfitting [33].

Finally, equation (3.8) shows the total loss for a single sample
(i.e. a single input and output pair) in which λ governs the con-
tribution of the regularization term for the trainable weights.
In this study, we use batches of 64 samples for updating the
CNN weights.



Table 2. Default model and hyperparameters.

parameter symbol value

first sensor array A1 y =−0.5
second sensor array A2 y = 0.5

sphere radius r 0.05

smoothing factor ρ 0.2

relative noise level n 0.001

input range factors [1000]

history length τ 3

merging index 3

weight sharing enabled

output layer FCNN

learning rate η 10 × 10−3

regularization coefficient λ 10 × 10−4
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3.4.2. CNN variations
Our experiments are designed to characterize the influence of
design decisions that would be relevant for an ALL system
with CNNs. The parameter settings for the default model are
listed in table 2. We consider the following variations to the
default model.

— Noise level. We assess the influence of noise on the final per-
formance of the system and choose n = 0.0001, 0.001, 0.01,
0.02.

— Amplification levels. We compare a system with a single input
amplification level of 1000 with another system that uses the
concatenated input of three input amplification levels: 100,
1000 and 10 000. This causes the latter system to have three
times as many input depth slices as the former.

— History length. We compare different history sizes τ = 1, 2, 3, 4
to see whether the system benefits from integrating the
inputs of multiple time steps.

— Merging index. We vary the merging index from 0, where the
input of both arrays is concatenated and parsed by a single
stream, to index 5, where no merging takes place.

— Weight sharing. For the unmerged layers, we can choose to
share the weights by reusing the same kernels in both convo-
lutional streams, or disable sharing so that we use separate
kernels for each stream.

— Output layer. We compare a network that has a convolutional
output layer, forming a fully convolutional neural network
(FCNN) with a network that has a fully connected output
layer (CNN+FC).

3.4.3. Validation
We create five different pairs of train and validation data, each
generated independently using the model as discussed in §3.2.
For each of these pairs, the train data contain 10 000 samples,
while the validation data contain 2000 samples.
3.5. Location decoding in three dimensions
Finally, we estimate R3 positions p̂ from the CNN output. Using
the output 2D probability grids, we present a 3D-aware algor-
ithm to detect both the number of sources and their location
(figure 7). This algorithm benefits from being 3D-aware, since
there could be two distinct objects that have a similar distance
to one of the arrays, effectively masking each other in two dimen-
sions. This algorithm is described here in detail using an
example; a formal description in the form of pseudocode may
be found in the electronic supplementary material.

We first detect the x-coordinate of the highest probability by
flattening and adding both probability grids and taking the
maximum of the resulting probability line (‘+’ in figure 7a,b).
Then, for each array, we find the d coordinate with the maximal
value for that x-coordinate and fit a Gaussian (see equation (3.1))
near the maximal coordinates to yield (x̂, d̂) coordinate pair esti-
mates E (‘×’ in figure 7a,b). From the estimates d̂1, d̂2 and the
array y-coordinates, it is trivial to work out the ŷ and ẑ estimate
for the first source, completing the first position vector.

The next step is to create probability volumes for each recon-
structed grid, by effectively rotating these grids, as indicated in
figure 4. We choose a voxel size of (dx, dy, dz) ¼ ( 3

31 ,
3
63 ,

3
63 )

and fill each voxel with the value of the nearest mapping to 2D
coordinates. We use element-wise multiplication to combine
both arrays’ probability volumes to a single volume. A slice of
this volume is shown in figure 7c.

To remove the estimated probability values of the already
found source, we calculate two probability grids from x̂, d̂1 and
d̂2 using the target function from equation (3.1) and similarly
create a probability volume. We then subtract this probability
volume from the prior and map the residual volume (figure 7d)
back to two residual probability grids (figure 7e,f ). This remapping
consists of two steps. First, each pixel in the grid is filled with the
maximal value found from the inverse rotational mapping. Then,
for each value in the remapped probability grids, we take the
square root, since this value originates from a multiplication.

We then repeat the first step of finding (x̂, d̂) coordinate pair
estimates. As is made visible in figure 7e,f, the 3D filtering
method also leaves residual probability at the position of the
first source. We, therefore, use two thresholds to determine
whether a second detection constitutes a second source. First,
the summed probability of the residual probability grids from
the last step should be higher than the expected value for
target probability grids containing a single source, in this
case 55. And second, its estimated position should be further
than 0.55 m to the first object’s estimated position.

As an error metric for object localization, we report the localiz-
ation error inMED (m) perobject. For sampleswherewe expect two
sources, we report how many sources were detected per sample.
4. Results
As described in §3.4.2, several types of variations for the
CNN architecture were considered, each given a different
colour in upcoming figures. We assess both the loss and accu-
racy with regards to reconstructing the target probability
functions, as well as the localization error from the iterative
detection algorithm using these reconstructions.

4.1. Probability grid reconstruction
In terms of CNN training loss (table 3), the default hyper-
parameter settings seem to produce the best performing
network in terms of 2D probability reconstruction. The fact
that the loss values are relatively large is a result of summing
the binary cross entropy per location in equation (3.6), rather
than taking the average.

An example of the CNN output for two sources can
be seen in figure 7a,b. Here, and in most other samples,
the reconstructed probability grids do not show perfect
Gaussians, but the maxima in these grids often coincide
with the actual position of that object.

There are four variations that outperform the default set-
tings in terms of the average probability reconstruction MSE.
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Table 3. Target probability reconstruction metrics. The default setting entry
(D) is repeated where appropriate. Bold indicates settings in which the MSE
is significantly lower than the default setting.

loss MSE ±s.d.

default 142.3 5.28 × 10−3 5.99 × 10−4

τ = 1 143.0 4.83 × 10−3 3.71 × 10−4

τ = 2 143.5 5.25 × 10−3 4.90 × 10−4

τ = 3 (D) 142.3 5.28 × 10−3 5.99 × 10−4

τ = 4 143.8 5.33 × 10−3 6.57 × 10−4

0:0001s8 142.4 4.84 × 10−3 3.80 × 10−4

0:001s8 (D) 142.3 5.28 × 10−3 5.99 × 10−4

0:01s8 147.6 6.07 × 10−3 6.83 × 10−4

0:02s8 148.5 6.35 × 10−3 6.91 × 10−4

merge at 0 153.3 7.03 × 10−3 6.20 × 10−4

merge at 1 151.3 6.86 × 10−3 8.53 × 10−4

merge at 2 148.4 6.46 × 10−3 8.29 × 10−4

merge at 3 (D) 142.3 5.28 × 10−3 5.99 × 10−4

merge at 4 146.0 5.58 × 10−3 5.36 × 10−4

no merging 156.3 7.57 × 10−3 8.42 × 10−4

multi-range 143.7 4.35 × 10−3 1.99 × 10−4

no sharing 143.4 5.41 × 10−3 7.09 × 10−4

fully connected 166.9 8.40 × 10−3 3.29 × 10−4
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The first two variations (τ = 1 and τ = 2) have a shorter history
length. Given the standard deviations, the effect of this par-
ameter on the reconstruction quality is marginal and provides
no significant improvement. The third variation to outperform
the default settings is the lowest relative input noise setting
(0.0001σ∀). This is expected, as the emulated sensors effectively
have a higher sensitivity. The final outperforming variation
(multi-range) concatenates amplified and attenuated versions
of the input for the CNN input. While the training loss is
slightly higher than default, this variation performs signifi-
cantly better in terms of reconstruction quality.

4.2. Three-dimensional position reconstruction
Using the reconstructed 2D probability grids from the CNN,
we used the iterative algorithm explained in §3.5 to detect
sources and determine their position in three dimensions.

Figure 7 shows the process for a single sample for deter-
mining the position of two objects. It shows the advantage of
taking our approach for detecting maxima in these 2D maps.

The first estimates for simply picking the maximum pixel
(indicated with pluses) is a good start, but only provides esti-
mates from a discretized coordinate system. As is more
clearly visible in figure 7c (the intersection of the two arcs),
this initial estimate tends to overestimate the distance.
While the final position from the fitting procedure does not
necessarily coincide with the ground truth source positions,
these final estimates do clearly reflect the maxima of the
probability grids.

Figures 8 and 9 show the localization error distribution
for a hypothetical perfect probability reconstruction and the
reconstruction from each type of CNN model alteration.
The performance of these model alterations, broadly speak-
ing, aligns with the quality of probability grid reconstruction.

For detecting the location of a single source (figure 8), the
default model has the lowest median error, but the shorter tail
of the ‘multi-range’ model suggests that its performance is
more consistent. All models perform reasonably well, given
that the average random prediction error in a bounded
volume of 2 × 2 × 1 m is 1.132m. Especially, the default
model and the ‘multi-range’ model result in a localization
performance that is close to optimal.

In the cases where two sources are present (figure 9), the
performance of the localization algorithm is only slightly
affected in the ideal case. For the CNN probability grid recon-
structions, the differences between most CNN models
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decrease, while the localization error per source more than
doubles overall. With respect to the model alterations, most
trends visible in the case with one object are also visible
here, with one notable exception. Here, the ‘multi-range’
model outperforms the default model, signified by its lower
median and its shorter third quartile.

In some cases, the pipeline described in §3.5 was not able
to reliably determine a second source. The default CNN
model has an object detection rate of 85.4%. Only the τ = 1,
‘merge at 1’ and ‘multi-range’ variants have a detection rate
that is on par.
5. Discussion
Here, we discuss the overall results, followed by the effects of
the extensive range of architectural design variations for the
CNN, as well as the effectiveness of the incorporated localiz-
ation method. This is followed by a discussion on the
detection limits of the approach and directions for future
research.
5.1. The processing pipeline
The final average error in localization performance can be
thought of as a cascading effect of imperfect maxima localiz-
ation, which is influenced by an imperfect probability
reconstruction, which can be caused by unbalanced sampling
in the simulation or a suboptimally configured CNN. Uncer-
tainty or information loss can be introduced and interact at
each of these stages.

While better probability reconstructions tend to result in
better localization performance overall, optimizing these
intermediate steps does not guarantee optimizing the end
result. This is made apparent by the reconstruction perform-
ance of a CNN with τ = 1, which is the best variant in terms of
MSE. It is however outperformed in localization by a CNN
with τ = 3. In this case, the values in the reconstructed maps
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of the CNN with τ = 1 are closer to the ground truth on aver-
age, but their maxima may have been further away from the
actual position than those in the case with τ = 3.
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5.1.1. CNN design variations
There are a number of parameters that were not optimized in
detail, such as the learning rate, the regularization loss, the
number of hidden layers and the number of neurons per
hidden layer. It is likely that our system can be improved
by performing a grid search, random search or evolutionary
search to optimize these hyperparameters [34,35]. We discuss
here the effects of the parameters that were varied.

History τ. First of all, the history length indicated by the τ
parameter seems to have a marginal effect on the reconstruc-
tion performance. Perhaps surprisingly, a history length of
τ = 1 results in the most accurate model. This could be
explained by the fact that it is easier to generalize from
single time steps than it is to generalize from multiple time
steps.

Perhaps in a more complex setting it might still be valu-
able to incorporate previous time frames, as has been
shown for localizing a single source using regression [24].
One such situation that may benefit from taking history
into account is when objects turn more slowly than the cur-
rent maximal 1 rad (57 degrees) per second or when the
objects can vary their speed. These more complex situations
would likely reduce the performance of the system as cur-
rently optimized. It would require more training data to be
generated for tuning any inverse method for localizing
these objects.

Noise. There seems to be no obvious relation between the
noise level and localization performance. We see that, when
the noise level is 10 times lower than the default, we obtain
a marginally worse-performing model. The performance
with higher noise levels follows intuition and also degrades.
It is likely that some form of noise may have helped to pre-
vent overfitting for the default CNN architecture.

Merging convolutional streams. Similarly, the default
CNN model may have the optimal merging index. We
note that the number of neurons is kept the same for any
merging index, and thus should not cause a difference in
the performance.

Merging at the input (index 0) leads to the worst average
localization performance. In this case, the streams are not sep-
arated at all. As we postpone the merging point, we initially
observe a gradual improvement. However, after merging
index 3, we observe impeded performance. Perhaps this
could be explained by the fact that the earlier layers will be
able to extract the local characteristics of the velocity patterns
of a single sensor better when not affected by the velocity pat-
terns of the other array. This makes it easier for the first few
layers to generalize the representation that they learn, as the
number of possible inputs per layer is greatly reduced by
splitting the two streams.

In the case of merging index 4, there is no hidden layer
between the merged streams and the output. This prevents
the CNN from making use of nonlinear processing, which
is likely to be beneficial. This might also explain why we
see a relatively poor performance when no merging is used
at all.

Amplification levels. Using multiple amplification levels
results in a considerable improvement compared with the
default model for probability function estimation and localiz-
ation, especially when two sources are considered.

The cubic term in equation (2.3) causes the input to be in a
large dynamic range. By using multiple amplification levels,
the network can encode salient differences in sensor inputs at
multiple scales, which improves the overall performance.
This effect is more prominent in samples containing two
objects. In these cases, both near (strong) and far (weak)
sources are likely to be processed in a favourable dynamic
range in one of these amplification levels.

Weight sharing. Disabling weight sharing between the
streams seems to have a negligible effect on performance. Per-
haps if more arrays were aligned, weight sharing may be
more beneficial, since it makes training more effective.

Adding a fully connected layer. It seems that using a fully
connected layer at the back of the network, instead of a
final convolution layer, severely impedes performance.
Since the amount of trainable weights is increased consider-
ably, it is likely that this is a result of overfitting. Perhaps
with a bigger dataset, the CNN+FC may still prove to
be useful.
5.1.2. Iterative source detection
The 3D-aware filtering method provides an iterative
approach to detecting multiple objects, as detected by mul-
tiple arrays. A consequence of the 3D-aware filtering
method is that, after removing the most prominent source,
there is some residual probability left on that location
(figure 7d ). In our case, via reasonably chosen thresholds,
the expected summed probability for a single source and a
minimal distance, we were able to detect a second object in
most cases. There are two main advantages of this method.

First, objects which are masked in two dimensions, can
still be detected. It could happen that two objects are posi-
tioned at (0, 1, 1) and (0, 0, 1), respectively. These two
sources would have an identical distance to A2, and thus
sensed as a single object by that array, but they can be dis-
cerned and detected as separate objects via array A1.

Secondly, without specifying how many sources should
be detected, this algorithm can detect an arbitrary number
of sources. As it is the first demonstration of localizing an
arbitrary number of objects with an ALL, we cannot readily
compare this method with other (regression) inverse methods
in the literature without adjusting them.

We note that the current data generation does allow for
two sources to be spawned at the exact same place, with no
minimal distance enforced. This has in some cases led to a
single perceived object, which affected the detection rate.
For future simulations and experiments, a minimal distance
between objects may improve the quality of probability
reconstruction and the source detection performance.
5.2. Detection limits and future research
Hydrodynamic imaging is a near-field modality. The distance
range in which this near-field localization method can be
used is limited. The hydrodynamic information carried
through the water deteriorates with the cube of the distance
d3, while for (far-field) sound signals this is a factor of the dis-
tance squared d2, which is the case for sonar. While the
detection range for sonic detection is bigger, hydrodynamic
detection can be more effective in the near-field.
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Scaling up this principle is therefore not trivial, as hydro-
dynamic imaging is mostly beneficial in the near-field range.
This near-field can be extended by increasing the source’s
speed and volume. We could, for instance, scale up the
source properties, set-up and domain with a constant
factor. However, even when the hydrodynamic signals can
be amplified to counter the effect of an increased distance,
the resolution of sampling a velocity pattern will drop and
likely impair the system. At further distances, sonar-based
solutions have a clear advantage.

The application of hydrodynamic detection of objects can
therefore not scale up indefinitely, but the range can be
extended beyond the current chosen domain. It has been
shown that the source can be positioned in an area next to
the array and still be detected reliably using different types
of artificial neural networks [14,20,24]. It is, therefore, not
necessary for the whole velocity pattern to be sampled
within the area directly in front of the array; the domain
can extend beyond the length of the array. The CNN might
therefore be less effective in situations where only a part of
the velocity pattern is detected, since some of the spatial
characteristics are not sampled.

The current iterative method of localization performs
equally well in situations of one and two objects present,
and is therefore not a bottleneck in this pipeline. However,
even in the ideal case where the method is presented with
a perfect probability reconstruction, some errors remain.
The lower bound on this error might be a result of the
unbiased sampling of locations; in some cases, two objects
were instantiated in nearly the same location.

For future research, it should therefore also be investi-
gated whether the current iterative position reconstruction
method is the most appropriate in cases with non-overlap-
ping or even more objects. Other peak-detecting algorithms
may be equally able to cope with the 2D masking in prob-
ability grids constructed from 1D velocity patterns resulting
from objects moving in 3D space.

Our research can be extended by further increasing the
variation on the input. One could increase the number of sim-
ultaneous objects and allow different sizes, different shapes
and a variable speed. It is evident that the more variations
the system has to learn to cope with, the more data will be
required to train the system. The results obtained in this
research suggest that there is potential for our implementation
to address such complicated scenarios.
6. Conclusion
In this paper, we assessed a new approach to underwater
object localization using a simulated ALL with CNNs. Via
the iterative 3D-aware position estimation algorithm, we
have shown that multiple spheres can be detected simul-
taneously in a 3D space by using two sensor arrays placed
in parallel.

The most significant CNN model improvement is a result
of providing the input at several amplification levels. Since
the input was compressed and normalized between −1 and
1, these additional amplification levels effectively made the
CNN more compatible with the considerable dynamic
range of the input. Additionally, by placing two ALLs in a
parallel configuration, the two convolutional streams of the
CNN could be merged and exchange information, which is
beneficial for localization performance.

We have, therefore, demonstrated that the combined
system is suitable for localizing multiple moving objects in
a bounded volume.
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