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A B S T R A C T   

Introduction: Both Hip Dysplasia(DDH) and Femoro-acetabular-Impingement(FAI) are complex three-dimensional 
hip pathologies causing hip pain and osteoarthritis in young patients. 3D-MRI-based models were used for 
radiation-free computer-assisted surgical planning. Automatic segmentation of MRI-based 3D-models are 
preferred because manual segmentation is time-consuming. 
To investigate(1) the difference and(2) the correlation for femoral head coverage(FHC) between automatic MR- 
based and manual CT-based 3D-models and (3) feasibility of preoperative planning in symptomatic patients with 
hip diseases. 
Methods: We performed an IRB-approved comparative, retrospective study of 31 hips(26 symptomatic patients 
with hip dysplasia or FAI). 3D MRI sequences and CT scans of the hip were acquired. Preoperative MRI included 
axial-oblique T1 VIBE sequence(0.8 mm3 isovoxel) of the hip joint. Manual segmentation of MRI and CT scans 
were performed. Automatic segmentation of MRI-based 3D-models was performed using deep learning. 
Results: (1)The difference between automatic and manual segmentation of MRI-based 3D hip joint models was 
below 1 mm(proximal femur 0.2 ± 0.1 mm and acetabulum 0.3 ± 0.5 mm). Dice coefficients of the proximal 
femur and the acetabulum were 98 % and 97 %, respectively. (2)The correlation for total FHC was excellent and 
significant(r = 0.975, p < 0.001) between automatic MRI-based and manual CT-based 3D-models. Correlation for 
total FHC (r = 0.979, p < 0.001) between automatic and manual MR-based 3D models was excellent. 
(3)Preoperative planning and simulation of periacetabular osteotomy was feasible in all patients(100 %) with hip 
dysplasia or acetabular retroversion. 
Conclusions: Automatic segmentation of MRI-based 3D-models using deep learning is as accurate as CT-based 3D- 
models for patients with hip diseases of childbearing age. This allows radiation-free and patient-specific pre-
operative simulation and surgical planning of periacetabular osteotomy for patients with DDH.   

1. Introduction 

Femoroacetabular impingement (FAI) and developmental dysplasia 

of the hip (DDH) are major causes of hip osteoarthritis in young and 
active patients [1]. DDH is an abnormality of the acetabulum, while FAI 
mostly affects the femoral head and neck. DDH is characterized by a 

Abbreviations: DDH, developmental dysplasia of the hip; FAI, Femoroacetabular Impingement; ROM, range of motion; FHC, femoral head center; DOC, Dice 
Overlap Coefficients; ASD, Average Surface Distance; GPU, Graphics processing unit. 
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static overload [2], while FAI is a painful, dynamic and early osseous 
conflict between proximal femur and the acetabulum which limits range 
of motion (ROM) [1,3,4]. Commonly used clinical tests for diagnosis 
have a low sensitivity and specificity [5,6]. Therefore radiological 
diagnosis is very important for these patients. Standard imaging 
assessment for hip diseases is usually based on 2D radiographs or 
computed tomography (CT) scans. However, 2D radiographs are not 
specific and cannot visualize the exact location of the deformity [7]. 

In contrast, previous studies showed, that CT-based 3D-models allow 
exact surgical planning [8,9] of hip arthroscopy [10–13] for FAI or 
periacetabular osteotomy [2] for DDH. But CT scans should not be used 
for young patients due to the radiation exposure [14], especially in 
patients of child-bearing age. Recently, computer-assisted 3D-MRI--
based diagnosis of DDH and FAI was introduced to overcome these 
problems [15]. For these patients, MRI-based osseous 3D-models [16] of 
the hip joint represent a radiation-free method that can provide a 
circumferential analysis of the deformity and calculation of femoral 
head coverage. But these MRI-based 3D-models were obtained by 
manual segmentation, and this is a very time-consuming process (up to 
3− 4 hours), not applicable for clinical routine. Therefore automatic 
segmentation was investigated. 

Femoral head coverage is an important parameter for treatment of 
patients with DDH [17]. The main objective of corrective surgery is to 
increase femoral head coverage to optimize the orientation of the 
weight-bearing zone [17]. This can reduce the joint contact pressure and 
therefore reduce the risk for premature development of osteoarthritis of 
the hip joint [18,19]. Previous methods for calculation of the femoral 
head coverage used 2D pelvic radiographs [20] or cumbersome and 
complex assumptions [21]. A CT-based method for calculation of the 
femoral head coverage was recently applied for patients with DDH [22]. 
But segmentation of CT-based 3D models has considerable radiation 
exposure [14]. 

Previous studies [23–25] investigated automatic segmentation of 
3D-model from hip MRI and used deep learning for detection of hip 
fractures [26]. But, they performed 3D segmentation for the proximal 
femur only, while the segmentation of acetabulum was not performed 
[23,24]. Furthermore, only few studies evaluated the segmented 3D 
models in clinical routine for symptomatic patients. To the best of our 
knowledge, this is one of the first studies that used a radiation-free, 
patient-specific and non-invasive method for preoperative planning 
using automatic segmentation of MR-based 3D-models based on deep 
learning. 

The purposes of this study were (1) to investigate the difference and 
the (2) correlation for femoral head coverage and other parameters 
between automatic segmentation of MR-based and of CT-based 3D- 
models and between automatic and manual segmentation of MRI- 
based 3D models (3) to test feasibility of simulation and planning of 
periacetabular osteotomy using MRI-based 3D models of symptomatic 
patients with DDH and FAI. 

2. Patients and methods 

2.1. Patients 

Following IRB-approval we performed a comparative, retrospective 
study of a series of 31 hips from 26 symptomatic patients with FAI or 
DDH who presented at our university centre for hip preservation be-
tween 03/2016 and 02/2017. Patients were referred to imaging based 
on a history of hip pain, clinical and radiographic findings consistent 
with hip impingement or hip instability. We performed automatic seg-
mentation of MR-based osseous 3D-models and compared them to 
manual segmentation of MR-based and CT-based models, of the hip joint 
of the same patients. 

The inclusion criteria of data are as follows: availability of standard 
anteroposterior radiographs, availability of both standardized CT scan 
and a direct MR arthrography of the same hip including the entire pelvis, 

radiographic signs of skeletal maturity and the presence of hip pain at 
the time of image acquisition. The institutional imaging database was 
reviewed for all patients in which a CT scan and direct MR arthrography 
of the pelvis were performed between 03/2016 and 02/2017. Finally, 31 
hips of skeletal mature patients with MR and CT scans remained in the 
study group. 

All patients were evaluated for hip preservation surgery in the 
outpatient clinic from the author’s institution by experienced surgeons 
(MT, KAS). During routine clinical evaluation the patient history was 
acquired the hip ROM was measured, and the anterior and posterior 
impingement tests [3] were evaluated. Routinely we obtained ante-
roposterior pelvic radiographs in a standardized manner [3] and MR 
arthrography of the hip for the diagnostic preoperative evaluation for 
hip-preserving surgery. 

Mean age was 27 ± 7 years and 52 % were women (Table 1). Of the 
included 31 hips, 7 hips(23 %) had a cam deformity [27], 5 hips(16 %) 
had a pincer deformity (Table 1). Five hips(16 %) had cam deformity 
combined with decreased femoral version [28] while 7 hips(23 %) had 
increased femoral version [29,30]. The definition of cam and 
pincer-type deformities was in accordance with previously published 
criteria on conventional anteroposterior pelvic radiographs [31] shown 
in Table 2. 

2.2. Imaging technique 

We used a standardized protocol for MR arthrography on 3 T scanner 
(Siemens Medical Solutions, Erlangen, Germany) with large flexible 
surface coils and multiplanar PD-w images in coronal, sagittal, axial and 
radial orientation [39,40]. In addition, we used an unilateral 
high-resolution 3D sequence for reconstruction of 3D-models of the hip 
(Fig. 1A). The unilateral 3D sequence of the hip had a field of view(FOV) 
including the hip joint, with the unilateral acetabulum including the 
ischial tuberosity and the proximal femur including the greater 
trochanter (Fig. 1A): axial-oblique 3D volumetric interpolated 
breath-hold examination (VIBE, Fig. 1A) was used for the affected uni-
lateral hip joint (repetition time/echo time, 15/3.3 ms, flip angles of 4◦

and 24◦, slice thickness of 0.8 mm, 160 × 160 mm field of view, a matrix 
size of 192 × 192, isotropic voxel size of 0.8 mm3, acquisition time of 
9 min for 128 slices. 

The CT scans were acquired with a dual source scanner (DSCT) or 
128-slice multi-detector (Somatom Definition Flash/Edge, Siemens 
Medical Solutions, Erlangen, Germany) in accordance with previous 
reports [28]. The scanned volume covered the complete pelvis and a 
second volume covering the distal femoral condyles. Scan parameters 

Table 1 
Demographic and radiological data of the study group are shown. 
Values are expressed as mean ± SD and range in parenthesis unless 
otherwise indicated.  

Parameter Total 

Hips (patients) 31 (26) 
Age (years) 27 ± 7 (17–41) 
Sex (% men) 48 
Side (% right) 61 
Bilateral hip (%) 16 
Height (cm) 176 ± 6 (163–186) 
Weight (kg) 83 ± 20 (49–117) 
BMI (kg/m2) 27 ± 6 (18–38) 
LCE angle (◦) 31 ± 10 (12–56) 
Acetabular index (◦) 4 ± 8 (-15 – 20) 
Extrusion index (%) 20 ± 8 (1–36) 
Alpha angle (◦) 51 ± 11 (35–84) 
Femoral torsion (◦) 25 ± 12 (7–54) 
Acetabular version (◦) 18 ± 6 (7–31) 
McKibbin Index (◦) 43 ± 15 (20–75) 
cam-type deformity 7 hips (23 %) 
pincer-type deformity 5 hips (16 %) 
Mixed-type deformity 3 hips (10 %)  
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were: collimation 128 × 0.6 mm, voltage 100/120 kVp; pitch 0.8. 
Automated-attenuation based tube current modulation was used (40 mA 
reference). One mm thick images were reformatted (convolution kernel 
I31f). The mean Dose-length product (mGy × cm) of the patient series 
was 295 ± 124 with a range of 138–713. 

2.3. Manual segmentation of 3D models 

Segmentation of CT-based and MR-based osseous 3D-models for each 
hip joint were performed manually, as previously described [58]. Each 
CT-based or MR-based 3D surface model included a 3D surface model of 
the acetabulum and the proximal femur. The manual segmentation of 
3D-model was performed semi-automatically for each hip joint using a 
threshold-based method by commercial software Amira Visualization 
Toolkit (Visage Imaging Inc, Carlsbad, CA, USA) by two observers(TDL 
and CD, Fig. 1B). Segmentation of 3D models based on CT scans, was 
performed on axial CT scans with a slice thickness of 1 mm and took 
90− 120 min for each hip joint. Segmentation of MR-based 3D models 
(Fig. 1C and D) was performed on 1 mm thick reformatted true axial 
images from the 3D axial-oblique T1 VIBE images and took 3− 4 hours. 

2.4. Automatic segmentation 

Automatic segmentation of MRI-based 3D-models (Fig. 1E and F) 
was performed using deep-learning. We developed a deep-learning- 
based fully automatic method for 3D hip joint segmentation from MR 
images. Deep learning is a part of the big family of machine learning and 
is based on artificial neural networks, especially on Convolutional 
Neural Networks (CNN). The used method (Fig. 2) for fully automatic 
hip joint segmentation of MRI images consisted of two stages: First, the 
femoral head center (FHC) was detected by a landmark detection 
network (Fig. 3). The landmark detection network was a fully CNN, 
which can directly map a whole volumetric data to its volume-wise 
heatmap. And the location of highest value in the heatmap was recog-
nized as the detected landmark. The detected FHC allowed us to crop the 
original data including the joint space, femoral head and the acetabu-
lum. Second, another neural network was trained to segment the crop-
ped hip joint data. The hip joint segmentation network was based on the 
LP-U-net which was introduced in a previous study [59], in which ho-
listic decomposition convolution and dense upsampling convolution 
were applied at the beginning and end of the 3D-U-net, respectively. 
LP-U-net has one essential advantage: the reduction of the GPU memory 
for sub-sequential processing while incorporating larger context infor-
mation for a better performance. In order to avoid overfitting of our deep 
learning model, we used several techniques to improve the generaliza-
tion of our model (Supplemental material Fig. 1 and 2 with loss curves of 
training and testing on three groups). We did not perform hyper-
parameter tuning on the 3 groups for hip joint MR segmentation and 
landmark detection, and all hyperparameters were obtained in our 
previous work on based on another hip MR dataset [28] (Supplemental 
material with detailed information). 

We conducted a standard 3-fold cross validation study using the 3D 
axial-oblique T1 VIBE MR images of the unilateral hip joint of the 31 
hips. Specifically, we randomly split the 31 data into 3 groups. Each 

time, one group was taken as testing data, and the rest of two groups 
were used as training data. We repeated this process three times such 
that each group was used once as testing data. We controlled that the 
hips of the same patients are not present in both training and testing 
dataset. This data splitting strategy of 3-fold cross-validation allowed us 
to test our algorithm three times in blind testing on unknown data. We 
used Dice Overlap Coefficients(DOC) and Average Surface Distance 
(ASD) to evaluate accuracy (main evaluation metrics). Our method was 
implemented with Python using TensorFlow framework on a worksta-
tion with a 3.6 GHz Intel® i7 CPU and a GTX 1080 Ti graphics card with 
11 GB GPU memory. 

To answer the first question, we used commercial software for 3D 
reconstruction(AMIRA) to calculate accuracy. Automatic and manual 
MRI-based models of the same hip joint were compared in this software 
(Fig. 1C and D). Transform editor from AMIRA was used to align two 
surfaces, and then the surface distance error between two 3D models 
was calculated. The manual MRI-based 3D model served as gold stan-
dard. We used DOC and ASD as the outcome parameters. 

To answer the second and third question, we used a specific software 
to calculate six diagnostic parameters including anterior, posterior and 
total femoral head coverage (Fig. 1G), anteversion, inclination and the 
extrusion index [8,9]. This software was developed for planning of 
periacetabular osteotomy. This software was based on a validated 
medical research framework [41] and was described in detail in previ-
ous publications [41,42]. 

We used Winstat software(R. Fitch Software, Bad Krozingen, Ger-
many) to perform statistical analysis. Normal distribution was tested 
using the Kolmogorov-Smirnov test for continuous variables. Pearson’ 
correlation coefficient was used because the variables were normally 
distributed. Absolute mean differences were calculated for continuous 
variables. Interobserver correlation coefficient was calculated using 
Medcalc software (Version 17.6;MedCalc Software, Ostend, Belgium). 
Bland Altman analysis was performed to search for a systematic error. 
Intraclass correlation coefficient(ICC) was performed for comparing the 
two methods. 

3. Results 

(1)The dice coefficient between automatic and manual segmentation 
of MRI-based 3D-models was 97 ± 2% for the acetabulum and 98 ± 1% 
for the femur (Table 3). The mean surface difference between automatic 
and manual segmentation of MRI-based 3D-models were 0.3 ± 0.5 mm 
for the acetabulum and 0.2 ± 0.1 mm for the proximal femur (Table 3), 
respectively. The detailed results of the automatic segmentation can be 
found in the supplemental material. 

(2)Correlation for total femoral head coverage (r = 0.975, p < 0.001) 
between CT and automatic MR-based 3D-models was excellent and 
significant (Fig. 4A). Correlation for anteversion and inclination 
(r = 0.966 and r = 0.885, p < 0.001) was excellent and significant 
(Fig. 4B and C). The mean absolute difference for inclination between 
manual CT-based (54◦±4◦ [range, 44◦–63◦]) and automatic MR-based 
(55◦±5◦ [range, 46◦–64◦]) 3D-models was 1◦±2◦ (0◦–7◦, Table 4). The 
mean absolute difference for anteversion was 1◦±1◦ (range, 0◦–3◦) and 
for total femoral head coverage was 2%±1% (range, 0%–5%,Table 4). 
The Bland-Altman analysis for total femoral head coverage between CT 
and automatic MR-based 3D models showed no systematic error 
(Fig. 4D). The ICC for total femoral head coverage between CT and 
automatic MR-based 3D models was 0.97 (range 0.96 to 0.98). 

Correlation for total femoral head coverage (r = 0.979, p < 0.001) 
between automatic and manual MR-based 3D models was excellent and 
significant (Fig. 5A). Correlation for anteversion and inclination 
(r = 0.979 and r = 0.875, p < 0.001) was excellent and significant 
(Fig. 5B and C). The mean absolute difference for inclination between 
manual (55◦±5◦ [range, 43◦–63◦]) and automatic MR-based (55◦±5◦

[range, 46◦–64◦]) 3D models was 2◦±2◦ (0◦–7◦, Table 5). The mean 
absolute difference for anteversion was 1◦±1◦ (range, 0◦–3◦) and for 

Table 2 
Definitions for hip deformities are shown below.  

Deformity Definition 

Cam deformity Alpha-angle [32] exceeding 60◦ [33] 
Pincer-type-FAI [34,35,36] LCE-angle exceeding 40◦ [31] 
Mixed-type FAI combination of cam and pincer-type-FAI [37] 
DDH LCE-angle<22◦ [31] 
Increased femoral version Femoral version (>25◦) [29] 
Decreased femoral version femoral version(<10◦) 

DDH = developmental dysplasia of the hip; FAI = Femoroacetabular impinge-
ment. Normal values for femoral version was 10− 25◦ [38]. 
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Fig. 1. A-G The MRI image (A), an MRI-based 3D model (B) and comparison between manual (C and D) and automatic MRI-based 3D model (E and F) of the femur (C 
and E) and of the acetabulum (D and F) are shown. Calculation of femoral head coverage (G) is shown. 
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total femoral head coverage was 2%±1% (range, 0%–5%, Table 5). The 
Bland-Altman analysis for total femoral head coverage between auto-
matic and manual MR-based 3D models showed no systematic error 
(Fig. 5D). The ICC for total femoral head coverage between automatic 
and manual MR-based 3D models was 0.98 (range 0.97 to 0.99). 

(3) Feasibility of simulation and planning of periacetabular osteot-
omy using MRI-based 3D-models was possible for all hips (100 %) with 
hip dysplasia or acetabular retroversion(Fig. 6 and Video 1). 3D Printing 
of MRI-based 3D-models was feasible (Fig. 6D). 

4. Discussion 

The aim of this study was to investigate the accuracy of automatic 
segmentation of MRI-based 3D-models, and the correlation for femoral 
head coverage and other outcome parameters comparing manual and 
automatic segmentation of 3D models using MRI. Most importantly, an 
excellent correlation for femoral head coverage (Fig. 4A), anteversion 
(Fig. 4B) and inclination (Fig. 4C) between manual segmentation of CT- 
based and automatic segmentation of MRI-based 3D-models (Fig. 1E and 
F) was found. For FAI and DDH, femoral head coverage and anteversion 

are important diagnostic parameters for the decision making for surgical 
therapy in hips with pincer impingement [43] and can be used for sur-
gical planning [8,9] of periacetabular osteotomy or hip arthroscopy [13, 
44]. Accuracy in terms of ASD was below 1 mm between manual and 
automatic MRI-based 3D-models (Table 3). This is one of the first studies 
that used a radiation-free and patient-specific method for automatic 
segmentation of 3D-models. 

The accuracy of our results for segmentation of MRI-based 3D- 
models (Table 3) is comparable with the published results in the liter-
ature. The 3D U-Net [45] for automatic medical image segmentation is 
one of the state-of-the-art methods [40]. Previous studies used the 3D 
U-Net [24,25] for segmentation of MRI-based 3D-models of the hip. The 
accuracy of the results from 3D U-Net on our dataset was slightly lower 
than the results from the current 3D LP-U-net (Figs. 2 and 3). Specif-
ically, 3D U-Net achieved a DOC of 95 % and 97 % for acetabulum and 
femur [24,25], while a DOC of 97 % and 98 % (Table 3) was achieved in 
the current study. In addition, an ASD of 0.5 mm and 0.4 mm was 
described for the 3D U-Net, but in the current study an ASD of 0.3 mm 
and 0.2 mm was achieved (Table 3), respectively. 

In addition, automatic 3D segmentation methods from CT were 
introduced in previous works [46,47]. Others proposed 3D 
feature-enhanced network for femur segmentation from CT images with 
a DOC of 96.8 % [48]. In another study, a multi-atlas segmentation 
constrained Graph method(MASCG) was proposed and they reported an 
ASD of 0.3 mm for the pelvis and the proximal femur [46], this is a 
comparable ASD compared to our study (Table 3). But all these methods 
were performed on CT images [48], and only few studies investigated 
automatic segmentation using MR images [23,24]. These studies 
investigated automatic 3D segmentation of the proximal femur based on 
3D-MR images using deep learning [23,24]. However, these studies only 
segmented the femur, and the segmentation of acetabulum was not 
performed. 

To the best of the authors’ knowledge, we found no other study 
comparing automatic segmentation of MRI-based models with CT-based 
3D-models of the hip joint of symptomatic patients. Some previous 

Fig. 2. A schematic illustration of the two-stage deep learning based method for fully automatic hip MRI joint segmentation. The femoral head center is detected by 
the landmark detection network, and then we crop the hip joint data around the femoral head center. Finally the LP-U-Net is applied to segment the cropped hip joint. 

Fig. 3. A schematic view of the landmark detection network for femoral head center. The neural network adopts an encoder-decoder architecture with skip con-
nections. The encoder takes MRI data as input and generates high-dimensional feature vector, while the decoder takes the high dimensional feature vector as input 
and generates the landmark heatmap. The number below each block is the number of feature stack. 

Table 3 
Accuracy of the automatic segmentation of MRI-based 3D models by our pro-
posed 3D LP-U-net compared to manual segmentation of MRI-based 3D models 
serving as gold standard is shown.  

Parameters Acetabular models Femoral models 

Number of hips 31 31 
Dice coefficient (%) 97 ± 2 (92–99) 98 ± 1 (93–99) 
Precision (%) 96 ± 3 (89–99) 98 ± 2 (92–100) 
Recall (%) 97 ± 2 (89–100) 97 ± 3 (87–100) 
Mean surface distance (mm) 0.3 ± 0.5 (0.1–3) 0.2 ± 0.1 (0.1 – 0.5) 
Maximum (mm, Hausdorff distance) 9.7 ± 8 (3–39) 5.7 ± 2 (2–13) 

Values are expressed as mean ± SD and range in parenthesis unless otherwise 
indicated. 
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studies compared the segmentation of 3D-models in cadavers [49,50] or 
animal models [50] or with various methods for segmentation [15]. A 
recent study used 3D-MRI for the evaluation of acetabular labrum tears 
[51]. Some other studies explored the segmentation of MRI-based 
3D-models with different MRI protocols, but they are difficult to use 
in clinical routine [16,52]. This could be due to the small FOV, longer 
acquisition time, different bone intensity and unclear boundaries be-
tween bone and soft tissues. 

Comparing the results of the six evaluated diagnostic parameters, 
most of the previous studies used CT-based 3D-models. Their published 
results [46,47] are in line with the results we found in this study 
(Table 4). The mean difference [47] of the diagnostic parameters are in 
accordance with other studies. Another study compared 3D-models 
based on fully automatic CT segmentation(FACTS) with 3D-models 
based on manual CT segmentation [47]. They reported a difference of 
2.0 ± 1.5◦, 2.1 ± 1.6◦ and 3.5 ± 2.3 % for anteversion, inclination and 
femoral head coverage, respectively [47]. Comparing manual and 
automatic MRI-based 3D models, we reported a mean difference of 
1 ± 1◦, 2 ± 2◦, and 2 ± 1% for anteversion, inclination and total femoral 
head coverage (Table 5), respectively. 

This study investigating the automatic segmentation of MRI-based 
3D hip joint models has important implications. To overcome the 
mentioned problems of 2D imaging, 3D-imaging is preferred as they can 
provide more diagnostic information and allow patient-specific surgical 
planning. CT scan is mostly common used for 3D-imaging for the diag-
nosis of FAI and DDH. Furthermore, CT arthrography has demonstrated 
to have the strongest overall diagnostic accuracy [6] in a recent sys-
tematic review including 25 studies. However, CT scans are not 
frequently performed in our institution because of radiation exposure in 
this typically young patient group. In addition, recently a 4D-CT method 
for the diagnosis of FAI was proposed, but it used three times the dose of 
a routine CT examination of the pelvis [53]. Recently, manual 
MRI-based segmentation for osseous 3D-models were investigated for 
surgical planning [58]. But manual MRI segmentation is very 
time-consuming. It took 3− 4 hours to manually reconstruct a 3D-model 
based on MR scans while the deep learning method only took 1− 2 min. 
The method used in the current study showed a fast and accurate 
automatic segmentation. The used method for simulation of peri-
acetabular osteotomy could be further used for surgical navigation using 
MRI-based 3D models. In addition, this could be used for 3D printing 
based on MRI-based 3D-models. 3D Printing is a novel tool for 

Fig. 4. A-D Correlation for total femoral head coverage(A), for anteversion (B) and for inclination (C) between automatic MRI-based and CT-based 3D models are 
shown. Bland-Altman analysis of the total femoral head coverage showed a mean difference of 1.1 % (D). 

Table 4 
Results of the automatic MRI-based and CT-based calculation of diagnostic pa-
rameters using specific software are shown.  

Parameters CT-based 
3D models 

Automatic 
MRI-based 3D 
models 

Difference 
CT vs MRI 

Absolute 
Difference CT 
vs MRI 

Number of hips 31 31   
Inclination (◦) 54 ± 4 

(44–63) 
55 ± 5 
(46–64) 

− 1 ± 2 (-7 – 
2) 

1 ± 2 (0–7) 

Anteversion (◦) 17 ± 5 
(7–30) 

17 ± 5 (7–31) 0 ± 1 (− 3 – 
2) 

1 ± 1 (0–3) 

LCE angle (◦) 28 ± 10 
(10–50) 

28 ± 10 
(9–46) 

1 ± 2 (− 4 – 
7) 

2 ± 2 (0–7) 

Extrusion index 
(%) 

21 ± 8 
(1–37) 

19 ± 9 (0–36) 2 ± 2 (− 5 – 
6) 

3 ± 2 (0–6) 

Total femoral 
head coverage 
(%) 

67 ± 9 
(53–95) 

68 ± 10 
(53–96) 

− 1 ± 2 (-5 – 
4) 

2 ± 1 (0–5) 

Anterior femoral 
head coverage 
(%) 

59 ± 13 
(42–98) 

60 ± 13 
(40–93) 

− 1 ± 3 (− 6 
– 5) 

3 ± 2 (0–6) 

Posterior 
femoral head 
coverage (%) 

74 ± 9 
(56–93) 

75 ± 10 
(58–99) 

− 1 ± 3 (− 6 
– 5) 

2 ± 2 (0–6) 

Values are expressed as mean ± SD and range in parenthesis unless otherwise 
indicated. 
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preoperative planning of cam resection [54,55] and can influence the 
location of the planned osteoplasty [56]. 

This study has the following limitations. First, no clinical followup of 
the patients was performed. Second, only hips without osteoarthritis 
(Tönnis grade<2), without previous operations, and with the complete 
MRI and CT were included. Some hips were excluded because MR im-
ages had severe artifacts when patients had previous operations and 

screw fixation. This limits the use of our proposed method for automatic 
3D-model segmentation for patients with implants. Additionally, the 
used MRI sequence was originally used for cartilage analysis and was not 
used routinely. Third, a low number of hips with protrusio acetabuli(2 
hips[6%], Table 1) were available. But this may be also a strength, 
because it demonstrated that our proposed method also works for these 
hips with uncommon deformities with a low prevalence. Future studies 
could investigate automatic segmentation of MR-based models on a 
larger dataset with more complex deformities (e.g. posttraumatic de-
formities). Last, only skeletal mature patients were included and thus 
cannot extrapolate our findings to patients with pediatric hip disease. 

To overcome the mentioned problems of radiographs and CT scans, 
automatic segmentation of MRI-based 3D-models was used with the aim 
to replace manual segmentation of CT-based 3D-models. And the pro-
posed deep learning based method for automatic hip joint 3D-recon-
struction showed promising results. Based on the results of this study, 
it is possible to reduce preoperative CT scans. This could reduce the 
lifetime risk of malignancy and the radiation dose of a pelvic CT scan 
ranging from 2.9 to 5 mSv [14]. This is especially beneficial for patients 
of childbearing age with hip pain due to FAI or DDH, and pediatric 
patients with SCFE [57]. 

5. Conclusion 

Automatic segmentation of MRI-based 3D-models of the hip joint 
based on deep learning showed promising results with an average sur-
face difference below 0.5 mm for both acetabulum and femur. More 
importantly, the correlation for six diagnostic parameters was excellent 
when comparing automatic with manual segmentation of MR-based 3D- 
models. Based on these results, it is possible to use automatic segmen-
tation of MR-based 3D-models in the future. In addition, this allows 
radiation-free and patient-specific preoperative surgical planning of 
periacetabular osteotomy, and could be beneficial for patients of 

Fig. 5. A-D Correlation for total femoral head coverage (A), anteversion (B) and inclination (C) between automatic and manual MRI-based 3D models are shown. 
Bland-Altman analysis of the femoral head coverage showed a difference of 0.5 % (D). 

Table 5 
Results of the manual and automatic MRI-based 3D models used for calculation 
of diagnostic parameters using specific software are shown.  

Parameters Manual 
MRI-based 
3D models 

Automatic 
MRI-based 3D 
models 

Difference 
manual vs 
automatic 

Absolute 
Difference 
manual vs 
automatic 

Number of hips 31 31   
Inclination (◦) 55 ± 5 

(43–63) 
55 ± 5 
(46–64) 

0 ± 2 (− 7 – 
4) 

2 ± 2 (0–7) 

Anteversion (◦) 17 ± 5 
(7–30) 

17 ± 5 (7–31) 0 ± 1 (− 3 – 
2) 

1 ± 1 (0–3) 

LCE angle (◦) 28 ± 10 
(10–53) 

28 ± 10 
(9–46) 

1 ± 2 (− 3 – 
6) 

2 ± 2 (0–6) 

Extrusion index 
(%) 

19 ± 8 
(1–35) 

19 ± 9 (0–36) 1 ± 2 (− 5 – 
4) 

2 ± 1 (0–5) 

Total femoral 
head 
coverage (%) 

68 ± 10 
(54–98) 

68 ± 10 
(53–96) 

1 ± 2 (− 3 – 
5) 

2 ± 1 (0–5) 

Anterior 
femoral head 
coverage (%) 

61 ± 13 
(41–98) 

60 ± 13 
(40–93) 

1 ± 2 (− 2 – 
8) 

2 ± 2 (0–8) 

Posterior 
femoral head 
coverage (%) 

75 ± 9 
(56–97) 

75 ± 10 
(58–99) 

0 ± 3 (− 4 – 
8) 

2 ± 2 (0–8) 

Values are expressed as mean ± SD and range in parenthesis unless otherwise 
indicated. 
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childbearing age with hip pain due to FAI or DDH. 
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