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Abstract

Motivation: The biological effects of human missense variants have been studied experimentally for decades but
predicting their effects in clinical molecular diagnostics remains challenging. Available computational tools are usu-
ally based on the analysis of sequence conservation and structural properties of the mutant protein. We recently
introduced a new machine learning method that demonstrated for the first time the significance of protein dynamics
in determining the pathogenicity of missense variants.

Results: Here, we present a new interface (Rhapsody) that enables fully automated assessment of pathogenicity,
incorporating both sequence coevolution data and structure- and dynamics-based features. Benchmarked against a
dataset of about 20 000 annotated variants, the methodology is shown to outperform well-established and/or
advanced prediction tools. We illustrate the utility of Rhapsody by in silico saturation mutagenesis studies of human
H-Ras, phosphatase and tensin homolog and thiopurine S-methyltransferase.

Availability and implementation: The new tool is available both as an online webserver at http://rhapsody.csb.pitt.
edu and as an open-source Python package (GitHub repository: https://github.com/prody/rhapsody; PyPI package in-
stallation: pip install prody-rhapsody). Links to additional resources, tutorials and package documentation are pro-
vided in the ’Python package’ section of the website.

Contact: bahar@pitt.edu or lponzoni@pitt.edu or lponzoni@keiserlab.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-nucleotide polymorphisms (SNPs) are single DNA base pair
changes that are inherited (germline variants) or occur during the
organism’s lifetime (somatic variants). A SNP located in a coding re-
gion of the DNA may lead to the translation of the gene codon into
a different amino acid than the wild-type (non-synonymous SNPs),
giving rise to a single amino acid variant (SAV or missense variant).
Both synonymous and non-synonymous SNPs can perturb the nor-
mal activity of a cell. For example, synonymous SNPs can affect
splicing, regulatory mechanisms and gene and/or protein expression
levels although they do not affect the encoded protein’s sequence.
SAVs can additionally have molecular effects, e.g. by altering a pro-
tein’s orthosteric or allosteric sites, its interaction with substrates or
its stability.

More than half of the mutations implicated in human inherited
diseases are estimated to be associated with SAVs (Stenson et al.,
2017). As a result, devising analytical and computational
approaches for predicting their effect has been of broad interest, but
equally challenging due to complex effects in the cell. In recent
years, it became evident that comprehensive approaches integrating

multiple perspectives are the only viable solutions to achieve higher
accuracy in pathogenicity predictions and to interpret experimental
data at the molecular level. In the case of SAVs, this means under-
standing not only the significance of the mutated amino acid vis-à-
vis the biological function of the protein, often captured by
sequence-based conservation models, but also its importance for the
fold stability and conformational mechanics and interactions, both
intra- and intermolecular (Ancien et al., 2018).

Significant progress has been made in tools that focus on protein
sequence conservation and residue coevolution, such as context-
dependent modeling of sequence evolution (Feinauer and Weigt,
2017; Hopf et al., 2017) in recent years. In contrast, structure-based
modeling approaches have been lagging behind compared to
sequence-based approaches in evaluating the effect of SAVs, even
though the first-generation classifiers that take account of 3D struc-
tures have shown considerable success (Adzhubei et al., 2010;
Ancien et al., 2018; Capriotti and Altman, 2011). The importance
of considering structure, or solvent accessibility, especially when
relatively few homologs are available, has been pointed out in early
studies (Saunders and Baker, 2002) and in more recent works based
on residue network analysis (Brown et al., 2017; Brown and Tastan
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Bishop, 2017). This class of computations has been limited by two
factors: first, they are possible only when the 3D structure of the
protein is known, either from experiments or from comparative
modeling. Second, even when a structure is available, the traditional
methods to investigate the effect of missense variants such as mo-
lecular dynamics (MD) simulations require expensive computations
which do not lend themselves to genome-scale analyses. While MD
studies have shown success in predicting the impact of SAVs (Abdul
Samad et al., 2016; Kumar and Purohit, 2014; LaRusch et al., 2014;
Parveen et al., 2019; Priya Doss et al., 2014), they are applicable on
a case-by-case basis only and are limited by the time and space limi-
tations of MD simulations.

Yet, recent years have seen a rapid growth in the structural char-
acterization of the proteome with advances in structure determin-
ation (e.g. cryo-EM) technologies. In parallel, computationally
efficient methods such as those based on elastic network models
(ENMs) have been developed, which efficiently provide insights into
the intrinsic dynamics of proteins uniquely defined by their inter-
residue contact topology (Bahar et al., 2010; Li et al., 2017). Many
analytical tools have been developed within the framework of
ENMs, which focus on different aspects of protein equilibrium dy-
namics, both on a local (e.g. fluctuations in residue positions) and a
global (e.g. coupled domain movements and allosteric switches)
scale. ENMs are broadly used for mechanistic studies, but their util-
ity in genome-scale studies of the impact of mutations is becoming
clear only in recent studies (Ponzoni and Bahar, 2018; Rodrigues
et al., 2018).

The rapidly growing experimental data on the functional impact
of SAVs and on protein structures provide a unique opportunity for
building upon that first generation of pathogenicity predictors to de-
velop a machine learning approach trained not only on well-
established sequence- and structure-dependent properties, but also
on intrinsic dynamics, derived from ENMs. A first attempt in that
direction (Ponzoni and Bahar, 2018) paved the way to the current
development and implementation of Rhapsody, an advanced tool
and user-friendly server for Rapid High-Accuracy Prediction of SAV
Outcome based on DYnamics, accessible at http://rhapsody.csb.pitt.
edu.

The inclusion of dynamics-based features distinguishes
Rhapsody from tools broadly used in the field such as PolyPhen-2
(Adzhubei et al., 2010), SIFT (Ng and Henikoff, 2003), CADD
(Kircher et al., 2014) and others [see Grimm et al. (2015) for a critic-
al review of some of these methods and Hu et al. (2019) for an
updated list of tools]. We presently introduce a ‘full’ version of
Rhapsody that incorporates coevolution features extracted from
Pfam domains, inspired by the success of recent studies (Feinauer
and Weigt, 2017; Hopf et al., 2017). We provide extensive compari-
sons of Rhapsody against PolyPhen-2 (Adzhubei et al., 2010) and
EVmutation (Hopf et al., 2017), utilizing a refined dataset of about
20 000 human SAVs, built from consensual clinical interpretations
between multiple databases (DBs). PolyPhen-2 is a broadly used tool
for predicting the functional effects of human variants, which relies
on a supervised naı̈ve Bayes classifier trained on annotations, con-
servation scores and structural features that characterize the amino
acid substitution. It is chosen here as a representative tool among
several other publicly available methods because of its widespread
use. EVmutation, on the other hand, emerges as one of the most ac-
cessible and powerful tools among the recent wave of tools that le-
verage coevolution analysis for predicting the fitness of mutants,
going beyond the limitations of conservation analyses by taking ac-
count of the inter-dependencies between pairs of sequence positions.
The change in ‘evolutionary statistical energy’ DE incurred upon
mutation is directly interpreted as a proxy for the mutant fitness.
However, a cutoff energy for binary classification of mutants as
deleterious or neutral is not defined.

Rhapsody is implemented as a standalone package, which may
be used in conjunction with our ProDy API (Bakan et al., 2011).
The server offers the option of using as input customized Protein
Data Bank (PDB) structures, such as those stabilized under different
conformational and oligomerization states as well as those resolved
for orthologues or generated by comparative modeling.

We illustrate the utility of Rhapsody by way of applications to
human H-Ras, a highly conserved G-protein belonging to Ras sub-
family of small GTPases for which deep mutational scanning data
have been recently reported (Bandaru et al., 2017), and to two
human proteins featured in a recent Critical Assessment of Genome
Interpretation (CAGI) competition (Andreoletti et al., 2019): PIP3
phosphatase, also called phosphatase and tensin homolog (PTEN)
and thiopurine S-methyltransferase (TPMT). The new tool provides
not only an efficient independent assessment of potential pathogenic
effect of mutations, but also mechanistic insights into the molecular
basis of the observed and/or predicted effects.

2 Materials and methods

2.1 Development of an upgraded dynamics-based

pathogenicity predictor
Three groups of features, sequence-based (SEQ), structure-based
(STR) and dynamics-based (DYN), computed for each position
along the sequence and/or specific amino acid substitution (e.g.
‘P01112 10 G A’ in UniProt coordinates, indicating variant G10A of
GTPase H-Ras), are used for training a random forest classifier, fol-
lowing the approach described in our earlier work (Ponzoni and
Bahar, 2018). In the original version of the algorithm, SEQ features
were computed by the PolyPhen-2 server (Adzhubei et al., 2010),
STR features by using structural data from the PDB and DYN fea-
tures by the ProDy API (Bakan et al., 2011). This classifier proved
to achieve accuracy levels comparable to, if not better, than 11 exist-
ing tools (Ponzoni and Bahar, 2018).

In this study, we introduce two upgraded versions, referred to as
‘reduced’ and ‘full’ Rhapsody classifiers. Supplementary Table S1
provides a detailed list of the features used in both versions along
with their definition and interpretation. The reduced version
includes BLOSUM62 amino acid substitution scores (Henikoff and
Henikoff, 1992) as an additional feature and upgraded DYN fea-
tures calculations (Fig. 1A and B). The full Rhapsody classifier uses
as additional features the mutation site entropy and coevolution
properties deduced from Pfam domains (El-Gebali et al., 2019).

We also designed a new interface (http://rhapsody.csb.pitt.edu)
that enables efficient use of the algorithm and visualization of its
output. A detailed description of random forest features and hyper-
parameter optimization, Python package implementation and inter-
face design is presented in Supplementary Materials and Methods.

2.2 Construction of an integrated dataset of annotated

human variants
The dataset for training the algorithm has been generated by com-
bining five publicly available datasets [HumVar (Adzhubei et al.,
2010), ExoVar (Li et al., 2013), PredictSNP (Bendl et al., 2014),
VariBench (Thusberg et al., 2011) and SwissVar (Mottaz et al.,
2010)] with the Humsavar DB of all human missense variants anno-
tated in the UniProtKB/Swiss-Prot DB and the ClinVar archive of
reports on the level of concordance between human variations and
phenotypes (Landrum et al., 2016). Supplementary Table S2 pro-
vides information on the content of these datasets and their level of
agreement. After filtering out discordant labels, we obtained an
‘Integrated Dataset’ (IDS) of 87 726 SAVs, of which 27 655 could
be mapped onto PDB structures, a prerequisite for computing STR/
DYN features, and 23 085 had PDB structures with at least 150
residues.

The ClinVar DB provides a reliability level for each variant, with
the help of zero (weak) to four (best) ‘review stars’ assigned to each
SAV, based on the number of, and consensus between, various sour-
ces. Variants with ‘no assertion’ or ‘no assertion criteria provided’
are assigned 0-star; those characterized by ‘single submitter’ or ‘con-
flicting interpretations’ are assigned 1-star; a 2-star assignment
refers to ‘no conflicts and multiple submitters’; 3-star, to ‘reviewed
by experts’ and 4-star, to ‘practice guideline’. As will be shown in
Section 3, removal of the 0-star cases led to improved prediction ac-
curacy. The final, optimized integrated dataset (OPTIDS) after
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eliminating these low-confidence cases contains 20 361 SAVs with
at least 1 ClinVar review star, mapped onto 2828 unique chains in
the PDB, each containing at least 150 residues.

3 Results

3.1 Cross-validation and comparison with other tools
In a preliminary analysis (Fig. 1C), we monitored the average area
under the ROC curve (AUROC) attained by the full classifier in a
10-fold cross-validation procedure while gradually excluding from
the IDS those SAVs with lower ClinVar rating. The exclusion of
SAVs with 0-stars helped improve the accuracy (blue curve in
Fig. 1C). This was followed by a plateau or minimal decrease in ac-
curacy when further excluding 1-, 2-, 3- and 4-star SAVs. These add-
itional changes were within the error bars computed from 10 cross-
validation iterations, so we opted to exclude SAVs with 0-stars only,
which accounted for �12% of cases, from our training dataset in all
subsequent analyses.

This OPTIDS was used for evaluating the accuracy of the classi-
fier through cross-validation. In Figure 1B, we compare the perform-
ances of three variants of Rhapsody against PolyPhen-2 (Adzhubei
et al., 2010) and EVmutation (Hopf et al., 2017). The colored bars
represent accuracy measurements for each method’s predictions. For
the three Rhapsody variants on the left, we calculated the average
AUROC and associated SDs from a 10-fold cross-validation on
OPTIDS, while for PolyPhen-2 and EVmutation, we plotted the
AUROC values over the same dataset of variants. The light green
bars in the background indicate the actual number of SAVs that
could be evaluated by each approach. The cross-validation for
Rhapsody classifiers has been carried out through random partition-
ing of OPTIDS, stratified by mutation classes to ensure equivalent
bias in each fold (gray bars in Fig. 1B). Additional low-redundancy
measurements have been performed as more stringent tests, by
removing the variants of the same residue (‘residue-stratification’,
orange bars) or within the same protein (‘protein-stratification’,
blue bars) from the training subsets. Each of these steps resulted in
lower estimates of accuracy, by up to �0.03.

We notice that the full Rhapsody classifier outperforms both
PolyPhen-2 and EVmutation, based on AUROC values. Similar con-
clusions could be drawn by evaluating the performance of these
methods with other metrics, such as the Matthews correlation coef-
ficient (MCC) and F1-score, as presented in Supplementary Figure

S1. The latter are known to be less affected by high class imbalance
(bias toward deleterious mutations in OPTIDS), and therefore may
provide a better estimate of accuracy. Note that about 70% of our
training dataset consists of deleterious variants while an opposite
composition bias is observed in naturally-occurring human variants
(Lek et al., 2016). To mitigate the effect of such imbalances, the ran-
dom forest models have been trained by assigning to training exam-
ples weights inversely proportional to class frequency.

The full Rhapsody classifier is also seen to outperform the
reduced version, although within the error margins defined by the
metrics’ SD. Further comparison with the original version intro-
duced in 2018 (Ponzoni and Bahar, 2018), presented in Figure 2C,
shows the statistically significant improvement achieved in the full
version, using two different ENMs, the Gaussian Network Model
(GNM) (Li et al., 2016) and the Anisotropic Network Model
(ANM) (Eyal et al., 2015), for evaluating DYN properties.
However, the introduction of Pfam-derived features in the full classi-
fier comes at the cost of a slight decrease in coverage, since Pfam
domains often do not encompass the full span of a protein sequence,
but only those portions that are preserved across species. In this re-
gard, PolyPhen-2 has the widest coverage, being able to return a pre-
diction even for variants without a PDB structure.

In addition to the full and reduced versions of Rhapsody, we also
considered a third option, designated as ‘Rhapsody þ EVmut’,
which incorporated the EVmutation ‘epistatic’ score DE within the
feature set. This variant slightly improved upon the full classifier,
but it also further reduced the coverage. Of note, the integration of
EVmutation and Rhapsody leads to significantly more accurate pre-
dictions than EVmutation used alone.

In the above comparative evaluations, we note that PolyPhen-2’s
training dataset partially overlaps with OPTIDS, as discussed earlier
(Ponzoni and Bahar, 2018), which may lead to an overestimation of
the accuracy of PolyPhen-2 (Grimm et al., 2015). More generally, it
is not always possible nor feasible to account for such ‘training
biases’, unless a completely novel and independent testing dataset is
designed. In order to facilitate future assessments, the output from
our algorithm explicitly acknowledges whenever a tested variant is
also listed in the training dataset. We presented in Supplementary
Figure S2 an additional comparison of the outputs from Rhapsody
with those from 27 other tools currently compiled in dbNSFP, a DB
of functional predictions and annotations for all potential non-
synonymous single-nucleotide variants in the human genome (Liu
et al., 2011, 2016). Yet, the same type of training bias may also hold

Fig. 1. Rhapsody features and prediction accuracy. (A) Random forest features used in Rhapsody classifiers. See Supplementary Table S1 for detailed descriptions. (B)

Comparison of the accuracy of three Rhapsody classification schemes of different complexities and coverage (full, reduced and combined with EVmutation, shown by the three

sets of bars on the left) with that of two other tools, PolyPhen-2 and EVmutation, measured by area under the ROC plot (AUROC) values (and relative error bars from 10-fold

cross-validation) obtained using OPTIDS (Supplementary Table S2). As SAVs from the same residue or protein could be found in both training and testing subsets (gray bars),

we repeated the Rhapsody computations for residue- (orange) and protein-stratified (blue) versions of our dataset to ensure unbiased evaluations. Light green bars in the back-

ground show the relative size of the datasets of variants (right ordinate) used for 10-fold cross-validations of Rhapsody and for testing the other two methods. See also

Supplementary Figures S1 and S2 for further comparison of these methods using additional metrics and for comparisons with outputs from other tools, and Supplementary

Materials and Methods for more details. (C) Effect of excluding variants of various confidence levels (based on ClinVar DB review rates/stars) from the training dataset. Light

green bars represent the numbers of SAVs (right ordinate) that could be processed by Rhapsody’s full classifier, for different subsets. The leftmost bar refers to the complete

IDS (with PDB structures larger than 150 residues); the second bar excludes those with 0-star; the third excludes those with 0- and 1-stars and so on. The blue curve (left ordin-

ate) displays the prediction accuracy levels with error bars computed through cross-validations
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for the precomputed outputs in dbNSFP which may preclude an ob-
jective assessment, even though an exhaustive list of metrics has
been considered therein. The large discrepancies in the accuracy lev-
els for individual classes [neutral and deleterious SAVs, indicated by
suffixes ‘(0)’ and ‘(1)’, respectively] observed for all methods reflects
the imbalance of the dataset and the challenges associated with it.

Finally, we carried out an additional benchmarking study against
predictions from SNPs3D (Yue et al., 2006). The latter is notable
among pathogenicity prediction tools because it evaluates the func-
tional consequences of a SAV by assessing its impact on structural
stability, in addition to identifying candidate genes for specific dis-
eases and providing information on the relationships between these
candidates. For this comparison, a new classifier was trained. A rela-
tively small subset of variants in our OPTIDS was chosen as a test
set, given the availability of precomputed predictions from SNPs3D,
and the proteins containing those variants were excluded from the
training set. The results presented in Supplementary Figure S3 show
equal or better performance of Rhapsody in general over SNPs3D
using a broad range of metrics, even on this particularly challenging
(imbalanced) test set that included a small proportion of deleterious
SAVs, strongly departing from the composition of OPTIDS.

Overall, these results confirm the usefulness of including intrinsic
dynamics features in the context of functional assessment of var-
iants, and further demonstrate the power of adopting an integrative
approach that incorporates coevolution analysis into supervised
learning approaches, thus taking advantage of its superior predictive
power compared to single amino acid conservation properties.

3.2 Contribution of selected features
Figure 2A illustrates the relative weights of the features used in the
integrated classifier ’Rhapsody þ EVmut’. The counterparts for the
’full’ and ’reduced’ Rhapsody classifiers can be seen in the
Supplementary Figure S4. In parallel with previous observations
(Ponzoni and Bahar, 2018), sequence-based features (wtPSIC,
DPSIC and entropy of Pfam domain) rank higher than dynamics-

based (ENM-derived) features, since the latter lack residue specifi-
city. Dynamics-based features, in turn, prove to be more informative
than a widely used structural property, solvent accessibility.

We note that these features are not necessarily independent. The
heat map in Figure 2B provides a quantitative description of their
similarities. Yet, their explicit inclusion in the training algorithm
assists in increasing prediction accuracies. We note, in this context,
the remarkable weight difference between two coevolution proper-
ties, the ‘ranked’ mutual information (MI) and EVmutation’s DE
score. The former was chosen for its simplicity, which makes it
orders of magnitude faster to evaluate computationally than
EVmutation scores, for which a DB of precomputed values was used
in practice (Hopf et al., 2017). For real-time evaluation of coevolu-
tion properties, the integration of more efficient coevolution algo-
rithms might be envisioned.

3.3 Higher accuracy achieved with larger structures
Figure 2C illustrates the dependency of pathogenicity prediction ac-
curacy on the minimum size of the PDB structure included in the
evaluation of the STR and DYN features. More detailed results with
different metrics are presented in the Supplementary Figure S5.
A slight improvement in accuracy is observed when excluding struc-
tures with fewer than N¼150 residues, and again when limiting the
analysis to structures with at least 500 residues. Examination of the
dependency of feature weights on protein size illustrated in
Supplementary Figure S7 indicated that the observed pattern did not
originate from differences in feature weights which remained rela-
tively constant in the range N<300. The increased accuracy upon
exclusion of small (N<150) structures could be attributed to the
fact that sequence/structure data in this range might be incomplete
and not representative of the intact protein. Conversely, the relative-
ly high accuracy in the range N>500 could reflect the more com-
plete inclusion of physical and evolutionary interactions between
sequentially distal but spatially close neighbors in the multi-domain
or multi-subunit proteins.

Fig. 2. Analysis of the Rhapsody classifier. (A) Weights of features in the Rhapsody classifier integrated with EVmutation. See also Supplementary Figure S4. (B) Spearman’s

correlations between all pairs of features. (C) Accuracy of the full Rhapsody algorithm (repeated using either GNM- or ANM-predicted DYN features, with and without envir-

onmental effects) on different subsets of the OPTIDS obtained by setting a minimum PDB structure size (i.e. number N of resolved residues). In yellow, we show the perform-

ance of the original algorithm (Ponzoni and Bahar, 2018). Error bars represent the SD computed during cross-validations. See also Supplementary Figure S5 for similar results

with other accuracy metrics. (D) Training dataset size (SAVs successfully processed by ‘full’ classifier, in blue) and fraction of positive training examples (i.e. deleterious SAVs,

in red) as a function of the minimum number of residues used to filter PDB structures based on their size
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The existence of a direct correlation between prediction accuracy
and size of PDB structures, if any, is blurred by the concurrent

changes in the training dataset size and composition (blue and red
curves, respectively, in Figure 2D). The non-monotonic behavior of
the AUROC plot in Figure 2C could thus be attributed to the chang-

ing imbalance between deleterious and neutral variants in the train-
ing dataset at different PDB size cutoffs. Such non-uniform

distributions are also viewed in the breakdown of the IDS popula-
tion and imbalance at various PDB chain length intervals in
Supplementary Figure S6. However, the pattern observed in

Figure 2C is robustly displayed by other metrics that are less suscep-
tible to dataset imbalance, namely MCC and F1-score
(Supplementary Fig. S5). Thus, we deemed it safe to use the SAVs

with N>150 for training purposes.

3.4 Application to H-Ras
3.4.1 Saturation mutagenesis analysis of human H-Ras protein

Kuriyan and coworkers recently presented results from deep muta-

tional scanning of human H-Ras (Bandaru et al., 2017), a highly
conserved signaling protein which transduces signals through a

nucleotide-dependent switch between active (GTP-bound) and in-
active (GDP-bound) conformations. The impact of a single mutation
on the protein’s normal activity was experimentally linked to the

survival of the hosting bacterial system and quantified by a ‘fitness
score’ (DE), under different contexts. Here, we focus on the com-

plete (‘regulated Ras’) experimental setup, designed to include

regulatory factors that might constrain Ras sequence variability and
that are necessary to obtain a realistic assessment of mutants’
fitness.

Figure 3 presents the results from our so-called ‘in silico satur-
ation mutagenesis’ analysis. The results are presented in a 20 x N
heat map (Figure 3A) where the entries are color-coded by patho-
genicity probabilities (Supplementary Materials and Methods) pre-
dicted for all 19 possible substitutions at each of the N¼171
structurally resolved sequence positions of H-Ras (UniProt sequence
ID: P01112). The entries corresponding to the wild-type amino acids
are in white. The map structure mirrors that of analogous maps of
experimental fitness measurements (Bandaru et al., 2017).

The structure-dependent (STR) and dynamics-based (DYN) fea-
tures required by Rhapsody were computed on the active, GTP-
bound conformation of H-Ras (PDB ID: 6Q21, chain A).
Computations repeated for the inactive state (PDB ID: 4Q21, chain
A) showed that the predictions were very similar (Supplementary
Figs. S8 and S9), with the main differences localized at the switches I
and II (Fig. 3B). These results are consistent with the robustness of
ENM results to structural details, i.e. H-Ras structural dynamics is
predominantly defined by its 3D fold, which defines its inter-residue
contact topology. The contact topology, in turn, determines the in-
trinsically accessible spectrum of motions. The impact of SAVs on
collective mechanics can thus be inferred from either active or in-
active state, provided that the overall fold remains unchanged.

At first glance, the heat maps in Figure 3A show an alternating
pattern of blue (neutral) and red (pathogenic) vertical bands that
loosely correlate with either secondary structure or surface exposure

Fig. 3. In silico saturation mutagenesis results for human H-Ras. (A) The predicted pathogenicity probabilities for all possible SAVs in H-Ras computed by Rhapsody are

shown as a heatmap with a color code ranging from red (deleterious) to blue (neutral); see Supplementary Materials and Methods for more details on the definition of patho-

genicity probability. The corresponding residue-averaged pathogenicity profile is shown in red in the bottom panel, compared to analogous profiles from PolyPhen-2 (blue)

and EVmutation (green) and from experimental fitness measures (grey). The two strips along the upper abscissa of the heatmaps display the secondary structure and solvent ac-

cessibility (SASA) along the sequence. The Rhapsody results are obtained for the structure in the active state. The counterpart for the inactive state is presented in

Supplementary Fig. S8. (B) Residue pathogenicities displayed by color-coded ribbon diagrams for active (top) and inactive (middle) H-Ras. Red and blue colors indicate the

regions with high and low propensities for pathogenicity, respectively. The difference is shown in the bottom panel. The respective purple and green regions refer to sites exhib-

iting increased and decreased pathogenicities in the active form. The purple regions include the two switches involved in activation
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of residues (top strips). Such a pattern can also be discerned in the
bottom panels of Figure 3A. The red curve therein shows the resi-
due-based pathogenicity profile predicted by Rhapsody upon aver-
aging the entries in the corresponding column of the map.
Analogous profiles obtained using PolyPhen-2 (blue), EVmutation
(green) and experimental fitness scores for ‘regulated-Ras’ (Bandaru
et al., 2017) (–DE, gray) reveal an overall agreement between com-
putations and experiments.

Rhapsody performs better than EVmutation and PolyPhen-2
when comparing the predicted residue-averaged pathogenicities
with experimental data, as can be seen in Supplementary Table S3.
The table lists the Spearman’s rank-order correlations, jqj, between
experimental and (different types of) computational data. For the
‘regulated’ case (Fig. 4A and Supplementary Fig. S10), jqj ¼ 0.60
and 0.57 for Rhapsody predictions based on the inactive and active
states, respectively, as opposed to jqj ¼ 0.52 and 0.51 for
EVmutation and PolyPhen-2. Both Rhapsody and EVmutation out-
perform PolyPhen-2 in predicting individual fitness scores (jqj �
0.42 versus 0.36). We also estimated the prediction accuracies using
AUROC and AUPRC as metrics. These required a binary labeling of
variants (neutral/pathogenic) that cannot be readily deduced from
the distribution of experimental DE values, see Supplementary
Figure S11. We arbitrarily set the median of the distribution as a cut-
off, while the 40th and 60th percentiles have been used to compute
an uncertainty interval (an alternative labeling scheme and relative
metrics calculations are shown in Supplementary Figs. S14 and S15).
The resulting ROC curves (Fig. 4B and Supplementary Fig. S12)
confirm similar accuracy levels for Rhapsody and EVmutation, with
respect to both individual (AUC) and residue-averaged («AUC»res)
experimental data, and slightly lower accuracies for PolyPhen-2.
Analogous conclusions emerge from the analysis of Precision–Recall
curves, presented in Figure 5A and Supplementary Figure S13.

These results show that Rhapsody can be advantageously used
for a first assessment of the regions that are sensitive to mutations.
Moreover, the consideration of a more diverse set of properties,
such as dynamics-based features on top of sequence- and structure-
based ones, as in Rhapsody, provides the opportunity of interpreting
the observations in the light of the protein’s structural and dynamic
features.

A visualization of Rhapsody incorrect predictions on Ras 3D
structure (Fig. 5B and C) reveals that most False Negatives are local-
ized on the protein’s surface, while False Positives are generally
found in less exposed positions. A possible explanation is that the
method is inherently biased toward the identification of residues im-
portant for the fold stability or internal dynamics, while locations
subjected to other kinds of constraints, e.g. allostery and interac-
tions with other proteins and small molecules, are more difficult to
evaluate with the current set of features.

3.4.2 Analysis of H-Ras variants in gnomAD

We tested our predictions on a set of human variants found in
healthy individuals, as collected by the gnomAD DB (Karczewski
et al., 2019). The assumption is that those substitutions seen in the
140 000 people tested (mostly normal population) are somewhat
permissive. We therefore compared the distribution of predictions
obtained by Rhapsody on this set of gnomAD SAVs with the corre-
sponding fitness scores from the experimental study considered
above (Bandaru et al., 2017).

The results, illustrated in Figure 6, show that the predictions for
the gnomAD SAVs are skewed toward ‘neutral’ classification in
both distributions, with 49 out of 82 total variants classified as ‘neu-
tral’ or ‘probably neutral’ by our algorithm. Of note, 3 out of 4
‘high count’ SAVs (i.e. seen in 10 or more people) are interpreted as
non-pathogenic by Rhapsody, while 2 out of 4 SAVs have a fitness
score DE, as measured in the saturation mutagenesis study, signifi-
cantly lower than the wild-type amino acid (when choosing the me-
dian of all values as cutoff).

3.5 Application to PTEN and TPMT variants from CAGI

competition
As an additional test, we considered a dataset of over 7000 SAVs for
the tumor suppressor protein PTEN and the enzyme TPMT. The
pathogenicity of these proteins’ variants has been recently investi-
gated by massively parallel sequencing (VAMP-seq), a functional
assay that measures the steady-state abundance of variants in cul-
tured human cells (Matreyek et al., 2018). The results for PTEN/
TPMT datasets were featured in the fifth edition of CAGI, a series

Fig. 4. Pathogenicity predictions of human Ras protein variants. (A) Scatter plots and Spearman’s q correlations between experimental fitness scores from (Bandaru et al.,

2017) and predictions from Rhapsody (based on inactive/active conformations), EVmutation and PolyPhen-2. Red circles correspond to residue-averaged values. See also

Supplementary Figure S10. (B) ROC curves for substitution-specific (blue) and residue-averaged (red) predictions. The median of experimental DE values is used as cutoff to as-

sign binary labels to variants (Supplementary Fig. S11). The 40th and 60th percentiles have also been considered and used to compute uncertainty bands, represented in figure

by semi-transparent blue/red shades. See also Supplementary Figure S12
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of competitions that aim to objectively assess computational meth-
ods on blind prediction tasks (Andreoletti et al., 2019). We per-
formed a direct comparison of our predictor with other
computational methods that, although adapted for the specific chal-
lenges proposed in the competition, were tasked with providing
blind predictions, without having access to the experimental results
(Pejaver et al., 2019). To ensure as much as possible a similar un-
biased evaluation, new Rhapsody classifiers were trained by exclud-
ing SAVs of PTEN (56 deleterious, 1 neutral) and TPMT (3
deleterious, 4 neutral) from our training dataset, as previously done
for H-Ras.

We first evaluated the predictions from Rhapsody, PolyPhen-2
and EVmutation by computing their Spearman’s correlation with
experimental ‘protein-abundance’ scores from VAMP-seq data
(Supplementary Fig. S16). Low-abundance variants were found to
be enriched in pathogenic variants and they correlated with low pro-
tein thermodynamic stability (Matreyek et al., 2018), thus abun-
dance score has been used as a proxy for variant impact on proteins
(Pejaver et al., 2019). A classification of variants into ‘abundancy’
classes (‘low-abundance’, ‘possibly low-abundance’, ‘possibly WT-
like’ and ‘WT-like’) was also provided (Matreyek et al., 2018), thus
allowing the use of other class-based accuracy metrics, such as
AUROC, MCC and F1 score. Based on these metrics, we see in
Figure 7 that Rhapsody and EVmutation are distinguished by their
respective higher accuracy levels on TPMT and PTEN variants, and
both consistently outperform PolyPhen-2. EVmutation, however,
could only provide predictions for a small fraction (�13%) of
PTEN variants.

Prediction accuracies from participants to the CAGI5 challenge,
described in (Pejaver et al., 2019) (data available from CAGI web-
site to registered users only), are also shown in aggregated form as
violin plots in Figure 7. In both cases, Rhapsody, EVmutation and
Polyphen-2 all fall within the range of prediction accuracies meas-
ured for CAGI predictors. In the case of TPMT, we notice that
Rhapsody consistently ranks between the median of the CAGI meth-
ods and the best-performing one.

These results demonstrate the validity of Rhapsody predictions
in tasks specifically designed for testing computational methods,
and against tools specifically adapted for these tasks. The modest
performances demonstrated by all methods, on the other hand, also
highlight the need for more effective computational approaches.
Systematic assessment campaigns such as CAGI constitute an in-
valuable platform for evaluating the progress in the field.

4 Discussion

In the present study, we presented a novel machine learning ap-
proach for evaluating the functional impact of human SAVs, and
illustrated its application to H-Ras, PTEN and TPMT. In a strict
sense, Rhapsody, like many other tools in the field, predicts whether

a given mutation is neutral or deleterious to protein activity, where-
as pathogenicity entails many other factors, including inheritance
pattern, penetrance, expressivity and environment. Thus, the out-
come from the tool rather indicates a potential to be pathogenic.
The newly introduced interface, Rhapsody, integrates dynamical
features computed from the ENM-based analyses of protein struc-
tures and attains a state-of-the-art accuracy for predicting such a po-
tential with a relatively simple design. We also highlighted how the
method can be used not only for hypothesis generation (predictions
for variants of unknown significance) but also for hypothesis testing,
by providing a unified framework for comparing the predictive
power of new as well as more established features. For instance, we
demonstrated the utility of including in our machine-learning algo-
rithm the ENM-derived dynamics-based features, in addition to
more traditional features such as sequence conservation and struc-
tural accessibility, and emphasized the need for a better integration
with coevolution analysis that recently showed significant success in
evaluating the effect of SAVs.

Through the analysis of saturation mutagenesis studies and other
experimental and clinical data, we identified the strengths and limi-
tations of our approach and compared it against other prediction
tools. We observed a general robustness of computational predic-
tions, especially in the identification of residue sites that are sensitive
to any mutation, regardless of the specific amino acid substitution.
This information can be invaluable for the study of the functional

Fig. 5. Analysis of Ras predictions. (A) Precision-recall plot for individual (blue curve) and residue-averaged (red curve) Rhapsody predictions of experimental fitness values.

Corresponding AUCs are 0.72 and 0.80, respectively. Analogous plots for EVmutation and PolyPhen-2 are reported in Supplementary Figure S13. (B) Scatter plot of Rhapsody

predicted pathogenicity probabilities versus experimental measurements. See Supplementary Figure S11 for the definition of the vertical boundary separating experimental fit-

ness effects. (C) False positives (green) and False negatives (red) highlighted in panel (B) and displayed on the protein structure (active conformation)

Fig. 6. Analysis of H-Ras SAVs from gnomAD DB. H-Ras SAVs (dark blue dots)

collected from the gnomAD DB found in healthy population are shown along with

the results for all SAVS (light blue dots) on the scatter plot between Rhapsody

pathogenicity probabilities and experimental fitness scores (Bandaru et al., 2017).

‘High-count’ SAVs (yellow stars) were seen in at least 10 individuals. The marginal

plots show the corresponding distributions computed for all variants (light blue)

and gnomAD variants (dark blue)

3090 L.Ponzoni et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa127#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa127#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa127#supplementary-data


mechanisms of proteins, especially when projected on the 3D struc-
tures. The use of structure-based properties, in combination with se-
quence conservation properties (reduced classifier), can be used as an
alternative approach to the more sophisticated coevolutionary ana-
lysis, whenever the latter cannot be applied due to lack of suitable
multiple sequence alignments. The current algorithm has been
designed to be easily expandable with new features and functionalities.
Structural features such as those used in the FEATURE framework for
protein annotation (Halperin et al., 2008) could be incorporated in fu-
ture versions for possibly enhancing the utility of Rhapsody.

The comparison with clinical and experimental data also revealed
a few issues that need to be resolved in order to advance the field.
Apart from the obvious shortcomings such as the imbalance of avail-
able datasets toward pathogenic variants and the often-contradictory
clinical interpretations in different DBs, we reported our difficulties in
interpreting data from large-scale experimental studies. These studies
provide a unique opportunity for dramatically increasing the size of
training datasets. However, there is a need for a systematic definition
of what is considered as a ‘pathogenic’ variant, that would account for
both loss-of-function and gain-of-function effects in relation to the
biological role of the affected protein.

We expect future improvements to our method to address some
of these shortcomings. A recent ENM study has demonstrated how
the consideration of the intact structures of multimers, complexes or
assemblies improves the accuracy of predicted fluctuation spectrum
of residues, and predictions from that server (DynOmics) (Li et al.,
2017) could be used for evaluating context-dependent structural and
dynamic properties. For example, a region that is deemed to be tol-
erant to mutations by virtue of its solvent-exposure in the PDB
resolved structure, may become a buried site in a complex/assembly,
and a substitution at that region could alter its binding properties.
A recent study has demonstrated how disease-associated SAVs are
likely to be located at singlet hot spots at protein–protein interfaces
(Ozdemir et al., 2018). Consideration of the involvement of residues
in interfacial interactions is expected to improve the prediction ac-
curacy of current algorithms.

Another possible improvement would be the consideration of the
signature dynamics of the protein family to which the investigated
protein belongs, as opposed to the dynamics of the protein alone
(Zhang et al., 2019). In the same way as variations in sequence
among family members point to sites that can, or cannot, tolerate
mutations, family-based analyses can provide deeper insights into
sites whose mechanistic properties are indispensable for function or
for differentiation among subfamily members. Finally, a decompos-
ition of the mode spectrum could help extract information on high-
energy localization (hot) spots emerging as peaks in high frequency
modes, as well as the hinge regions between domains, where substi-
tutions may be detrimental (Dorantes-Gilardi et al., 2018;
Rodrigues et al., 2018; Sayılgan et al., 2019).

The Rhapsody algorithm is provided both as an open-source
Python package (pip install prody-rhapsody) and a web tool (http://
rhapsody.csb.pitt.edu). The latter has been designed as a user-
friendly service that requires minimal user input or computing skills,
but also allows for some customization, such as selecting or upload-
ing a specific PDB structure. The Rhapsody webserver can be used
for both obtaining predictions on a list of human SAVs (batch
query) and for visualizing a complete in silico saturation mutagen-
esis analysis of a human sequence, akin to those presented in
Figure 3 for H-Ras. Finally, the site offers tutorials, training data
(OPTIDS) and precomputed features needed for reproducing all
results presented here, or for analyzing new variants. The documen-
tation also explains how to train a model on a completely different
set of features and using a different training dataset, thus providing
researchers with a flexible tool for analyzing personalized datasets
and testing new predictors with the help of all the functionalities
implemented in Rhapsody.
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