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Tumor heterogeneity is generated through a combination of genetic and epigenetic mechanisms, the lat-
ter of which plays an important role in the generation of stem like cells responsible for tumor formation
and metastasis. Although the development of single cell transcriptomic technologies holds promise to
deconvolute this complexity, a number of these techniques have limitations including drop-out and
uneven coverage, which challenge the further delineation of tumor heterogeneity. We adopted deep
and full-length single-cell RNA sequencing on Fluidigm’s Polaris platform to reveal the cellular, transcrip-
tomic, and isoform heterogeneity of SUM149, a triple negative breast cancer (TNBC) cell line. We first val-
idate the quality of the TNBC sequencing data with the sequencing data from erythroleukemia K562 cell
line as control. We next scrutinized well-defined marker genes for cancer stem-like cell to identify differ-
ent cell populations. We then profile the isoform expression data to investigate the heterogeneity of alter-
native splicing patterns. Though classified as triple-negative breast cancer, the SUM149 stem cells show
heterogeneous expression of marker receptors (ER, PR, and HER2) across the cells. We identified three cell
populations that express patterns of stemness: epithelial-mesenchymal transition (EMT) cancer stem
cells (CSCs), mesenchymal-epithelial transition (MET) CSCs and Dual-EMT-MET CSCs. These cells also
manifested a high level of heterogeneity in alternative splicing patterns. For example, CSCs have shown
different expression patterns of the CD44v6 exon, as well as different levels of truncated EGFR transcripts,
which may suggest different potentials for proliferation and invasion among cancer stem cells. Our study
identified features of the landscape of previously underestimated cellular, transcriptomic, and isoform
heterogeneity of cancer stem cells in triple-negative breast cancers.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Extensive heterogeneity at both cellular and transcriptomic
levels remains a challenge for breast cancer research and therapy
[1,2]. Based on the presence or absence of protein markers: estro-
gen receptor (ER), progesterone receptor (PR) and human epider-
mal growth factor receptor 2 (HER2), breast cancers are typically
classified into four subtypes: luminal A, luminal B, HER2-
enriched, and triple-negative breast cancers [3]. This classification
forms the major determinant of treatment, which primarily targets
these receptors. However, it is apparent that there is great inter-
tumor heterogeneity within each of these molecular subtypes
[4,5]. Furthermore, tumors display significant intra-tumor hetero-
geneity generated through genetic and epigenetic mechanisms
[6]. The latter leads to a hierarchical development of tumor cells
from the precursor cancer stem-like cells (CSCs), which drives
tumorigenesis and metastasis [7]. These CSCs also contribute to
therapeutic resistance through multiple mechanisms [8–11]. In
addition to commonly investigated heterogeneity of cell types
and gene expressions, alternative splicing of transcripts generates
an additional level of complexity contributing to heterogeneity
[12,13]. For example, CD44, first described as a marker of breast
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CSCs [14] has multiple splice variants. The CD44v6 isoform has
been significantly associated with metastasis in bulk breast tumor
[15,16] but its relationship with different cell types as well as its
expression pattern at the single-cell level remains to be defined.
New methods for studying these sources of cellular transcriptomic
heterogeneity are now feasible.

Most research on cellular heterogeneity of breast cancers has
been limited to bulk tumor samples, supporting the classification
into four subtypes [3] and revealing features of non-tumor com-
partments like cancer-associated fibroblasts [17] and immune cells
[18]. Recent development of single-cell RNA sequencing (scRNA-
seq) enables the characterization of heterogeneous tumor cells at
a higher resolution. In addition to known heterogeneity of ER
and HER2 expression [4,19], these studies have demonstrated
heterogeneity within CSC populations [20]. These studies also
demonstrated the breast CSCs can exist in alternate mesenchymal
(EMT) or epithelial (MET) states which are regulated by the tumor
microenvironment [21]. The plasticity of CSCs in transition
between these states is fundamental to their ability to metastasize
[7].

Transcriptomic heterogeneity of breast cancer at the single-cell
level has not yet been extended to the elucidation of alternative
splice isoforms, although it has been characterized in bulk tumor
samples [22–25]. In eukaryotes, isoforms emerge from splicing of
heterogeneous nuclear RNA in the step to make mRNAs [26]. The
resulting isoforms from one gene could present identical, similar
or opposing protein functions [27]. At least 20% of genes with
known splicing isoforms express multiple transcript variants
within a single cell [28,29]. Such extensive heterogeneity of iso-
forms poses great challenges to scRNA-seq techniques. Popular
scRNA-seq techniques, such as Drop-seq, provide low-coverage
sequencing reads that are biased to 50- or 30-ends [30]. Precluding
the robust identification of isoforms with low expression [31],
these scRNA-seq methods would likely miss low-expressed iso-
forms due to drop-out, making them completely inaccessible
[32]. Quantification of isoforms with higher expression levels is
difficult and may require adequate reads to cover the splicing sites,
which many scRNA-seq techniques do not meet [31].

Here we present the transcriptome analysis of the TNBC breast
cancer cell line SUM149 using Fluidigm’s Polaris sequencing plat-
form. This technique performs full-length single-cell RNA sequenc-
ing and generate data with relatively high sequencing coverage
and accuracy, enabling investigation at a higher resolution. Our
study reveals heterogeneous expression of marker genes (ER, PR,
and HER2) across the TNBC cells. At the cellular level, we identified
three cancer stem cell populations: epithelial-mesenchymal transi-
tion (EMT), mesenchymal-epithelial transition (MET) and Dual-
EMT-MET CSCs. At the transcriptomic level, these cell populations
also manifested a high level of heterogeneity in alternative splicing
patterns, which would be missed in an analysis of lower resolution.
To our knowledge, this is the first study to profile heterogeneity of
breast cancer cells using Fluidigm’s Polaris platform at both single-
cell- and single-isoform-levels.
2. Results

To study intrinsic tumor heterogeneity in TNBC, we conducted a
single-cell transcriptome analysis of the TNBC SUM149 cell line
utilizing Fluidigm’s Polaris cell capture and sequencing technology
(Fig. 1, upper panel). To our knowledge, this is the first report of
this new sequencing platform in literature. To verify the quality
of this data for downstream analysis, stringent quality control
was applied (Fig. 1, middle panel). Two cells from leukemia control
samples and five cells from breast cancer samples were discarded
because of low total reads. Another two cells from breast cancer
samples were discarded because of mapping rate less than 80%.
From t-SNE plot (Fig. S1A), the remaining 87 single cells were clus-
tered into 3 groups, with cluster 1 corresponding to leukemia sam-
ples and both clusters 2 and 3 corresponding to breast cancer
samples. Differential expression analysis between leukemia con-
trol samples and breast cancer samples also revealed two groups
within breast cancer samples (Fig. S2A). To further ensure the qual-
ity of cells, we investigated the expression levels of 6 housekeeping
genes (GAPDH, ACTB, LDHA, RAB7A, B2M, and HPRT1) and found
that the majority of cells (10 cells) from cluster 3 had low expres-
sion levels of housekeeping genes and lower number of transcripts;
they were removed from downstream analysis (Fig. S3C). The gene
enrichment analysis (Fig. S2B) and target gene profiling (Fig. S3A
and S3B) showed similar expression patterns on gene and isoform
levels. We then scrutinized well-defined breast cancer marker
genes (ERBB2, ESR1, ESR2, and PGR) and found that overall they
were not differentially expressed, which is consistent with the
expected TNBC expression pattern (ER-, PR-, ERBB2-). The overall
results from quality control supported the validity of our data.
The remaining 31 breast cancer cells were used for further down-
stream analyses: cancer stem cell identification, cell-type hetero-
geneity, and specific isoforms profiling (Fig. 1, lower panel).

2.1. Fluidigm single-cell sequencing revealed the intrinsic landscape of
breast cancer cell heterogeneity

Based on the expression pattern from differential expression in
quality control, we further profiled breast cancer marker genes
(ERBB2, ESR1, ESR2, and PGR) within TNBC cells and discovered
some level of intrinsic heterogeneity. In 31 breast cancer cells,
none of them expressed ESR1 nor PGR. Two (6%) of them expressed
ESR2 and five (16%) expressed low levels of ERBB2, but none of
them expressed ESR2 and ERBB2 simultaneously (Fig. 2C). The
ESR2-208 (ENST00000554572, estrogen receptor beta isoform 2)
was the major isoform expressed for ESR2 gene, and ERBB2-204
(ENST00000541774, ERBB2 transcript variant 3) was the major iso-
form for ERBB2. This result revealed an unexpected finding, the
existence of ESR2+ cells and ERBB2+ cells within this TNBC,
demonstrating the high transcriptomic heterogeneity of these
cells.

2.2. Expression profiles of EMT CSC marker genes suggest 2-stage
development of EMT CSCs in breast cancers

From the expression patterns, we also observed that CD44
exhibited high levels of expression. Therefore we investigated the
existence of cancer stem cells (CSCs) within our breast cancer sam-
ples. Through the expression profiling of CSC and epithelial/
mesenchymal-related gene signatures (CD44, CD24, EPCAM,
ALDH1A1 and ALDH1A3) (Fig. 2A and Fig. S4), we identified 10
EMT CSCs (32%), 3 MET CSCs (10%), 1 Dual-EMT-MET CSCs (3%),
12 EMT non-CSCs (39%) and 5 non-CSCs (16%) (Fig. 2B).

To examine the difference of expression patterns among stem
cell populations, we performed principal component analysis on
these 31 breast cancer cell transcriptomes by using all the
expressed genes. The result did not show any systematic differ-
ences or clusters, suggesting a similar global gene expression pat-
terns among different types of breast cancer cells (Fig. S4). To
determine the phenotypes of different cell populations, we did
similar PCA using only the selected marker genes. This approach
roughly revealed 3 clusters: EMT CSCs, EMT non-CSCs, and non-
CSCs (Fig. 3B and Fig. S5); only MET CSCs showed high discrepancy.
A variable correlation plot identified the correlation between genes
and different clusters (Fig. 3A); the length of lines represented the
level of gene contribution to clusters. We observed that EMT CSCs
were related to the expression of ITGA6, EPCAM, CCND1, CD44,



Fig. 1. Overview of the workflow. Breast cancer SUM149 and erythroleukemia K562 cell lines were cultured in separate media, suspended, collected, and lysed using Polaris
instrument (Fluidigm, USA). Single-cell RNAs were then reverse transcribed, followed by cDNA preamplification and Illumina sequencing. Stringent quality controls were
applied to the resulting data; in-depth data analysis was conducted on the remaining 31 cells for biological insights.
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EGFR, CDH1, CCND1, and MKI67 (Fig. 3A, upper right quadrant).
The violin plot of gene expression levels (Fig. 3C) showed that
EMT CSCs had relatively higher expression of genes in upper right
quadrant in Fig. 3A; it also demonstrated the transition pattern
from EMT CSCs to EMT non-CSCs and then to non CSCs at both cel-
lular (Fig. 3B) and transcriptomic (Fig. 3C) levels. These results sug-
gested the substantial heterogeneity of cancer stem cells within
TNBC, which would not be detected by traditional bulk RNA-seq
analysis.

2.3. CSCs exhibit distinct phenotypes within the same cell population

The diverse expression distributions in violin plots (Fig. 3C)
demonstrated heterogeneity within the same type of CSC. In MET
CSCs (samples 12, 32, and 35), we found that samples 32 and 35
displayed EMT features (CD44+ and CD24-/low), while sample 12
showed purely MET CSC features (ALDH+) (Fig. 4A). Sample 32
had no expression of CD44v6 isoform, while 12 and 35 expressed
high levels of CD44v6 isoform. As for gene profiling, sample 32
exhibited low or no expression of proliferation-related genes
(MKI67 and PCNA) even though it displayed EMT features as sam-
ple 35.
Such discrepancy also existed in the EMT CSC population. For
instance, sample 26 expressed CD44v6 isoforms while sample 16
and 22 did not (Fig. S5). Furthermore, all these three samples
exhibited expression of EGFR gene but more specifically, sample
16 and 26 only expressed EGFR-201 isoform, which is the canonical
isoform for EGFR, while sample 22 only expressed the EGFR-211
isoform. The expression of EGFR has previously been reported to
be correlated with the metastasis and tumorigenicity of TNBC
[33]. However, we found that sample 16 with EGFR-201 isoform
expressed higher levels of genes linked to tumor aggressiveness
than sample 22 with EGFR-211 isoform because sample 16 had
corresponding expression patterns of metastasis genes (high
SNAI1, high MMP2, and low TIMP2). This suggests that EGFR-211
isoform was less associated with aggressiveness and metastasis
than the EGFR-201 isoform. These results demonstrate diverse
expression patterns of single cells from the same cell types, which
can be elusive with other single-cell techniques.

2.4. EMT cells favor transcripts of EGFR with skipped 50-end sequences

To verify that EGFR-211 is indeed less involved in metastasis,
we investigated other cells with similar gene profiling in our data



Fig. 2. A. Previously defined gene signatures for cancer stem cells (CSCs) in bulk RNA-seq (Al-Hajj et al., 2003; Ginestier et al., 2007). B. Cell types proportion showing cellular
heterogeneity: EMT CSCs (32.3%), EMT non-CSCs (38.7%), MET CSCs (9.68%), Dual-EMT-MET CSCs (3.23%) and non-CSCs (16.1%). C. Heatmap of analyzed genes grouped by
known expression patterns showing heterogeneous expression of ESR2 and ERBB2 within TNBC and highly diverse expression patterns within and among different cell
populations.
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(Fig. S6). We found that the EGFR-211 isoform was expressed only
in cells with EMT features (EMT CSCs and EMT non-CSCs, Fig. 5A).
EMT non-CSCs expressing the EGFR-211 isoform tend to have
higher levels of proliferation-related genes (Fig. 5A). More specifi-
cally, sample 39 was identified as EMT non-CSC and sample 16 as
EMT CSC. Both of them expressed CD44v6, ESR2, and EGFR-201 iso-
form but only sample 39 expressed EGFR-211 isoform. For gene
profiling, sample 39 expressed lower levels of SNAI1, MMP2,
EPCAM, CDH1, STAT1, SMAD4, TYMP, BAD, and HK1 but higher
levels of VIM, CDH2, MKI67, CCND1, CCNE2, CDK1, and TIMP2,
compared with sample 16 (Fig. 4B). These gene signatures suggest
that sample 39 was less aggressive but more proliferative, while
sample 16 was the complete opposite.

To further investigate the potential functions of the EGFR-211
isoform, for which there was no functional annotation, we obtained
its protein sequence from ENSEMBL and then mapped its protein
structure to that of EGFR-201, the canonical isoform of EGFR, using
PyMOL (The PyMOL Molecular Graphics System, Version 2.0
Schrödinger, LLC). The protein structure of EGFR-211 isoform
(Fig. 5B) showed that it is missingmost of the N-terminal compared
with the canonical EGFR-201 isoform (Protein Data Bank ID: 5WB8)
[34]. This leads to a compromised receptor domain for the epithelial
growth factor. Other than that, ENSEMBLandUniProt predict amiss-
ing kinase domain for the final product, although the corresponding
transcription sequence is present. Provided the importance of EGFR
in tumor development, the change of the transcripts may lead to a
major disruption of the protein functionality.
2.5. The expression profiles of CD44v6 showed diverse patterns within
different cell populations

To further investigate the functional and phenotypic diver-
sity of the CD44v6 isoform, we examined the expression pat-
terns of its related isoforms (CD44-206: ENST00000415148,
CD44-208: ENST00000428726, CD44-215: ENST00000525241,
CD44-223: ENST00000526553, CD44-229: ENST00000528672,
CD44-231: ENST00000531110, CD44-237: ENST00000534082,
CD44-238: ENST00000534296) within different cell populations
(Table S1). We also visualized the alignment files using Integra-
tive Genomics Viewer (IGV) from Broad Institute [35] to ensure
the existence of CD44v6 isoforms. Across all 31 breast cancer
cells, 11 cells (36%) expressed the CD44v6 isoform; none of
them was in the non-CSC group (Fig. S7). Three of them were
EMT CSCs, two were MET CSCs, and the rest were EMT non-
CSCs. This distribution of CD44v6 showed diverse expression
patterns within different cell populations, suggesting that the
CD44v6 isoform is generally related to CSC and EMT/MET fea-
tures (Fig. 5C).

Next, we compared gene profiling between these two CD44v6-
and CD44v6+ populations. We found that CD44v6+ cells were char-
acterized by high levels of MCL1 (Wilcoxon test, p = 0.006) and JUN
genes (Wilcoxon test, p = 0.0081) (Fig. 5D), suggesting that CD44v6
+ is associated with proliferation (JUN gene) and tumorigenesis
(MCL1 gene), consistent with previous reports at the bulk level
[15].



Fig. 3. A. Variable correlation plot showing the contribution of each of 20 genes to quadrants and particularly ITGA6, EPCAM, CCND1, CD44, EGFR, CDH1, and MKI67
contributed to the upper right quadrant (EMT CSCs). B. PCA plot showing the transition from EMT CSCs to EMT non-CSCs, and then to non CSCs, which was driven toward the
upper right quadrant (EMT CSCs). C. Violin plot showing the transitional expression patterns of analyzed genes among non CSCs, EMT non-CSCs, and EMT CSCs.
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3. Discussion

Using transcriptome analysis of single cells from a TNBC cell
line, we demonstrated diverse cell populations and extensive
heterogeneity of both gene and isoform expression patterns within
and among different cell populations. To our knowledge, this cellu-
lar and transcriptomic heterogeneity profiling along with isoform
analysis at single cell level have not been previously reported for
TNBC.

Heterogeneity profiling at both cellular and transcriptomic
levels depends on reliable scRNA-seq using Fluidigm’s Polaris plat-
form, which we have applied to a TNBC SUM149 cell line. One
advantage of Fluidigm sequencing platform is the accuracy of the
measurement. From the technical perspectives, the capability of
microscopic imaging of captured single cells before lysis ensures
that only one single cell is analyzed, providing an advantage over
droplet-based technologies such as Drop-seq [36]. The Fluidigm
Polaris system also enables the identification of biomarkers on
the cell surface, which is not possible with Drop-seq. Furthermore,
the tag-based protocols of Drop-seq only capture either 50- or 30-
ends of each RNA molecule [30] and this being restricted to one
end of the transcript may reduce the mappability and also make
it harder to distinguish different isoforms [37]. The Smart-seq pro-
tocol on the Fluidigm’s C1 platform, on the other hand, performs
quantification with a full-length based method, which tries to
achieve uniform read coverage of each transcript, which can yield
higher coverage across transcripts [38]. From the computational
perspective, Fluidigm platform treats every single cell as one bulk
sample and generates a corresponding transcriptome, while Drop-
seq sequences all the cells simultaneously with the help of cell bar-
codes and Unique Molecular Identifiers (UMI) to distinguish differ-
ent cells [39]. This introduces a new problem of how to correctly
determine the number of cells sequenced under the influence of
sequencing error. Moreover, since Fluidigm treats each cell as
one bulk sample, current computational methods for bulk RNA-
seq can be applied directly to its scRNA-seq data although these
methods do need optimization to perform better. For example,
optimized imputation algorithm could identify cells with similar
gene expression profiles and pools reads from them to assist in
transcript expression estimation. Taking advantage of Fluidigm’s



Fig. 4. A. Three MET CSCs showing the existence of EMT features within MET CSC populations, and one Dual EMT-MET CSC (BC8) exhibiting a mixture of EMT and MET
features. The CD44 here represents the canonical CD44. B. Two EMT single cells from different cell populations showing diverse expression patterns in terms of proliferation
(MKI67, CCND1, and CCNE2) and aggressiveness (MMP2 and TIMP2).
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RNA-seq platforms, we revealed the extensive cellular and tran-
scriptomic heterogeneity of TNBC at a higher resolution and
accuracy.

Aside from the technical advantage, we also presented impor-
tant observations in regards to characterizing breast cancers. TNBC
is characterized by the lack of estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth factor receptor 2
(HER2), based on transcriptomic signatures [40]. Although previ-
ously defined TNBC signatures [41] were recapitulated in the
majority of our breast cancer single cells from the SUM149 cell
line, there still exists substantial heterogeneity, which is obscured
in bulk analysis. Although only two cells expressed ESR2 (ERb)
gene, it might imply a potential effect of ESR2 on TNBC, as a previ-
ous study showed ESR2 exerts proliferative effects in the absence
of ESR1 (ERɑ) gene [42]. The fact that the major expressed isoform
for ESR2 gene is ESR2-208 (estrogen receptor beta isoform 2, ERb2)
might shed light on treatment for TNBC because it can induce
proteasome-dependent degradation of ERa (ESR1) [43] and the
inhibition of ESR2 might turn TNBC into ER+ breast cancer, which
is susceptible to hormone therapy. Therefore, future studies might
explore ESR2 and its variants as diagnostic and prognostic tools
and as a therapeutic target for TNBC. Second, five cells expressed
comparatively low levels of ERBB2. A similar result was reported
for the SUM149 cell line at the bulk level [44]. These results are
consistent with previous studies suggesting that the beneficial
effects of HER2 targeting therapies may extend to a subset of
HER2 negative tumors, where a subpopulation of cells express
HER2 [45,46].
There is a general consensus that TNBC cells are enriched for
CSCs, which may exist in alternative EMT or MET like states
[21,47]. However, much controversy remains on whether cancer
stem cells (CSCs) and the EMT processes are highly correlated with
each other. Some studies have suggested a high correlation
between EMT and CSCs [48], while others revealed little relation-
ship between them [49]. In this study, we identified 5 subtypes
of cells (EMT CSCs, MET CSCs, Dual-EMT-MET CSCs, EMT non-
CSCs, and non-CSCs), suggesting that CSCs and EMT/MET processes
can exist simultaneously (MET CSCs and EMT CSCs) but can also
exist independently (EMT non-CSCs). One possible explanation
for such differences might be that EMT/MET signatures can be cor-
related with CSC status as CSCs develop into certain stages. Differ-
ent studies might investigate different stages of CSCs or bulk
analysis masked different stages of CSCs, generating opposite con-
clusions. It has been reported that breast cancer stem cells exist in
distinct EMT and MET states characterized by the expression of
distinct CSC marker [21]. However, in this study, we identified
MET CSCs with EMT features (Sample 32 and 35, Fig. 4A). One pos-
sible explanation is that single-cell transcriptome analysis reveals
cells in a dynamic state, contrasted with a static state in bulk
RNA-seq; therefore, cells in the middle stage of EMT/MET can pos-
sess both EMT and MET features. Similarly, EMT CSCs and MET
CSCs identified in this study did not express common EMT/MET-
associated genes at the same time. Specifically, some EMT CSCs
expressed VIM but no CDH2 or the other way around. It’s possible
that the same type of cells live around each other and, thus, if one
cell expresses a high level of some genes, others do not have to



Fig. 5. A. Boxplot showing that EGFR-211 isoform expressed only in cells with EMT features. EMT non-CSCs with EGFR-211 isoform had a higher level of EGFR gene and
proliferation-related genes (PCNA, CCND1, and MKI67). B. The extracellular protein structure of EGFR-211 isoform (colorful portion, 464 amino acid residues), showing its
missing part of N terminal (grey portion) compared to the canonical EGFR-201 isoform (colorful portion and grey portion, 1210 amino acid residues). C. PCA plot showing the
diverse expression patterns of CD44v6 isoform within different CSC populations (compared with Fig. 3B). D. Box plots showing statistical significance in the expression levels
of MCL1 and JUN genes between CD44v6-positive and CD44v6-negative populations.
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express those genes. Or these cells might display subtle differences
in the level of these genes.

Many studies have provided evidence that EGFR is a crucial
component driving proliferation, metastasis, and EMT process in
TNBC [33,50,51]. Correspondingly, we found that EGFR had higher
expression levels in cells with EMT features than in MET CSCs
(Fig. S4). However, there remain discrepancies within cells with
EMT features. We found that some cells expressing both EGFR-
211 and EGFR-201 isoforms were less aggressive and more prolif-
erative than those expressing EGFR-201 but no EGFR-211 isoform.
To assess the potential functions of EGFR-211, we compared its
protein structure with that of the canonical EGFR-201 isoform. A
major difference between the two isoforms is that EGFR-211
skipped a major part of the N-terminal sequence (Fig. 5B). The N-
terminal sequence mainly corresponds to the extracellular domain
of the receptor. The compromised receptor domain may lead to a
significant disruption in regulating the functionality of EGFR [52].
Previous studies found similar patterns in EGFR with comprised
tyrosine receptors, where disrupted extracellular domain inhibited
the autophosphorylation of EGFR and thus suppressed the activity
of EGFR [52]. Other than that, UniProt and ENSEMBL predict the
protein product of the transcript also loses its intracellular kinase
domain, even though the corresponding coding sequence is pre-
sent. The activation of the receptor tyrosine kinase greatly relies
on the dimerization of two receptor proteins and their cross-
phosphorylation [53,54]. If the prediction is correct, the presence
of the isoform may lead to an inhibition of the EGFR functionality.
However, if the coding sequence of the kinase domain is actually
translated, the EGFR isoform, compromised receptor domain of
which may lead to dysregulation, may lead to unregulated
activation of its functionality. The protein has been repeatedly
found in contribution to the aggressiveness of cancer cells
[33,50,51]. The implication of the functionality changes of the
alternative splicing needs to be confirmed through more studies
at the protein level.

CD44 is widely accepted as one of the marker genes to identify
CSCs within all tumors [55]. However, the relationship between
CD44 and distant metastasis has been ambiguous. Some studies
suggested that the presence of CD44+ CSCs in breast cancer was
associated with distant metastasis [56], while others showed that
total CD44 expression could not predict distant metastasis [57].
Such contradictory results may due to multiple isoforms of the
CD44 gene. Among these isoforms, CD44v6 has been shown to be
significantly associated with metastasis [15,16] and CSC progres-
sion [58]. In this study, we found that CD44v6 was distributed
among different cell populations; from gene profiling between
CD44v6+ and CD44v6- groups, we found significantly higher levels
of MCL1 and JUN (Fig. 5D) in CD44v6+ groups. MCL1 has been
proved to be essential in breast tumorigenesis and tumor metasta-
sis [59,60]. Similarly, JUN is generally linked to metastasis and
stem cell expansion in invasive breast cancers [61,62]. Overall,
our results suggest that CD44v6 was more associated with the pro-
cess of proliferation and tumorigenesis.

The single cell technologies described should prove valuable for
future studies on the generation of heterogeneous population dur-
ing carcinogenesis, cancer progression, and treatment. First, future
development may stain captured cells during Fluidigm RNA-seq
analysis. Staining cells will permit examination of cells for viabil-
ity, surface markers, and reporter genes, and thus provide ground
truth for single cells. Future studies may obtain this information
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as validation of data analysis. Second, with the further develop-
ment of scRNA-seq technology, it will be feasible to acquire deeper
sequencing data with more cells. The methods deployed in this
study will naturally lead to a more thorough characterization of
different types of CSCs in breast cancers and other cancers.

Altogether, our study demonstrates the potential scope of
single-cell transcriptome analysis in the profiling of cellular and
transcriptomic heterogeneity of breast CSCs. Our findings demon-
strated the highly dynamic and heterogeneous nature of breast
CSCs. It also highlights the need to conduct further analyses on
CSCs at single-cell resolution in order to understand the molecular
mechanisms and improve cancer therapies.
4. Materials and methods

4.1. Single cells preparation and sequencing

Breast cancer SUM149 and erythroleukemia K562 control cell
lines were cultured in F12 and RPMI medium, respectively. At
about 80% confluency, cells were harvested from the culture flasks
and diluted to about 300 cells/ll in PBS. Cell suspensions of
SUM149 and K562 were separately processed using a Polaris
instrument (Fluidigm, USA), 48-well full-length RNA-seq chip and
reagents (Clontech and Fluidigm, USA). Captured single cells were
separately lysed to release total RNA and converted to cDNA
libraries followed by pre-amplification of cDNAs all on the chip
according to the manufacturer’s protocol. The product of every sin-
gle cell was transferred to a well of 96-well plate for barcoding
using Nextera XT DNA library prep kit (Illumina, USA). Single cell
barcoded products were pooled together in one lane for sequenc-
ing on HiSeq 2500. Raw sequencing data were processed through
the following pipeline to determine gene expression patterns of
every single cell of SUM149 and K562 cell lines.
4.2. Quality control and quantification

The scRNA-seq was processed on 48 cells from leukemia K562
cell line (control sample) and 48 cells from breast cancer
SUM149 cell line using Fluidigm’s Polaris microfluidic platform at
Single Cell Analysis Core of Rogel Comprehensive Cancer Center
of the University of Michigan. SUM149 is a commonly used cell line
for TNBC. The reference genome was modified from the ENSEMBL
reference genome version 90 to contain only those genes with pro-
tein products (UniProt IDs). The RNA reads were then aligned
against our modified reference genome using STAR_2.5.3a (default
parameters) [63], and relative gene expression was quantified as
expected count using RSEM v1.3.0 (default parameters) [64]. Iso-
form expression levels were summed to derive the expected count
for each gene. Quality control assessment of aligned scRNA-seq
reads was performed using FastQC v0.11.2 [65] and then all the
quality control reports were summarized using Multiqc v1.0.dev0
[66]. To remove cells with low-quality sequencing values, two fil-
tering criteria were applied: (1) the number of total reads and
(2) mapping rates. To remove genes and isoforms with low expres-
sion value, the following processes were applied: (1) Expected
count value below 1 were substituted with zero; (2) Expected
count values were log2-transformed after adding a value of one.

To explore the separation of our scRNA-seq data, unsupervised
clustering using the principal component analysis (PCA) [67] was
performed on both gene and isoform levels and the result was
visualized using t-Distributed Stochastic Neighbor Embedding (t-
SNE) plot [68]. All the cells were conserved. To verify the quality
of our single cells, the expression levels of 6 housekeeping genes
(GAPDH, ACTB, LDHA, RAB7A, B2M, and HPRT1) were investigated.
To verify the quality of isoform quantification, we compared
expression patterns and conducted gene enrichment analysis on
both gene and isoform level.

4.3. Validation of sequencing data

To validate our sequencing data, the analysis of differential
expression on both gene and isoform levels was performed using
edgeR v3.18.1 (default parameters) [69] with leukemia samples
as control. Differentially expressed genes and isoforms were
defined as genes and isoforms with false discovery rate (FDR) no
larger than 0.05 and log2-transformed fold change no less than 1.
Heatmap was drawn on top 5% (ranked by FDR) differentially
expressed genes with unsupervised clustering of cells. Expression
profiling of known breast cancer marker genes (ERBB2, ESR1,
ESR2, and PGR) was investigated in the quantification results of
all the breast cancer single cells.

4.4. Cancer stem cells identification

It has been reported that TNBC cells usually have higher expres-
sion of epithelial-mesenchymal transition (EMT) and
mesenchymal-epithelial transition (MET) signatures [47], which
are generally linked to cancer stem cells (CSCs) [48]. To verify
the existence of CSCs, we analyzed the expression of several mark-
ers: CD44, CD24, EPCAM [14] and ALDH (aldehyde dehydrogenase)
[70]. EMT CSCs were identified as cells with CD44+, CD24-/low, and
EPCAM+; MET CSCs as cells with ALDH1A1+ and/or ALDH1A3+;
and dual-EMT-MET CSCs as cells with gene signatures of both
EMT and MET, as previously described [70,71]. To better character-
ize the EMT feature, cells with CD44+ and CD24-/low in non-CSC
group were identified as non-CSCs with EMT features (EMT non-
CSCs).

To further investigate the functional and phenotypic differ-
ences, the expression level of marker genes associated with differ-
entiation (CD24, EPCAM, CDH1, CCND1), breast cancer stemness
(CD44, ITGA6, ALDH1A1, ALDH1A3), EMT/metastasis (VIM, CDH2,
TGFBI, EGFR) and proliferation (PCNA, MKI67) was quantitatively
assessed. Unsupervised principal component analysis (PCA) was
performed on all breast cancer single cell transcriptomes by using
all the genes as well as only the marker genes mentioned above in
FactoMineR package in R [72]. Genes were also analyzed by unsu-
pervised PCA.

4.5. CD44 and EGFR isoforms profiling

To identify the impact of specific isoforms of CD44 and EGFR in
the transition among different types of CSCs, we performed iso-
form profiling of CD44v6, EGFR-201 (ENST00000275493) and
EGFR-211 (ENST00000638463). To determine the existence of
CD44v6, the resulting bam files of all single cells from STAR align-
ment were visualized using Integrative Genomics Viewer (IGV)
from Broad Institute [35] and those showing reads mapping to
chr11:35204512-35204640 were identified as CD44v6 positive.
The status of CD44v6+/-, EGFR-201+/- and EGFR-211+/- was
assessed in the downstream analysis.

4.6. Isoform protein structures and functions analysis

To obtain insights on the isoform protein structure and its pos-
sible functions, we started with isoform protein sequences from
ENSEMBL and then visualized its protein structure using PyMOL
software (The PyMOL Molecular Graphics System, Version
1.2r3pre, Schrödinger, LLC). The protein structure of canonical iso-
form was obtained from the Protein Data Bank (PDB). The protein
structure of our identified isoform was compared with that of the
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canonical isoform in PyMOL to assess its possible biological
functions.
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