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Abstract

The receiver operating characteristic (ROC) curve is an important tool to gauge the performance of classifiers. In certain
situations of high-throughput data analysis, the data is heavily class-skewed, i.e. most features tested belong to the true
negative class. In such cases, only a small portion of the ROC curve is relevant in practical terms, rendering the ROC curve
and its area under the curve (AUC) insufficient for the purpose of judging classifier performance. Here we define an ROC
surface (ROCS) using true positive rate (TPR), false positive rate (FPR), and true discovery rate (TDR). The ROC surface,
together with the associated quantities, volume under the surface (VUS) and FDR-controlled area under the ROC curve
(FCAUC), provide a useful approach for gauging classifier performance on class-skewed high-throughput data. The
implementation as an R package is available at http://userwww.service.emory.edu/,tyu8/ROCS/.
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Introduction

Receiver Operating Characteristic (ROC) curve is widely used

to assess the performance of classifiers in biomedical research

[1,2,3]. The curve is generated by plotting the true positive rate

(TPR) against the false positive rate (FPR). Generally speaking, it

depicts the level of separation between two distributions, one

corresponding to the true negatives, and the other corresponding

to the true positives, given the scores from a classifier [4]. The area

under the curve (AUC) summarizes the main characteristic of the

ROC with a single number, greatly facilitating methods compar-

ison [4].

In many applications on high-throughput data, the number of

true positives is magnitudes smaller than the number of true

negatives. Examples include analyzing high-throughput data with

spike-in gold standards [5], detecting break points of copy

numbers [6], and many other situations where only top-ranked

features are of interest [7]. In such situations, at a very low false

positive level, the false discovery rate (FDR) [8] could become

unacceptably high. Thus only a small corner of the ROC curve is

relevant in practical terms, and the AUC can no longer summarize

the effectiveness of the separation. To address this issue, some

methods were developed to focus on sub-regions of the ROC

curve, either by computing partial area under the curve [9], or by

magnifying portions of the ROC smoothly [7]. Another heuristic

approach was to use a variant of ROC – replacing the false

positive rate (FPR) with the false discovery rate (FDR) in the ROC

plot [5,6,10]. Unlike the FPR and the TPR, the FDR may not be a

monotone function of the model parameter(s) controlling sensitiv-

ity. When the data is class-skewed, two main factors influence the

capability to detect positive features effectively – the level of

separation between the two distributions, and the class ratio, i.e.

the ratio between the number of true negatives and the number of

true positives. None of the aforementioned methods convey both

pieces of information together effectively.

Here we describe a method and the associated R package that

depict the relationship using a three-dimensional surface based on

TPR, FPR, and the true discovery rate (TDR), which is one minus

FDR. Because the TPR-FPR-TDR data forms a curve instead of a

surface in the three-dimensional space, defining an ROC surface is

not straight-forward. In this manuscript we combine the ideas of

the original ROC and its FDR-TPR variant. We show that such

an ROC surface enjoys intuitive interpretation, as well as loyally

reflects class separation in the class-skewed scenario. Two related

quantities, the volume under the surface (VUS) of the ROC

surface and the FDR-controlled area under the curve (FCAUC), as

well as a testing procedure, are also defined to help simplify

comparison of classifiers in the class-skewed scenarios.

Methods

ROC Surface (ROCS) and its Volume Under the Surface
(VUS)

Generally speaking, a high-throughput dataset contains multi-

dimensional measurements for each feature under study, e.g.

genes, metabolites etc. When a certain model is applied, it reduces

the measurement on each feature to a scalar. Given that each

feature belongs to either the true positive or the true negative

group, changing the threshold value d will generate a tradeoff

between sensitivity and specificity, hence the ROC curve (Fig. 1).

Here we use d only conceptually. It may represent a threshold on

the reduced data, or certain parameter(s) in the model that

controls sensitivity. The TPR, FPR, TDR are all functions of d:

TPR = TPR(d), FPR = FPR(d), and TDR = TDR(d). The traditional
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AUC of ROC (Fig. 1) is defined as

AUC~
Ð?

d~{?
1{FPR dð Þð Þ dTPR(d) ð1Þ

We define the ROC surface by the surface formed between the

FPR-TPR-TDR curve and its projection on the TPR-TDR plain

(Fig. 1). The projection of the surface on the FPR-TPR plain is the

area under the regular ROC curve. The volume between the

ROC surface and its projection on the FPR-TPR plain is defined

as the volume under the ROC surface (VUS),

VUS~
Ð?

d~{?
1{FPR dð Þð ÞTDR dð Þ dTPR dð Þ ð2Þ

Compared to equation (1), we see this VUS can be viewed as a

weighted version of the AUC of the regular ROC curve, with the

weight at every TPR level being the corresponding TDR values.

This definition makes intuitive sense because it gives higher weight

to higher TDR regions. In real data analysis, the curves are

approximated by step functions, and integrations are replaced by

summations.

The maximum possible value of the VUS is one, which is

achieved when the true positive and true negative samples can be

perfectly separated, no matter what the class ratio is. The

minimum value of the VUS approaches zero in the scenario that

the two distributions are inseparable, and the class ratio (# true

negatives/# true positives) approaches infinity.

Assessing the Significance of the Class Separation
The statistical significance of the between-class separation can

be assessed by a permutation test in which the null distribution of

the VUS value is generated by permuting class labels of the

samples. We randomly permute the true positive/true negative

labels K times and compute the VUS values VUS(k)
� �

k~1,...,K
.

The proportion of the sampled permutations with VUS values

larger than the observed value is taken as the p-value of the one-

sided test,

p~
1

K

XK

k~1

I VUS(k)
§VUS

� �
ð3Þ

where I(A) is the indicator function which is 1 if A is true and 0

otherwise.

Testing for significant difference between two

ROCS. The null hypothesis is the two studies are generated

from the same class-specific distributions of ranks. It implies

DVUS~VUS(1){VUS 2ð Þ~0 when the two studies have the

same class ratios. For both studies, we ensure the median of the

true positive class is to the right of the true negative class by

multiplying the measurements with 21 when necessary. Let the

first ROCS be constructed from n1 true positive samples and n0

true negative samples. Let the second ROCS be constructed from

m1 true positive samples and m0 true negative samples.

Figure 1. Illustration of the construction of the ROC curve and the ROC surface (ROCS).
doi:10.1371/journal.pone.0040598.g001

ROCS: Receiver Operating Characteristic Surface
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(1) In order to establish the distribution under the null hypothesis,

we remove the impact of difference in class ratios (true

negatives v.s. true positives) between the two studies by re-

sampling. From each study, we re-sample (n0+m0)/2 true

negatives and (n1+m1)/2 true positives. When the two values

are not integer, they are rounded to the closest integer.

(2) Within each study, we transform the new samples into ranks.

For tied measurements, we assign random ranks.

(3) We merge the ranks of the true negative samples from both

studies to estimate the true negative distribution under the

null hypothesis, and merge the ranks of the true positive

samples from both studies to estimate the true positive

distribution under the null hypothesis.

(4) We take B samples with replacement from the constructed

distributions under the null. Each sample contains n1 true

positives and n0 true negatives for study 1, and m1 true

positives and m0 true negatives for study 2. We compute the

VUS value of the ROCS, VUS(b)
� �

k~1,...,B
. The p-value of

the test is

Figure 2. Illustration of the ROCS under different scenarios. Within each box, the ROCS plot (right) was generated from 10000 random
samples drawn from the two Gaussian distributions (left). Upper panel: class ratio negative:positive = 1:1; lower panel: class ratio
negative:positive = 10:1. (a) Two well-separated distributions; (b) two moderately separated distributions; (c) two severely overlapping distributions.
Blue: true negative class; red: true positive class. Shaded area in the TPR-FPR plain: region under the ROC curve corresponding to FDR equal to or
lower than 0.2.
doi:10.1371/journal.pone.0040598.g002

Figure 3. Simulation results – average VUS and FCAUC values as functions of the distance between the mean of the true negative
and true positive distributions and the class ratio (#negative/#positive). The two distributions are both normal with standard deviation
one. Black curves: values corresponding to integer distances between means.
doi:10.1371/journal.pone.0040598.g003

ROCS: Receiver Operating Characteristic Surface
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p~2|min
1

B

XB

b~1

I VUS(b)
§VUS

� �
,

 

1

B

XB

b~1

I VUS(b)
ƒVUS

� �! ð4Þ

where I(A) is the indicator function which is 1 if A is true and 0

otherwise.

FDR-Controlled Area Under the Curve (FCAUC)
We define FCAUC as the area under the traditional ROC

curve corresponding to a pre-determined FDR threshold. Let b be

the cutoff of FDR. Assuming the distribution of the true positive

class is to the right of the true negative class, we find the minimum

cutoff that corresponds to the acceptable FDR level:

a~argmind TPR(d)ð Þ, s:t:FDR(d)ƒb

Then the FCAUC value is found by,

FCAUC~

ð?
d~a

1{FPR dð Þð ÞdTPR(d) ð5Þ

Similar to the VUS, the significance of the FCAUC can be

assessed by permutation test. We randomly permute the true

positive/true negative labels K times and compute the FCAUC

values FCAUC(k)
� �

k~1,...,K
. The proportion of the sampled

permutations with FCAUC values larger than the observed value

is taken as the p-value of the one-sided test,

p~
1

K

XK

k~1

I FCAUC(k)
§FCAUC

� �
ð6Þ

where I(A) is the indicator function which is 1 if A is true and 0

otherwise.

Results and Discussion

Demonstration of the ROCS Utility using Simulated Data
First we illustrate the behavior of the ROCS using a few

examples. We vary the level of overlap between the true negative

and true positive distributions, and the ratio between true negative

and true positive sample counts (Fig. 2). When the distributions of

the true negative class and true positive class are well separated

(Fig. 2a), the VUS and the FCAUC values are close to one, both at

the class ratio of 1:1 and 10:1. When the two distributions partially

overlap (Fig. 2b), the VUS and FCAUC values decrease with the

proportion of true positive samples. This is because the TDR levels

become lower when the proportion of true positive samples

decreases, even though the TPR-FPR curve doesn’t change. When

the two distributions severely overlap (Fig. 2c), the VUS and

FCAUC values are further decreased. When the class ratio is

large, the VUS value becomes close to zero, and the FCAUC

becomes zero because at no cutoff level does the FDR gets below

0.2. In all three scenarios, the traditional ROC curves are the

same between the upper and lower plots because the true negative

and true positive distributions do not change.

We then systematically examine the relationship between VUS

value and the distance between the mean of the true negative and

true positive distributions, as well as the class ratio (number of true

negatives versus number of true positives). We generate data from

normal distributions with standard deviation of one. Different

distances between the two means and different class ratios were

simulated. At each parameter setting, we repeated the simulation

50 times, each with 2000 samples, and took the mean VUS value.

When the mean values of the two distributions are far apart, the

VUS value approaches one, regardless of the class ratio (Fig. 3, left

panel). When the overlap is moderate to high, the VUS values

decrease with the increase of class ratio (# true negatives/# true

positives). The VUS value approaches zero when the two

distributions are identical and the class ratio is large (Fig. 3, left

panel). The same simulation procedure was applied to the

FCAUC value. Its behavior was very close to that of the VUS,

except when the two distributions are close to identical, the

FCAUC value becomes zero at all class ratio settings (Fig. 3, right

panel).

A simulation study was conducted to assess the behavior of the

testing procedure between ROC surfaces. In every simulation, we

generated true-negative and true-positive samples for two fake

studies. For both fake studies, the true-negative class follows the

standard normal distribution, and the true-positive class follows

normal distributions with standard deviation of one with varying

mean values. In the first set of simulations, both studies have the

same sample size and class ratio. In the situations where the two

mean values of the true positive class are the same (the null

hypothesis is true), the test has ,5% error rate, which indicates

correct size of the test (Fig. 4a). When the difference between the

mean values deviates from zero, the power to detect the difference

increases quickly. The statistical power to detect the differences is

also negatively associated with the class ratio, with 1:1 ratio

yielding the highest power, and 16:1 yielding the lowest (Fig. 4a).

In the second set of simulations, we used different sample sizes

(2000 and 4000) for the two studies, and allowed the class ratio to

be different between the two studies. The tests maintained the

correct size in such settings (Fig. 4b). Again the power rises quickly

with the differences between the true positive class means (Fig. 4b).

Demonstration of the ROCS Utility using Real Data
The purpose of the demonstration here is not comparing the

methods. Rather, it is to show that the ROCS is useful in practice

for visually assessing the differences between methods, and the

VUS and FCAUC values are convenient and relevant measures

for performance assessment.

We use the analytical results by Turro et al [10], in which the

authors compared the performance of their microarray data

analysis method BGX with some popular methods using the

golden spike dataset [5]. The golden spike dataset was generated

using spike-in experiment. It contains 14010 genes, in which 1331

were differentially expressed by spiking in [5]. Turro et al made

nine single-array comparisons using five methods between the two

experimental conditions (spiked and control), and presented the

results with ROC curves averaged over the nine comparisons

using the FDR-TPR variant of ROC [10]. Although the curves

visually showed some differences between methods, they did not

offer a measure to quantify the difference, and did not convey the

level of variation between the nine comparisons.

Using the analytical results provided on the website of the Turro

paper [10], we carried out data presentation and analysis with

ROCS. By generating ROC surface plots (Fig. 5a), ROCS analysis

conveys the FPR dimension of the difference, which was not

present in figure 8 of [10]. One interesting new observation is that,

ROCS: Receiver Operating Characteristic Surface
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although GCRMA clearly has a lower ROC surface than BGX,

GCBGX and MAS5 (Fig. 5a), in the traditional ROC dimension,

i.e. the FPR/TPR space, its ROC curve is similar to those of

BGX, GCBGX and MAS5 (Fig. 5a). Indeed the AUC of ROC

from GCRMA is on-par with the three methods BGX, GCBGX

and MAS5 (Fig. 5b). However, because of its inferior performance

in the FDR domain, its ROC surface is lower than BGX, GCBGX

and MAS5 (Fig. 5a), which is reflected in lower VUS and FCAUC

values (Fig. 5c, 5d).

In each of the nine comparisons, the relative rankings of genes

were given by each of the methods. Using the rankings, we

conducted testing between the five methods regarding their

difference in ROCS. The testing was done nine times between

each pair of methods. Figure 6 shows the average p-values

between each pair of methods (Fig. 6a), as well as the number of

Figure 4. Simulation results on the power and size of the test. In all simulations, the true negative class mean is set at zero for both
studies, and the standard deviations of the true negative class and the true positive class are one for both studies. Miu.1 is the true
positive class mean of study 1; miu.2 is the true positive class mean of study 2. All curves are based on 100 simulations. Horizontal line: the alpha level
0.05 for the purpose of examining the size of the test. (a) The simple scenario where both studies have the same sample size (4000) and class ratio. (b)
The more complex case where study 1 has 2000 samples, study 2 has 4000 samples, and the class ratios are different.
doi:10.1371/journal.pone.0040598.g004

Figure 5. Illustration of the ROCS procedure using the results on the golden spike dataset [5] by Turro et al [10]. (a) ROCS plots of the
results. (b) Comparing the regular AUC under ROC of the nine single array pairs. (c) Comparing the VUS values of the nine single array pairs. (d)
Comparing the FCAUC values of the nine single array pairs. Please note that the nine comparisons in Turro et al [10] are not independent. Thus the
distributions in (b), (c) and (d) only serve to illustrate the values. They do not have any implications of significant differences between methods.
doi:10.1371/journal.pone.0040598.g005

ROCS: Receiver Operating Characteristic Surface
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times the testing result was significant at the alpha level of 0.05

(Fig. 6b). It clearly showed that BGX, GCBGX and MAS5 results

are similar, while GCRMA and RMA results are somewhat similar.

There are substantial differences between the two groups (Fig. 6).

ROC and AUC alone do not show much difference between

GCRMA versus the group of BGX, GCBGX and MAS5 (Fig. 5b),

yet ROCS analysis and VUS/FCAUC show substantial differ-

ences (Fig. 5c & 5d). To explore the reason, we compare GCRMA

and GCBGX (Fig. 7). The two ROC curves have similar shape. In

fact, the GCRMA curve has higher AUC overall. However, under

heavy class skew, only the left-most portion of the two curves are

meaningful in practical terms. The two curves differ a lot in that

region. At the FDR cutoff of 0.2, GCBGX yields 15% more

positive genes than GCRMA (1285 versus 1117). This is a

substantial difference that traditional ROC cannot reveal. Overall,

ROCS analysis reveals more information than traditional ROC

analysis, and provides more quantifiable results than simply using

the FDR-TPR variant of ROC plot as in [10].

Implementation
The method is implemented as an R package available at

http://userwww.service.emory.edu/̃tyu8/ROCS/. The package

Figure 6. Testing the difference in VUS between different methods. (a) Average p-values over the nine comparisons. (b) Fractions of the nine
comparisons being significant (p-value ,0.05). Please note that the nine comparisons in Turro et al [10] are not independent.
doi:10.1371/journal.pone.0040598.g006

Figure 7. Comparing the ROC curves between the methods
GCBGX and GCRMA. The values were averaged over the nine
comparisons. Colors in each curve represent FDR levels dichotomized at
the cutoff value of 0.2.
doi:10.1371/journal.pone.0040598.g007

ROCS: Receiver Operating Characteristic Surface
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includes functions of generating ROCS plots and VUS/FCAUC

from raw data, or from user-provided FPR, TPR and FDR. The

package produces rotatable three dimensional plots using the 3D

real-time visualization device (package RGL) in R [11]. It contains

the testing procedures described in the Methods section. The

package also incudes functions that generate traditional ROC

plots in which the area corresponding to acceptable FDR level is

colored, both from raw data and from user-provided FPR, TPR

and FDR values. Unlike traditional ROC analysis, when using the

ROCS analysis, true negative and true positive class labels are not

exchangeable.

In summary, we developed a new approach to incorporate FDR

information into the ROC analysis. This approach addresses the

issue of severe class-skewness in ROC analysis by explicitly

utilizing the inference of false discovery rate. The ROCS plot and

the associated VUS and FCAUC values are useful tools for

judging classifier performance when true negatives greatly out-

number true positives in high-throughput data. We shall note that

unlike the ROC curve, the ROC surface and its associated

quantities are dependent upon the class ratio. The results are

meaningful only when the class ratio of the training data is close to

that of future data. In the case that the user foresees a discrepancy,

the issue can be addressed by (repeated) resampling from the

training data to achieve targeted class ratios and building ROCS.
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