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Background: Titanium is commonly used in blood-exposed medical devices because it
has superior blood compatibility. Mycophenolic acid inhibits the proliferation of vascular
smooth muscle cells. This study examined the effect of a non-polymer TiO2 thin
film–coated stent with mycophenolic acid in a porcine coronary overstretch
restenosis model.

Methods: Thirty coronary arteries in 15 pigs were randomized into three groups in which
the coronary arteries were treated with a TiO2 film–coated stent with mycophenolic acid
(NTM, n � 10), everolimus-eluting stent with biodegradable polymer (EES, n � 10), or TiO2

film–coated stent (NT, n � 10). A histopathologic analysis was performed 28 days after the
stenting.

Results: There were no significant intergroup differences in injury score, internal elastic
lamina area, or inflammation score. Percent area stenosis was significantly smaller in the
NTM and EES groups than in the NT group (36.1 ± 13.63% vs. 31.6 ± 7.74% vs. 45.5 ±
18.96%, respectively, p � 0.0003). Fibrin score was greater in the EES group than in the
NTM and NT groups [2.0 (range, 2.0–2.0) vs. 1.0 (range, 1.0–1.75) vs. 1.0 (range, 1.0–1.0),
respectively, p < 0.0001]. The in-stent occlusion rate measured by micro-computed
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tomography demonstrated similar percent area stenosis rates on histology analysis (36.1 ±
15.10% in NTM vs. 31.6 ± 8.89% in EES vs. 45.5 ± 17.26% in NT, p < 0.05).

Conclusion: The NTM more effectively reduced neointima proliferation than the NT.
Moreover, the inhibitory effect of NTM on smooth muscle cell proliferation was not inferior
to that of the polymer-based EES with lower fibrin deposition in this porcine coronary
restenosis model.

Keywords: stents, myocophenolic acid, coronary artery, titanium coating, percutaneous coronary intervention,
restenosis, inflammation

INTRODUCTION

The treatment of acute myocardial infarction (AMI) has rapidly
evolved over the past few decades from thrombolysis therapy to
coronary stents including bare metal stents (BMS), metal-based
drug-eluting stents (DES), and bioresorbable vascular scaffolds
(BVS). DES with durable polymers such as paclitaxel (Taxus®)
and sirolimus (Cypher®) have successfully surmounted the high
restenosis rate after percutaneous coronary balloon angioplasty
(PTCA) and/or BMS implantation. However, first-generation
DES reduced in-stent restenosis (ISR) rates compared to former
treatments, delayed re-endothelialization and late stent
thrombosis (LST) have emerged as major concerns (Stettler
et al., 2007; Wenaweser et al., 2008). The permanent polymer
coatings of BMS were related with poor re-endothelialization
and LST (Murphy et al., 1992; Nebeker et al., 2006; Stone et al.,
2007). To overcome this limitation, biocompatible and/or
biodegradable polymers were applied in second- and third-
generation DES (Meredith et al., 2005). As a result, stent
thrombosis was significantly reduced compared to first-
generation DES (Leon et al., 2010). Although considerably
improved, polymers have several disadvantages such as
chronic inflammation and impaired arterial healing of
stented lesions (van der Giessen et al., 1996). Therefore,
patients who underwent DES implantation were
recommended much longer antiplatelet therapy than those
treated with BMS.

N-TiO2 thin film has been used for the purpose of improving
the biocompatibility with the advantage of preventing the release
of metal ions and providing an environment favorable for
secondary material adhesion. In addition, the N-TiO2 thin film
is one of the coating materials in the spotlight of the implant
material due to the inhibition of inflammation and sulfate effect.

We developed a non-polymer DES to solve the problems of the
polymer-based DES. The titanium dioxide (TiO2) film coating
method using a plasma-enhanced chemical vapor deposition
(PECVD) technique was applied to fabricate polymer-free DES
in our previous studies (Lim et al., 2014; Sim et al., 2016).
Mycophenolic acid (MPA), an immunosuppressive agent with
several -limus derivatives (biolimus, sirolimus, everolimus,
tacrolimus, etc.), is the most commonly used coronary stent
coating.

The aim of this study was to evaluate the possibility and
efficacy of non-polymer TiO2 thin film–coated stent with MPA in
a porcine coronary overstretch restenosis model.

METHODS

Materials
MPA (6-[1,3-Dihydro-7-hydroxy-5-methoxy-4-methyl-1-
oxoisobenzofuran-6-yl]-4-methyl-4-hexanoic acid) was used
in this study. The MPA was purchased from Sigma-
Aldrich Co. (St. Louis, MO, United States). Poly-L-lactide
(PLLA; 0.80–1.2 dl/g of inherent viscosity in chloroform at
0.1 w/v% at 25°C) was purchased from EVONIK
(United Kingdom). Everolimus was purchased from LC
Laboratories (United States). All other reagents were of
analytical grade.

Fabrication of Everolimus-Eluting Stent
With Biodegradable Polymer
Stent material was cobalt chromium (Co-Cr) alloy. The bare
metal stent was fabricated using a laser cutting machine
(Rofin, Starcut, Hamburg, Germany) according to
Chonnam National University Hospital (CNUH) stent
design (Lim et al., 2013). The stent was coated with
everolimus (20 mg) and PLLA (20 mg) using an ultrasonic
spray coating system according to a previously reported
method (Lim et al., 2016).

FIGURE 1 | Schematic illustration of NTM. NTM, TiO2 film–coated stent
with mycophenolic acid.
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Preparation of TiO2 Film–Coated Stent
With MPA
TiO2 thin film was deposited onto a CNUH BMS (3.0 × 16 mm)
using the PECVD technique. MPA was coated without polymer
according to a previously reported method (Song et al., 2009;
Song et al., 2011; Lim et al., 2014). Briefly, the surface of the TiO2

thin film was modified using a water plasma method to introduce
hydroxyl groups. To form an -OH functional group, it was
reacted with high-purity Ar, O2, N2 gas at 4 sccm for 4 h at
400°C in a 50 mtorr vacuum through RF low-temperature plasma
process. The MPA solution was subjected to an applied voltage of
20 kV, a radiation distance of 10 cm and 0.6 ml at room
temperature. Electrospinning was then performed on top of
the stent under a flow rate condition of 0.5 m/h. The MPA
was then chemically grafted to the stent surface through the
ester bonds between the carboxyl groups in the drugs and the
hydroxyl groups of the modified TiO2 film (Figure 1). A mean
25 mg/ml of MPA was grafted onto the NTM. In vitro drug
release kinetics were estimated using an ultraviolet–visible
spectrophotometer as reported previously (Sim et al., 2016).

In vitro Release Test of Everolimus or MPA
Onto Coated Stent
The in vitro experiment of drug release was performed in a
phosphate-buffered saline solution at 37°C. Further, the MPA or
everolimus coated stent was placed at 37°C for 1, 4, 7, 14, 21, 30 d
in the shaking incubator. The drug coated stents were placed in
50 ml of PBS, and at different time intervals, the sample solution
was exchanged with fresh PBS of the same volume. The NaCl
solution aliquots containing the released drug were injected into a
Kromasil column 215 mm ID (Eka Chemicals AB, Separation
Product, SE-445 80 Bohus, Sweden). The chromatographic
conditions were as follows: column temperature 70°C; eluent
water-acetonitrile (CH3CN); 5 min linear gradient 75–90% (v/
v) CH3CN; 3 min 90% (v/v) CH3CN isocratic; 2 min linear
gradient 90–75% (v/v) CH3CN; flow rate 1.0 ml/min; detection
UV, 215 nm; calibrated measurement range 0.1–10.0 mg/L; and
detection limit approx. 0.01 mg/L. In each case, the eluents, water,
and CH3CN, contained 0.8 ml ortho-phosphoric acid (85%)
perlites. The concentration of the drug was analyzed by HPLC
according to the manufacturer’s protocol. The stent was inserted
and consequently expanded in the silicone tubing using a balloon
(3.0 × 16 mm) with pressure. Dipping the ends of the silicone
tubing in 5 ml of PBS in a thermostatic water tank ensured that
PBS was being circulated through the tubing. The concentration
of drugs released was calculated by comparison with a drug
standard curve, and it was expressed in a cumulative manner.
The drug release rate of the stent was measured using a peristaltic
pump (Jenie Well, Seoul, Korea).

Stent Surface Evaluation and Chemical
Elemental Analysis
The surface morphologies of the NTM and NT were investigated
using scanning electron microscopy (SEM; TESCAN, MIRA3

LMU, Brno. Czech Republic). An energy-dispersive X-ray
spectroscopy (EDS) test was performed to confirm the stent
surface chemical characterization in NTM and NT. The
topography analysis using atomic force microscopy (AFM)
gives the hydrophilicity of TiO2 on the metal stent and the
roughness of the bilayer film surface formed by MPA coating
on it.

Animal Preparation and Stent Implantation
The study animals were castrated male pigs weighing 20–25 kg.
To prevent acute thrombosis after stenting, premedication with
aspirin 100 mg and clopidogrel 75 mg per day was given for
5 days before the procedure. On the procedure day, the pigs were
anesthetized with zolazepam and tiletamine (2.5 mg/kg,
Zoletil50®, Virbac, Caros, France), xylazine (3 mg/kg,
Rompun®, Bayer AG, Leverkusen, Germany), and azaperone
(6 mg/kg, Stresnil®, Janssen-Cilag, Neuss, Germany). They
received supplemental oxygen continuously through an oxygen
mask. Subcutaneous 2% lidocaine was administered at the cut-
down site, the left carotid artery was surgically exposed, and a 7-
French sheath was inserted.

Continuous hemodynamic and surface electrocardiographic
monitoring were performed throughout the procedure. Next,
5,000 units of heparin was administered intravenously as a
bolus prior to the procedure, the target coronary artery was
engaged using standard 7-French guide catheters, and control
angiography of both coronary arteries was performed using a
nonionic contrast agent in two orthogonal views.

The stent was deployed by inflating the balloon and the
resulting stent-to-artery ratio was 1.3:1. Coronary angiograms
were obtained immediately after stent implantation. Then, all
equipment was removed and the carotid artery was ligated.

Four weeks after stenting, the animals underwent follow-up
angiography in the same orthogonal views before being sacrificed
by a 20-ml potassium chloride intracoronary injection.

The hearts were removed and the coronary arteries were
pressure-perfusion fixed at 110 mmHg in 10% neutral buffered
formalin overnight. Each stented artery was step-sectioned,
processed routinely for light microscopy, and stained for
histological analysis. All specimens were evaluated using
micro-computed tomography (M-CT).

Study Groups
The pigs were randomly divided into three groups: NTM (TiO2

film–coated stent with MPA, 3.0 × 16 mm, n � 10); EES
(everolimus-eluting stent with biodegradable polymer, 3.0 ×
16 mm, n � 10); and NT TiO2 film–coated stent, 3.0 ×
16 mm, n � 10).

A total of 15 pigs were used in this study (15 pigs, 30 coronary
arteries, 10 coronary arteries in each group). An NTM, EES, and
NT were randomly implanted in the left anterior descending
artery and left circumflex artery in each pig.

Histopathological and M-CT Analyses
A histopathological evaluation of each artery was performed by
an experienced cardiovascular pathologist. The specimens were
embedded and sections 3–4-µm-thick were obtained
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approximately 1 mm apart and stained with hematoxylin-eosin
and Carstairs’ for histological analysis. Measurements of the
histopathologic sections were performed using a calibrated

microscope, digital video imaging system, and microcomputer
program (Visus 2000 Visual Image Analysis System, IMT Tech,
CA, United States). Borders were manually traced for lumen area,

FIGURE 2 | Surface morphology images of NTM [(A); ×200, A-1; ×1,000, A-2; 3 × 3 µm] and NT using AFM and scanning electron microscopy [(B); ×200, B-1;
×1,000, B-2; 3 × 3 µm]. AFM, Atomic force microscopy; NTM, TiO2 film–coated stent with mycophenolic acid; NT, TiO2 film–coated stent.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org October 2021 | Volume 9 | Article 6504084

Shim et al. Polymer-free Stent with Myocophenolic Acid

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


area circumscribed by the internal elastic lamina, and the
innermost border of the external elastic lamina (external
elastic lamina area). A morphometric analysis of the
neointimal area for a given vessel was calculated as the
measured internal elastic lamina area minus the lumen area.
The measurements were made on five cross-sections from the
proximal and distal ends and the three midpoints of each stented
segment. Histopathologic stenosis was calculated as 100 ×
[1–(lesion lumen area/lesion internal elastic lamina area)]
(Schwartz et al., 1992).

The harvested stent specimen was stored in formaldehyde
solution. A 1.5-ml Eppendorf tube was filled with clay, and the
clay was turned with a V shape to hold the stent during contrast
agent staining. The stents were taken from the solution and
placed vertically in the V-shaped opening in the clay. Each
stent had to be fixed with the clay such that there was no
movement of the stent inside the Eppendorf tube. One
milliliter of omnihexol, the contrast agent, was drawn up
using a 5-ml syringe and injected through the opening at the
center of the stent. The stent was incubated with contrast agent

overnight and subjected to M-CT imaging (Che et al., 2012). All
results were interpreted by two independent pathologists in a
blinded fashion.

Evaluation of Arterial Injury
The arterial injury at each strut site was determined by the
anatomic structures penetrated by each strut. A numeric value
was assigned as previously described by Schwartz et al. (1992):
0 � no injury; 1 � break in the internal elastic membrane; 2 �
perforation of the media; and 3 � perforation of the external
elastic membrane to the adventitia. The average injury score
for each segment was calculated by dividing the sum of the
injury scores by the total number of struts at the examined
section.

Evaluation of Inflammation Scores,
Neointimal Reaction, and Fibrin Score
Inflammation of each individual strut was graded as follows:
0 � no inflammatory cells surrounding the strut; 1 �

FIGURE 3 | Representative EDS spectra showing the surface composition of NTM (A) and NT (B). EDS, Energy-dispersive X-ray spectroscopy; NTM, TiO2

film–coated stent with mycophenolic acid; NT, TiO2 film–coated stent.
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light, noncircumferential lymphohistiocytic infiltrate
surrounding the strut; 2 � localized, moderate to dense
cellular aggregate surrounding the strut non-
circumferentially; and 3 � circumferential dense
lymphohistiocytic cell infiltration of the strut. The
inflammation score for each cross-section was calculated
by dividing the sum of the individual inflammation scores
by the total number of struts at the examined section
(Schwartz et al., 2008). Ordinal data for fibrin were
collected on each stent section using a scale of 0–3 as
previously reported (Suzuki et al., 2001).

Statistical Analysis
The statistical analysis was performed using SPSS version 15
(SPSS, Chicago, IL, United States). The data are presented as
mean ± SD. Unpaired Student’s t test or analysis of variance
was used to compare the stent groups. Ordinal measurements
such as injury score, fibrin score, and inflammation score
were analyzed using the Kruskal‒Wallis test. Non-
parametric results are presented as median and
interquartile range. Values of p < 0.05 were considered
statistically significan.

FIGURE 4 | In vitro release kinetics of mycophenolic acid and everolimus
on the NTM and EES over time. NTM, TiO2 film–coated stent with
mycophenolic acid; EES, everolimus-eluting stent with biodegradable
polymer.

FIGURE 5 | Representative images of hematoxylin-eosin [(A–C) ×20) and Carstairs’ fibrin staining (A-1, B-1, and C-1, ×20) at 4 weeks after stenting. Specimens of
implanted NTM [(A) and A-1], EES [(B) and B-1], and NT [(C) and C-1]. NTM, TiO2 film–coated stent with mycophenolic acid; EES, everolimus-eluting stent with
biodegradable polymer; NT, TiO2 film–coated stent.
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RESULTS

Stent Surface Evaluation of NTM and NT
Using SEM
Figure 2 shows SEM images of the NTM and NT with the
MPA or titanium thin film coating. The stent coated surface
of the NTM and NT stents is quite uniform and smooth.
While the surface of untreated NT does not show anything
particular, the modified NTM shows wavelike structure at
the edge of the foam. This wavelike structure is expected to
come from the result of after coating drying. The modified
NTM surface was observed to smooth out due to TiO2

grafting.

AFM Analysis
The average surface roughness of each was analyzed as A-2
5.3 nm and B-2 10.2 nm (Figure 2). Overall uniformity is
shown without significant change. The three-dimensional
shape shows a dramatic decrease in root mean square
(RMS) in the MPA group compared to the MPA untreated
group. In contrast, the RMS roughness on the surface of the
MPA treatment group was reduced. This indicates that the
bonding force between the TiO2 thin film and the MPA coating
material is excellent.

EDS Analysis
The qualitative EDS analysis confirmed the titanium coating
(Figure 3B) and the titanium-coated stent surface covered
with MPA (Figure 3A).

In vitro Release Kinetics Analysis of EES
or NTM
The in vitro elution of everolimus or MPA onto the coated stent is
shown in Figure 4. The drugs were released continuously over
28 days.

After Pig Coronary Artery Stenting
Two stents were placed for two coronary arteries in each pig. A
total of 30 stents, including 10 NTM, 10 EES, and 10 NT were
placed in the middle-proximal left anterior descending and
middle-proximal circumflex artery in the 15 pigs. Mortality for
this study was zero. There was no significant difference in stent-
to-artery ratio among the three stent groups.

Histologic Analysis Findings Among the
Three Groups
There were no significant differences in injury score [NTM, 1.0
(range, 1.0–2.0) vs. EES, 1.0 (range, 1.0–2.0) vs. NT, 1.0 (range,
1.0–2.0); p � NS], internal elastic laminar thickness (NTM, 5.1 ±
0.67 mm2 vs. EES, 5.2 ± 0.76 mm2 vs. NT, 5.1 ± 0.84 mm2; p �
NS), or inflammation score [NTM, 1.0 (range, 1.0–1.0) vs. EES,
1.0 (range, 1.0–1.0) vs. NT, 1.0 (range, 1.0–1.0); p � NS] among
three groups. There were significant differences in lumen area
(NTM, 3.3 ± 0.80 mm2 vs. EES, 3.4 ± 0.48 mm2 vs. NT, 2.8 ±
1.12 mm2; p � 0.0038), neointimal area (1.9 ± 0.78 mm2 vs.
1.8 ± 0.56 mm2 vs. 2.3 ± 1.09 mm2, respectively; p � 0.0101),
percent area stenosis (36.1 ± 13.63% vs. 31.6 ± 7.74% vs. 45.5 ±

FIGURE 6 | Lumen area (A), neointima area (B), percent area stenosis (C), and fibrin score (D) among NTM, EES, and NT. NTM, TiO2 film–coated stent with
mycophenolic acid; EES, everolimus-eluting stent with biodegradable polymer; NT, TiO2 film–coated stent.
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18.96%, respectively, p � 0.0003), and fibrin score [1.0 (range,
1.0–1.75) vs. 2.0 (range, 2.0–2.0) vs. 1.0 (range, 1.0–1.0),
respectively, p < 0.0001] among the three groups (Figures 5, 6).

M-CT Analysis
The in-stent occlusion rate using M-CT showed similar results to
percent area stenosis in the histological analysis (36.1 ± 15.10% in
NTM vs. 31.6 ± 8.89% in EES vs. 45.5 ± 17.26% in NT, p < 0.05)
(Figure 7).

DISCUSSION

This experiment aimed to compare the NTM (TiO2 film–coated
stent with MPA) with EES and NT (TiO2 film–coated stent) in a
porcine coronary restenosis model. Our study demonstrated that
NTM had a superior anti-neointimal hyperplasia effect to that of
NT and a significantly lower fibrin score than EES.

Currently available metal alloy BMS containing cobalt-
chromium, stainless steel, or nitinol can cause vascular
inflammation, which leads to a neointimal hyperplasia reaction
in stented lesions (Koster et al., 2000). Titanium is commonly
used in blood-exposed medical devices such as dental and
orthopedic implants because it has superior blood
compatibility and stability to those of other metal alloys

(Hanawa et al., 1998). When titanium dioxide thin film is
coated on BMS, it strengthens the effects of anti-thrombosis,
anti-inflammation, and anti-coagulation (Nan et al., 1998).

The final release amount and release rate are summarized in
Figure 4. Here, coating with time as a variable revealed a clear
trend in the release rate and the cumulative release amount. Since
the MPA layer is uniformly coated from the surface of the
specimen, the drug release amount is also considered
secondarily, to be the basis of controlling the release rate by
chemical bonding.(Bozsak et al., 2015; Livingston and Tan, 2019).

A variety of newer-generation DES platforms have been
developed to achieve better real-world outcomes such as anti-
stent thrombosis and anti-restenosis effects than early-generation
products. A recently developed polymer-based DES has shown
better clinical results than previous DES platforms, BMS, or
balloon angioplasty. However, the underlying problem of the
polymer-based DES was the need for longer dual antiplatelet
therapy than anticipated. For these reasons, it may not be suitable
for use in patients with a high bleeding risk or for whom surgery is
scheduled.

The chosen polymer is a very important key factor in drug
attachment to the metal stent surface and regulation of drug-
release kinetics in DES (Rizas and Mehilli, 2016). Although DES
coating techniques using polymer have improved dramatically,
permanent or erodible polymers have several side effects. Chronic

FIGURE 7 | Micro-computed tomography analysis of in-stent restenosis in NTM, EES, and NT. NTM, TiO2 film–coated stent with mycophenolic acid; EES,
everolimus-eluting stent with biodegradable polymer; NT, TiO2 film–coated stent.
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inflammation is related to polymer triggers such as poor re-
endothelialization, delayed arterial healing, and
neoatherosclerosis (van der Giessen et al., 1996; Schomig et al.,
2007; Otsuka et al., 2014; Otsuka et al., 2015). To solve these
problems, we developed polymer-free TiO2 thin film–based DES.

In our previous study using non-polymeric DES, TiO2

film–coated stent with abciximab (TCA) or alpha lipoic acid
(TCALA) showed a superior neointimal inhibitory effect
compared to the TiO2-coated control stent group, while TCA
and TCALA demonstrated significant suppressive effects of
inflammation and fibrin deposition compared to commercial
biolimus A9-eluting stent using a biodegradable polymer (Lim
et al., 2014).

In another previous study, a polymer-free TiO2 film–coated
stent with everolimus showed superior biocompatibility and
compared favorably to a polymer-based everolimus-eluting
stent (Sim et al., 2016). As in previous preclinical studies, we
established a polymer-free TiO2 stent using the PECVD drug
manufacturing method.

The most effective drug currently used in coronary stent
coating is the immunosuppressive -limus derivatives such as
sirolimus (rapamycin), everolimus, zotarolimus, tacrolimus,
and biolimus. However, the chemicals in the -limus family do
not have carboxyl group. In the manufacture of polymer-free
stents, the carboxyl group must be chemically bound to the
structure of the -limus family and its yield is very low (less
than 10–20% data not shown). Therefore, we have identified
MPA as an immunosuppressive agent that satisfies the need for a
chemical structure with a carboxyl group.

One way to enhance the interaction of a drug with its
biological target is to decrease the conformational flexibility
and essentially maintain the drug in its active conformation. A
functional group that enhances the water solubility of a drug
molecule is often referred to as a hydrophilic functional group.
Two main properties that contribute to the solubility of
functional groups are their ionization and ability to form
hydrogen bonds (Stache et al., 2018).

Therefore, ionization of functional groups formed by plasma
modification increases the aqueous solubility of drug molecules
and provides the advantage of improved binding interaction with
MPA drugs.

Overgrowth of smooth muscle cells after vascular injury play a key
role in the restenosis induced by neointimal hyperplasia. MPA
inhibited the proliferation of smooth muscle cells induced by
endothelin-1, oleic acid, and interleukin-6 inhibition (Fraser-Smith
et al., 1995; Mohacsi et al., 1997; Moon et al., 2000; Waller et al., 2005;
Ilkay et al., 2006; Ahn et al., 2007; Park et al., 2008; Olejarz et al., 2014).

Although the MPA-eluting stent did not show a treatment
benefit in a clinical trial, it is a polymer-based stent that is major
different from this study (Carter, 2005).

In the present study using a porcine coronary restenosis
model, our novel polymer-free MPA-eluting stent showed

higher neointimal inhibitory effect and was not inferior to a
polymer-based EES.

In conclusion, here a newer polymer-free titanium dioxide
thin film–based DES with MPA showed inhibitory effects of
neointimal hyperplasia and delayed arterial healing in a porcine
coronary restenosis model.

Study Limitations
There are two limitations to this study. First, we used normal
porcine coronary arteries without atherosclerosis or plaque.
Second, follow-up experiments longer than 3 months were not
performed.
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