
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Sergio Serrano-Villar,
Ramón y Cajal University
Hospital, Spain

REVIEWED BY

Jianhua Cheng,
Beijing Tiantan Hospital, Capital
Medical University, China
Guoliang Hu,
Beijing Tiantan Hospital, Capital
Medical University, China

*CORRESPONDENCE

Hao Zhang
syzhanghao@zju.edu.cn

†These authors share first authorship

SPECIALTY SECTION

This article was submitted to
Inflammation,
a section of the journal
Frontiers in Immunology

RECEIVED 12 June 2022
ACCEPTED 26 July 2022

PUBLISHED 12 August 2022

CITATION

Fan X, Wang S, Hu S, Yang B and
Zhang H (2022) Host-microbiota
interactions: The aryl hydrocarbon
receptor in the acute and chronic
phases of cerebral ischemia.
Front. Immunol. 13:967300.
doi: 10.3389/fimmu.2022.967300

COPYRIGHT

© 2022 Fan, Wang, Hu, Yang and
Zhang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Review
PUBLISHED 12 August 2022

DOI 10.3389/fimmu.2022.967300
Host-microbiota interactions:
The aryl hydrocarbon receptor
in the acute and chronic phases
of cerebral ischemia
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The relationship between gut microbiota and brain function has been studied

intensively in recent years, and gut microbiota has been linked to a couple of

neurological disorders including stroke. There are multiple studies linking gut

microbiota to stroke in the “microbiota-gut-brain” axis. The aryl hydrocarbon

receptor (AHR) is an important mediator of acute ischemic damage and can

result in subsequent neuroinflammation. AHR can affect these responses by

sensing microbiota metabolites especially tryptophan metabolites and is

engaged in the regulation of acute ischemic brain injury and chronic

neuroinflammation after stroke. As an important regulator in the

“microbiota-gut-brain” axis, AHR has the potential to be used as a new

therapeutic target for ischemic stroke treatment. In this review, we discuss

the research progress on AHR regarding its role in ischemic stroke and

prospects to be used as a therapeutic target for ischemic stroke treatment,

aiming to provide a potential direction for the development of new treatments

for ischemic stroke.

KEYWORDS

aryl hydrocarbon receptor, microbiota-gut-brain axis, cerebral ischemia, tryptophan
metabolism, gut microbiota
Introduction

Cerebrovascular accident, commonly known as stroke and being a global health

concern, is characterized by high mortality and disability rates, and is one of the leading

cause of dementia and depression (1). According to neuropathology, stroke can be

classified into two major subtyes: ischemic and hemorrhagic, with the former and latter

accounting for 85% and 15% of all cases, respectively (2). The relationship between gut
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.967300/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.967300/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.967300/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.967300/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.967300&domain=pdf&date_stamp=2022-08-12
mailto:syzhanghao@zju.edu.cn
https://doi.org/10.3389/fimmu.2022.967300
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.967300
https://www.frontiersin.org/journals/immunology


Fan et al. 10.3389/fimmu.2022.967300
microbiota and brain function has been studied intensively in

recent years, and gut microbiota has been linked to a couple of

neurological disorders, including Alzheimer’s disease (AD) (3),

Parkinson’s disease (PD) (4), multiple scleroses (MS) (5),

neurodevelopmental (6) and psychiatric disorders (7, 8), and

stroke (9–15). Communication between the brain and gut

microbiota is mainly mediated by neurogenic signaling

molecules and microbial metabolites; specifically, four

pathways related to neuro, metabolism, endocrine, and

immune signaling, are involved in this process (16). In

turn, the central nervous system (CNS) can regulate

neurotransmitters to achieve bidirectional communications by

shaping microbial community composition and function. These

processes that link microbiota and the brain are termed the

“microbiota-gut-brain” axis. Study have proven that the gut

microbiota can influence stroke prognosis by modulating the

immune response and neuroinflammation (13). In turn, stroke

can induce a shift in the gut microbiota, affecting intestinal

motility and permeability, stress response, and systemic

infection after stroke (10, 14, 15, 17). These findings highlight

the close connection between gut microbiota and stroke in the

“microbiota-gut-brain” axis.

Gut microbiota interacts with the host mainly through its

metabolites. Tryptophan is an essential amino-acid that must be

obtained from the diet. It can be metabolized by gut microbiota

directly or indirectly and participates in a variety of physiological

processes. Abnormal tryptophan metabolism has been

associated with many diseases. The AHR is an important

mediator of acute ischemic damage and can result in

subsequent neuroinflammation (18, 19). AHR can affect these

responses by sensing microbiota metabolites. For instance, it can

be activated predominantly by ligands produced from gut

microbes metabolizing diet-derived tryptophan (20, 21).

Indeed, aberrant tryptophan metabolism and dysbiosis of gut

microbiota have been observed in both acute and chronic stages

of cerebral ischemia (22, 23). Actually, ischemic injuries and

subsequent neuroinflammation have been recognized as key

elements in stroke development. Neuroinflammation exists in

both acute and chronic phases of cerebral ischemia, affecting the

prognosis and survival of stroke patients to some extent.

Persistent neuroinflammation could induce neurodegeneration,

leading to post-stroke dementia and depression (24, 25).

Activated microglia and astrocyte play an important role in

neuroinflammation after stroke, which may be achieved through

the binding of the ligand to AHR (5, 26–30).

AHR is engaged in the regulation of acute ischemic brain

injury and may be involved in chronic neuroinflammation after

stroke. As an important regulator in the “microbiota-gut-brain”

axis, AHR has the potential to be used as a new therapeutic target

for ischemia stroke treatment. In this review, we discuss the

research progress on AHR regarding its role in ischemia stroke

and prospects to be used as a therapeutic target for ischemia
Frontiers in Immunology 02
stroke treatment, aiming to provide a potential direction for the

development of new treatments for ischemia stroke.

Role of the “microbiota-gut-brain”
axis in the development of
ischemia stroke

The communication between the gut microbiota and CNS is

mediated through at least 4 interacting components, including

the immune system, metabolites, neurotransmitters, and

activated vagal nerve (19). In the top-down signaling pathway,

ischemia stroke can disrupt the structure and function of the gut

microbiota through the autonomic nervous system, increasing

the gut permeability and reducing its motility, which further

induces an intestinal immune response and bacterial

translocation. In the bottom-up signaling pathway, post-stroke

gut microbiota dysbiosis can result in changes in bacterial

metabolites, leading to systematic infection due to bacterial

translocation, abnormal immune cell migration, and release of

immunomodulatory cytokines, which further mediates

neuroinflammation that causes severe ischemia stroke and

worse prognosis (31) (Figure 1).

Preclinical and clinical studies demonstrated that gut

microbiota plays an important role in the pathogenesis and

prognosis of ischemia stroke (10, 12–16, 32–47) (Table 1). For

example, many studies indicate that gut microbiota can affect

risk factors related to ischemia stroke directly or indirectly,

including hypertension, diabetes, hypercholesterolemia, obesity

and atherosclerosis, as well as aging (35, 48–52). However, so far,

there is no large prospective study exploring how gut microbiota

relates to the long-term risk of ischemia stroke. In addition,

ischemia stroke could change the gut microbiota composition.

For instance, Enterobacteriaceae , Ruminococcaceae ,

Veillonellaceae and Lachnospiraceae were significantly enriched

after stroke, while Bacteroidaceae and Prevotellaceae were

significantly reduced. Enterobacteriaceae showed notably

increased in patients with poor prognosis of cerebral infarction

(47). Another study demonstrated that dysbiosis of the gut

microbiota relates to ischemia stroke severity in mice;

specifically, germ-free (GF) mice can develop more severe

brain injury after receiving fecal transplants from high-stroke

disequilibrium index (SDI) mice (36). Pre-existing microbiota

ensures intestinal protection, and transplantation of the gut

microbiota from post-stroke mice to GF mice exacerbates the

brain damage and functional deficits compared to those in the

controls. GF mice present enlarged brain lesions compared to

recolonized (Ex-GF) and specific pathogen-free (SPF) mice after

stroke (11). Changes in gut microbiota induced by antibiotics

such as ampicillin can reduce ischemic brain injury and gut

inflammation, leading to improved long-term prognosis (16, 38).

However, another study showed the opposite result; mortality in
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mice with disturbed gut microbiota was significantly higher

following inhibition of gut microbiota by broad-spectrum

antibiotics (12). Therapeutic fecal microbiota transplantation

(FMT) can normalize the microbiota imbalance induced by

brain injury and improve stroke prognosis (10). This effect

may be particularly pronounced when aged stroke mice

received FMT from young mice. The aged mice showed fewer

behavioral abnormalities and neuroinflammation, which may be

due to the fact that gut microbiota could produce high levels of

short-chainfatty acids (SCFAs). Mechanistically, SCFAs can

improve neuronal connectivity and synaptic plasticity after

stroke by modulating microglia activation through recruitment

of T-lymphocytes, thereby improving behavioral recovery.

Studies have shown that supplementation of Lactobacilli after

stroke can reduce neuroinflammation and improve cognitive

function and depression (35, 40, 45). In addition, new evidence

indicates that lactulose and atorvastatin may regulate the

structure of gut microbiota by regulating intestinal immune

function and reducing neuroinflammation after stroke (43, 46).

Acute ischemia stroke is characterized by loss of species

diversity and overgrowth of opportunistic pathogens. A previous

study has shown that acute ischemia stroke patients can develop

significant gut microbiota disturbances at 3 days post-stroke,

which returned to similar levels pre-stroke by day 5 (39).

However, cerebral ischemia can induce persistent gut

microbiota dysbiosis, disrupt the gut barrier, and lead to

chronic systemic inflammation of the host, which is associated
Frontiers in Immunology 03
with worsening stroke and neurodegenerations. One study

demonstrated that gut dysbiosis could last for more than 3

weeks after stroke, and then the disturbed gut microbiota could

gradually recover but microbiota diversity was still decreased

significantly after 4 weeks (36). Gut microbiota dysbiosis in

Cynomolgus monkeys is still observed 6 and 12 months after

cerebral ischemia, with notably increased Bacteroidetes phylum

and Prevotella genus and significantly reduced Firmicutes

phylum, Faecalibacterium, Oscillospira, and Lactobacillus

genera, accompanied by a significant increase in levels of

plasma D-lactate, zonulin, LPS, TNF-a, IFN-g, IL-6 and a

significant decrease in levels of SCFAs (23).

Alterations of levels of tryptophan
metabolites and AHR after
ischemia stroke

Tryptophan metabolism in the gastrointestinal tract can be

regulated by three main pathways, i.e., the kynurenine pathway,

serotonin pathway, and indol pathway. Approximately 90% of

ingested tryptophan is degraded through the kynurenine

pathway in immune and epithelial cells (53, 54). More

specifically, tryptophan is transferred into the brain crossing

the blood-brain barrier (BBB); then, two key enzymes in the

kynurenine pathway, indoleamine-2,3-dioxygenase (IDO) and

tryptophan-2,3-dioxygenase (TDO), metabolize L-tryptophan
FIGURE 1

“Microbiota-gut-brain” axis in the ischemic stroke. Gut microbiota communicates to the CNS through the immune system, metabolites and
neurotransmitters, as well as activation of the vagal nerve. In the top-down signaling pathway, ischemic stroke can affect the community
structure and function of the gut microbiota through the autonomic nervous system, increase the gut permeability and reduce `gut motility,
meanwhile, inducing an intestinal immune response and bacterial translocation. In the bottom-up signaling pathway, gut microbiota dysbiosis
after stroke leads to changes in bacterial metabolites, systematic infection due to bacterial translocation, immune cell migration and the release
of immunomodulation cytokines, which further mediate neuroinflammation, related to the severity of ischemic stroke and worse prognosis. Gut
microbiota can affect risk factors related to ischemia stroke directly or indirectly, including hypertension, diabetes, hypercholesterolemia, obesity
and atherosclerosis, as well as aging.
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TABLE 1 Summarizes the pre-clinical and clinical evidences regarding the relationship between gut microbiota and ischemic stroke.

Author Year of
publication

Type
of

study

Subjects Key findings

Caso et al.
(32)

2009 Pre-
clinical
study

CCAO and
MCAO rat

Bacterial translocation to mesenteric lymph nodes, spleen, liver, and lung after stroke, and it was associated with
worsening stroke.

Benakis
et al. (16)

2016 Pre-
clinical
study

MCAO
mice

Antibiotic-induced alterations in the gut microbiota can reduce ischemic brain injury, the effect can be
transmitted by FMT.

Singh et al.
(10)

2016 Pre-
clinical
study

MCAO
mice

Reduced species diversity and bacterial overgrowth of bacteroidetes were associated with intestinal barrier
dysfunction and reduced intestinal motility; gut dysbiosis intensifies the ingress of Th17- and IL17-secreting g d
T-cells (g d T-cells) into the CNS from the intestine, leading to chronic systemic and neuroinflammation. Higher
numbers of proinflammatory lymphocyte populations correlate negatively with stroke outcome, which is reflected
as larger infarct size, brain edema, and neurological deficits; FMT improves stroke outcome.

Houlden
et al. (15)

2016 Pre-
clinical
study

MCAO
mice

Specific changes in Peptococcaceae and Prevotellaceae were related with the severity of the stroke; changes in gut
microbiota after stroke may affect recovery and treatment.Gut dysbiosis affects the local immune cells in the
intestine and brain. In the early stage of stroke, engages both innate and adaptive immunity, microglial activation
is followed by infiltration of peripheral immune cells, including monocytes, T- and B-lymphocytes.

Winek
et al. (12)

2016 Pre-
clinical
study

MCAO
mice

Conventional microbiota ensures intestinal protection; microbial colonization or specific microbiota are crucial
for stroke outcome.

Stanley
et al. (14)

2016 Pre-
clinical
study

MCAO
mice

Stroke promotes the translocation and dissemination of selective strains of bacteria that originated from the host
gut microbiota.

Crapser
et al. (33)

2016 Pre-
clinical
study

MCAO
mice

Ischemic stroke induces gut permeability and enhances bacterial translocation leading to sepsis in aged mice.

Yamashiro
et al. (34)

2017 Clinical
study

41 patients:
40 controls

Ischemic stroke was independently associated with increased bacterial counts of Atopobium cluster and
Lactobacillus ruminis, and decreased numbers of Lactobacillus sakei subgroup, changes in the prevalence of
Lactobacillus ruminis were positively correlated with serum IL-6 levels.

Spychala
et al. (35)

2018 Pre-
clinical
study

MCAO
mice

The Firmicutes to Bacteroidetes ratio in aged mice increased 9-fold compared to young; gut microbiota can be
modified to positively impact outcomes from age-related diseases.

Singh et al.
(11)

2018 Pre-
clinical
study

MCAO
mice

Bacterial colonization reduces stroke volumes by increasing cerebral expression of cytokines and microglia/
macrophage cell counts; lymphocyte-driven protective neuroinflammation after stroke under control of the
microbiome.

Xia et al.
(36)

2019 Clinical
study

83 patients:
70 controls

Dysbiosis of the gut microbiota correlated with ischaemic stroke severity, mice receiving FMT from patients with
a high stroke disequilibrium index (SDI) developed more severe brain damage

Chen et al.
(23)

2019 Pre-
clinical
study

MCAO
cynomolgus
monkeys.

The levels of Bacteroidetes phylum and Prevotella genus were significantly increased, the Firmicutes phylum, the
Faecalibacterium, Oscillospira, and Lactobacillus genera were decreased after cerebral infarction in
monkeys; Cerebral infarction induces persistent host gut microbiota dysbiosis, intestinal mucosal damage, and
chronic systemic inflammation in cynomolgus monkeys.

Zeng et al.
(37)

2019 Clinical
study

141 patients Compared with the low-risk group, opportunistic pathogens (Enterobacteriaceae and Veillonellaceae) and lactate-
producing bacteria (Bifidobacterium and Lactobacillus) were increased, butyrate-producing bacteria
(Lachnospiraceae and Ruminococcaceae) were decreased in the high-risk group.

Benakis
et al. (38)

2020 Pre-
clinical
study

MCAO
mice

Bacteroidetes S24.7 and the enzymatic pathway for aromatic metabolism were correlated with infarct volume; The
gut microbiota composition in the ampicillin-treated mice was associated with reduced gut inflammation, a long-
term favorable outcome, and a reduction of brain tissue loss.

JeoJeonn
et al. (39)

2020 Pre-
clinical
study

MCAO pig Abundance of the Proteobacteria was significantly increased, while Firmicutes decreased at 3 days poststroke,
compared to prestroke populations, abundance of the lactic acid bacteria Lactobacillus was reduced. By day 5, the
microbial pattern returned to similar values as prestroke,

Lee et al.
(40)

2020 Pre-
clinical
study

MCAO
mice

Aged stroke mice receiving young fecal transplant had less behavioral impairment and inflammation, which is
related to Bifidobacterium longum, Clostridium symbiosum, Faecalibacterium prausnitzii and Lactobacillus
fermentum, for they can produce more SCFAs

Ling et al.
(41)

2020 Clinical
study

93 patients The abundance of Firmicutes and its members, including Clostridia, Clostridiales, Lachnospiraceae, and
Lachnospiraceae_other, was significantly decreased in the age-matched PSCI group; PSCI was significantly
correlated with the abundance of Enterobacteriaceae after adjustments

(Continued)
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into L-Kyn (55, 56), which plays a key role in this pathway. L-

Kyn can be further catabolized in two types of cells, astrocytes

and microglia, in the brain. In astrocytes, L-Kyn was

transformed into kynurenic acid (KYNA) under the

catalyzation of kynurenine aminotransferase (KAT) family

enzymes. KYNA is a well-recognized N-methyl-D-

aspartate receptor (NMDAR) antagonist and is thought to be

neuroprotective (57). In microglia, L-Kyn can be hydroxylated

by kynurenine 3-monooxygenase (KMO) to generate 3-HK and

its major metabolites, such as quinolinic acid (QUIN), which is

considered to be an NMDAR agonist with neurotoxic properties

(58). Both QUIN and KYNA act on NMDAR in the postsynaptic

membrane of neurons. L-Kyn is shown to be a key AHR ligand

and is associated with ischemia stroke severity and

prognosis (18).

Preclinical and clinical studies have shown altered

kynurenine pathway and tryptophan catabolism after

cerebral ischemia. An increased level of brain QUIN was

observed in gerbils, which was mediated by the activation of

IDO, KYN, and 3-HK after transient ischemic attack (TIA),

ultimately leading to an abnormal increase in the QUIN/

KYNA ratio, which might contribute to the progression of

post-stroke injury (59–63). QUIN is primarily detected in

microglia and infiltrating macrophages 2-7 days after cerebral

ischemia, which is consistent with a peak in immune

infiltration, glial activation and inflammation during this

period (62). An altered kynurenine pathway metabolism

was observed in a permanent middle cerebral artery
Frontiers in Immunology 05
occlusion (MCAO) mouse model after ischemia stroke (22).

The level of L-Kyn was increased in the brain as early as 3

hours after MCAO and remained at an increased level for 24

hours, in contrast to a decrease in L-tryptophan level between

3 and 24 hours and slight changes in plasma L-Kyn or L-Trp.

An increase in AHR protein level, nuclear translocation and

transcriptional activity of cortical neurons in this mouse

model was also observed. In addition, the L-Kyn/L-Trp

ratio is much higher in stroke patients than that in healthy

controls and is positively correlated with infarct volume (63).

The most common long-term complications after ischemia

stroke are dementia and depression. A study found that

abnormal alterations in kynurenine pathway catabolism

persisted for at least 1 year after stroke, suggesting that it

might be the cause of persistent brain dysfunction in these

patients (64). The association between cognitive impairment

and the kynurenine pathway after ischemia stroke has been

described in only one study (65). Decreased levels of 5-HT

and increased levels of kynurenine pathway catabolites have

been reported in post-stroke patients with depression, and

activation of key enzymes in the kynurenine pathway can lead

to increased production of 3-HK, QUIN, L-Kyn, and KYNA

(66), which induce the production of neurotoxic agents

(67, 68). Finally, these alterations can cause damages to

multiple brain regions such as the hippocampus, inhibiting

neurogenesis and activating apoptotic signaling pathways,

and thus leading to depression (69), which has been

referred to as the kynurenine hypothesis of depression (70).
TABLE 1 Continued

Author Year of
publication

Type
of

study

Subjects Key findings

Xiang et al.
(42)

2020 Clinical
study

20 patients:
16 controls

Stroke patients had fewer Firmicutes than controls. Lachnospiraceae (OTU_45) and Bacteroides served as
markers of lacunar infarction. Bilophila and Lachnospiraceae (OTU_338), served as markers of non-lacunar acute
ischemic infarction. Three optimal bacterial species, Pseudomonas.

Yuan et al.
(43)

2021 Pre-
clinical
study

MCAO
mice

Lactulose promotes functional outcomes after stroke in mice, which may be attributable to repressing harmful
bacteria, and metabolic disorder, repairing gut barrier disruption, and reducing inflammatory reactions after
stroke.

Wu et al.
(44)

2021 Pre-
clinical
study

MCAO rat The abundance of the Firmicutes phylum was decreased, whereas Proteobacteria and Deferribacteres were
increased after stroke; Ruminococcus_sp_15975 might serve as a biomarker for the stroke; Many metabolites,
such as L-leucine, L-valine, and L-phenylalanine, differed between the stroke and sham groups

Huang
et al. (45)

2021 Pre-
clinical
study

MCAO
mice

Bifidobacterium was enriched in calorie-restriction mice; Bifidobacterium administration improved the long-term
rehabilitation of stroke mice

Zhang
et al. (46)

2021 Pre-
clinical
study

MCAO
mice

Atorvastatin increased the abundance of Firmicutes and Lactobacillus, decreased Bacteroidetes abundance,
increased fecal butyrate level, promoted intestinal barrier function, regulated intestinal immune function, and
reduced microglia-mediated neuroinflammation after stroke; FMT of atorvastatin-treated mice alleviated
neuroinflammation in MCAO mice.

Xu et al.
(47)

2021 Clinical
study/
Pre-
clinical
study

28patients:
28controls

Enterobacteriaceae, Ruminococcaceae, Veillonellaceae and Lachnospiraceae were significantly enriched after
stroke, while Bacteroidaceae and Prevotellaceae were significantly reduced. Enterobacteriaceae showed significant
enrichment in patients with poor prognosis of cerebral infarction. Enterobacteriaceae exacerbates cerebral
infarction by accelerating systemic inflammation and alleviates cerebral infarction by inhibiting its excessive
growth.
CCAO, common carotid artery occlusion.
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However, no correlations between depressive symptoms in

post-stroke populations and blood L-Kyn/L-Trp ratios have

been found (71, 72).
Gut microbiota affects levels of
tryptophan metabolites and AHR

Gut microbes can metabolize tryptophan through several

metabolic pathways and produce various tryptophan

metabolites (73). For instance, some bacterial species, such as

Escherichia coli, Clostridium spp. Bacteroides spp. Clostridium

sporogenes, Peptostreptococcus spp. Peptostreptococcus russellii,

Peptostreptococcus anaerobius and Peptostreptococcus stomatis,

Clostridium botulinum, and Peptostreptococcus anaerobius, can

produce indole propionic acid (IPA), indoleacetic acid (ILA),

and indoleacetic acid (IA). While other species, such as

Lactobacilli, Ruminococcus gnavus, Clostridium bartlettii, and

Bifidobacterium spp., can produce indole aldehydes (IAld),

indoleacetic acid (IAA), and ILA. Some others, such as

Bacteroides spp. and Clostridium spp., can produce 3-

methylindole (skatole) by decarboxylation of IAA.

Gut microbiota can directly or indirectly metabolize

tryptophan, generating various metabolites, including indole,

tryptamine, indole ethanol (IE), IPA, ILA, IAA, skatole, IAld and

IA. Some of them, including Indole, IPA, and IA, can reduce

intestinal permeability by disrupting mucosal homeostasis.

Several other tryptophan catabolic products can regulate

innate and adaptive immune responses by binding to AHR in

intestinal immune cells. For example, IAld can increase IL-22

production by activating the AHR signaling pathway. Some

other tryptophan metabolites, such as IPA, IE and IA, can be

absorbed into the blood through the intestinal epithelium and

exert antioxidant and anti-inflammatory effects (73).

Tryptophan catabolic products, including IAA, IA, IAld, ILA,

tryptamine, and skatole, are all ligands for AHR (74–77). Some

agonists can facilitate AHR in crossing the BBB. In astrocytes

and microglia, AHR can inhibit pro-inflammatory nuclear

factor-kB (NF-kB) signaling, thus interfering chemokine

production and transcriptional programs associated with

inflammatory monocyte recruitment, and activating CNS-

resident myeloid cells and producing direct neurotoxicity to

regulate CNS inflammation (5).
The role of AHR in ischemia stroke

The basic characteristics of AHR

AHR is a ligand-controlled transcription factor (5), which is

implicated in multiple physiological and pathological processes

of many diseases, including inflammatory bowel disease (78),
Frontiers in Immunology 06
metabolic syndrome, and CNS diseases (79, 80). Expression of

AHR is widely detected in the CNS, such as in neurons,

oligodendrocytes, monocytes/macrophages, astrocytes,

microglia, and cerebral endothelial cells (81). AHR can

regulate the expressions of target genes which relate to cell

proliferation, metabolism and immune response (82).

Significant upregulation of AHR expression after stroke has

been reported, which is shown to play a role in the cerebral

ischemic injury (22, 83–86) (Table 2). In addition, the integrity

of the BBB is also compromised upon activation of the AHR

signaling (87–89). The BBB is essential for maintaining CNS

homeostasis, and impairment of BBB is thought to contribute to

neurodegeneration, leading cognitive impairment in

humans (90).

The role of AHR in the neurological and immune

systems has received increasing attention (91). The role of

neuroinflammation in acute and chronic ischemia stroke has

also been recognized (92). In fact, one of the pathological

features of neurodegenerative diseases is neuroinflammation,

mainly manifested by chronic activation of microglia (93). AHR

can mediates inflammatory effects of microglia through dietary

and microbial metabolites, particularly tryptophan metabolites

(5, 93). Given the links between tryptophan metabolism, AHR

and immune cell activation (94), we will highlight the role of the

AHR signaling pathway (i.e., tryptophan metabolites as AHR

ligand can bind to AHR) in ischemia stroke and potential targets

for pharmacological modulation of ischemia stroke, in the

following discussions.
AHR in acute phases of ischemia stroke

Cuartero et al. used mouse models to verify the hypothesis

that activation of the L-Kyn-AHR signaling pathway can

exacerbate acute ischemic brain injury (22). They identified

increased AHR protein level, nuclear translocation and

transcriptional activity of cortical neurons in a permanent

MCAO mouse model. In the core of the infarct, the AHR

protein level rose to a peak at around 5 hours after stroke and

returned to baseline levels by day 7 after stroke; in the peri-

infarct area, the AHR protein level started to increase at 18 hours

after stroke and reached the peak at day 3 after stroke and then

started to decrease. Treating with an AHR antagonist or using

AHR-deficient mice resulted in a smaller infarct size and lower

National Institutes of Health Stroke Scale (NIHSS) in mice

model (22). However, another group showed an opposite

result when treating ischemia stroke using the AHR agonists.

Mechanistically, activation of the AHR signaling during cerebral

ischemia may mediate specific pathological effects by inhibiting

the cAMP response element-binding protein (CREB) signaling

pathway. Further experiments demonstrated that L-Kyn could

accumulate in the brain during acute ischemia stroke and act as
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an endogenous activator of AHR. Exogenous supplementation

of L-Kyn aggravates strokes in an AHR-dependent manner and

increases infarct volume. Most interestingly, the authors also

demonstrated that inhibition of L-Kyn production by

pharmacological blockade of TDO could decrease the

activation of AHR signaling and reduce infarct volume in the

MCAO stroke model. Taken together, this study identified the L-

Kyn-AHR pathway as a novel mediator of brain injury during

stroke, and validated TDO and AHR as new “druggable” targets

for acute ischemia stroke.

Another study suggested that AHR inhibition in acute

ischemia stroke might be benefits regarding functional

outcomes through reducing pro-inflammatory glial cell

proliferation and promoting neurogenesis. Compared to

respective controls, wild-type (WT) and AHRcKO mice that

were treated with the AHR antagonist, 6,2’,4’-trimethoxyflavone

(TMF), showed significantly smaller infarct volumes and

improved sensorimotor and non-spatial working memory

functions. AHR Immunoreactivity was increased mainly in

activated microglia and astrocytes after AHRcKO. TMF-

treated WT and AHRcKO mice showed remarkably increased

astrocyte and microglia proliferation (28). In a cerebral

ischemia-reperfusion injury (CIRI) rat model, TMF-treated

rats displayed lower cell apoptosis levels and smaller infarct

volumes than those not treated with TMF at 24 h after cerebral

ischemia, which were most pronounced in the 10 min and
Frontiers in Immunology 07
50 min after stroke. This study indicated that the AHR

antagonists might reduce CIRI-related cellular injury.
AHR in chronic ischemia stroke

Ischemia stroke can induce long-term host gut microbiota

dysbiosis, impairing the intestinal barrier and leading to chronic

neuroinflammation. This inflammatory response is associated

with cognitive impairment, depression, and anxiety in post-

stroke patients (28). One year after FMT, elevated plasma pro-

inflammatory cytokines, such as IFN-g, IL-6 and TNF-a, were
decreased in focal cerebral ischemia of monkey models,

suggesting the persistence of systemic inflammation post

ischemia stroke (23). Numerous studies have shown that

resident inflammatory cells and microglia can first respond to

CIRI and amplify neuroinflammation by interacting with

astrocytes (95–98). The inflammatory response in the brain of

rats surviving 2 years after ischemic brain injury was evident but

varied in the extent regarding microglia and astrocyte responses

in different brain tissues (25). In another rat model of dementia

in which the rats survived 2 years after cerebral ischemia, it was

shown that this neuroinflammatory process was mainly

regulated by microglia and astrocyte activity. In conclusion,

microglia and astrocytes play an important role in post-stroke

neurodegeneration (99).
TABLE 2 A summary of the role of AHR in cerebral ischemia.

Reference Subjects Key findings Moechanism

Cuartero
et al., 2014
(22)

MCAO
mice

Ischemic insult increases total and nuclear AHR levels as well as AHR
transcriptional activity in neurons in vivo and in vitro, increasing
infarct size and neurological deficits. L-kynurenine-AHR pathway
mediates acute brain damage after stroke.

L-Kyn increased the expression of the AHR target genes Cyp1a1 and
Cyp1b1 mRNA in cortical neurons; L-Kyn decreased CRE-mediated
transcription in neurons, demonstrated by a reduction in both
BDNF and NPAS4 mRNA expression to increase apoptosis.

Chen et al.,
2019 (83)

MCAO
mice

The kynurenine/AHR activation mediated acute ischemic injury.
Compared to normal WT controls and AHRcKO mice. AHR
immunoreactivities were increased predominantly in activated
microglia and astrocytes, leading to a significantly aggrandized
ischemic brain infarction, sensorimotor deficits, and nonspatial
working memory after MCAO.

AHR affected pro-inflammatory cytokines IL-1b, IL-6, IFN-g,
CXCL1, as well as S100b, NGN2, and NGN1 gene and protein
expression after MCAO. TMF treatment modulated gene and
protein expression related to neurogenesis after stroke, leading an
increased proliferation of neural progenitor cells at the ipsilesional
neurogenic zones.

Kwon et al.,
2020 (84)

TMCAO
rat

The inhibition of AHR activation before reperfusion alleviates brain
damage due to apoptosis. AHR antagonism at a delayed time point
after ischaemia is also effective in suppressing cerebral I/R injury and
this effect was most pronounced in the 10 min and 50 min post-stroke
administration groups.

AHR antagonists after ischaemia affected the inhibition of the
formation of cellular and vasogenic oedemas due to cerebral I/R.

Tanaka
et al., 2021
(85)

MCAO
mice

MCAO upregulated AHR expression in microglia during ischemia.
MCAO increased the expression of TNFa and then induced edema
progression, and worsened the modified neurological severity scores,
with these being suppressed by administration of an AHR antagonist,
CH223191.

In MCAO model mice, the NOX subunit p47phox expression was
upregulated in microglia by ischemia, aggrandized the expression
of Tnfa and edema progression. AHR antagonist can relieve
hypoxia/ischemia and edema progression and improve the
neurological severity scores in mice via inhibition of the AHR
signaling pathway.

Rzemieniec
et al., 2019
(86)

mice A selective AHR modulator, DIM protects neurons against ischemia-
induced damage at earlier and later stages of neuronal development,

Ischemia-induced apoptosis and autophagy and possibly corresponds
to ischemia-evoked disruption of HDAC activity and AhR/CYP1A1
signaling pathway. DIM partially reversed OGD-induced apoptosis,
autophagy and AHR/CYP1A1 signaling as well as OGD-inhibited
HDAC activity.
OGD, Oxygen and glucose deprivation; DIM, 3,3′-diindolylmethane; TNFa, tumor necrosis factor a; NOX, NADPH oxidase; TMCAO, transient middle cerebral artery occlusion.
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Stroke injuries can induce the activation of microglia, which

are generally classified into detrimental M1 and protective M2

subtypes (Figure 2). M1 microglia can secrete pro-inflammatory

cytokines while M2 microglia can secrete anti-inflammatory

cytokines. M2 microglia can stimulate neural stem/progenitor

cell proliferation and neuronal differentiation in the ipsilateral

subventricular zone through upregulation of TGFa expression

levels. Studies have shown that in acute ischemia stroke,

activated microglia predominantly express M2 phenotypic

markers. However, there is a gradual shift to the M1

phenotype at around 1 week since the acute initiation of

ischemia stroke, which persists for several weeks or even

months. The sustained activation microglia is also thought to

be assoc ia ted wi th the onse t and progress ion of

neurodegenerative diseases (100). NF-kB, which is a key

molecule in the microglia inflammatory pathway, induces

activation and polarization of M1 microglia (101). Astrocytes

can proliferate reactively after ischemic stroke. Liddelow et al.

classified these astrocytes into the A1 and A2 subtypes, which are

neurodamaging and neuroprotective, respectively (102). AHR

plays an important role in activating microglia and activating

astrocytes, which participate in the pro-inflammatory and anti-

inflammatory processes, respectively. AHR inhibits the pro-

inflammatory NF-kB signaling pathway while deletion of AHR

or AHR ligands in microglia results in a dysregulated

inflammatory response . Microg l i a and as t rocyte s

intercommunicate with each other in many ways and may also

be involved in the “gut-microbiota-brain” axis (103). Based on
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the fact that gut microbial metabolites can affect the CNS via the

AHR-dependent signaling pathway, role of the commensal

microbiota-mediated AHR signaling in the regulation of

inflammation-promoting activity mediated by microglia and

astrocytes has been investigated in recent years. Agonists

derived from diet, gut microbiota and host metabolism can

activate the AHR through the BBB. The AHR promotes TGFa
expression in microglia, which acts on astrocytes and inhibits

their pro-inflammatory activity. Further, AHR on microglia

inhibits NF-kB-driven vascular endothelial growth factor B

(VEGFB) expression, thereby promoting astrocytes to exert

anti-inflammatory activity (104). Gut microbiota dysbiosis after

stroke leads to abnormal tryptophanmetabolism, and the decreased

levels of AHR agonists may lead to enhanced neuroinflammation.

AHR as a potential therapeutic
target for treatment of
ischemia stroke

As previously described, modulation of the AHR signaling

may provide new therapeutic strategy to attenuate neuronal

damage after acute ischemia stroke and prevent the development

of post-stroke neurodegeneration, thereby improving the short-

and long-term ischemia stroke prognosis. In the permanent

MCAO mouse model, L-Kyn mediates ischemic neuronal

injury as an endogenous activator of AHR (22). Therefore,

pharmacological inhibition of the kynurenine pathway or
FIGURE 2

Neuroinflammation in the brain after stroke, the role of AHR and tryptophan metabolites in neuroinflammation. Microglia and astrocytes are
activated and interact with each other to mediate neuroinflammation following ischemic stroke Some metabolites such as 3-HK, Kyn, QUIN
produced by tryptophan metabolism can cross the BBB plays a neuroprotective or neurotoxic role. Gut flora and the host tryptophan metabolism
produce AHR agonist. In astrocytes and microglia, AHR can inhibit pro-inflammatory nuclear factor-kB (NF-kB) signaling, and reduction of AHR
agonists after gut microbiota dysbiosis result in an upregulated neuroinflammation and neurotoxic responses and immune cell recruitment, which
are amplified through microglia-astrocyte interactions.
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activation of the AHR pathway in acute ischemia stroke might

prevent neurological injury. On the one hand, early

administration of TMF, an AHR antagonist, can be a simple

approach for the treatment of acute ischemia stroke. On the

other hand, synthesis of L-Kyn under the action of TDO as the

primary pathway in ischemic brain tissue and inhibition of L-

Kyn production by the TDO inhibitor compromises the

activation of the AHR signaling, leading to reduced infarct

volume. Interestingly, pharmacological blockade of IDO,

another key enzyme in L-Kyn production, by the IDO

inhibitor 1-MT, does not show a beneficial effect in reducing

infarct size and improving neurological prognosis, despite

increased IDO expression and activity in transient MCAO

mouse model (105).

AHR can mediate the inflammatory response in glial cells of

the CNS (106). Dietary and microbial metabolites, particularly

tryptophan metabolites, have recently been shown to act as AHR

activators and thus regulate microglia and astrocyte activity and

neuroinflammation in the CNS (5, 94). These studies linked the

gut microbiota to neurological inflammation in the brain via the

AHR signaling pathway. In mice with autoimmune

encephalomyelitis, the AHR signaling was activated in

astrocytes, which was proven to limit the inflammatory

response in astrocytes. Moreover, this anti-inflammatory

response could become increasingly evident when dietary

tryptophan was ingested by mice. To demonstrate that this

effect is regulated by microbiota-mediated tryptophan

metabolites, a broad-spectrum antibiotic-ampicillin was

applied to the mice to clear their gut microbiota, followed by

treatment of the mice with indirubin-3’-oxime, a microbial

metabolite of tryptophan. As a result, AHR-mediated anti-

inflammatory effects were observed (5), indicating the effect is

indeed mediated by tryptophan metabolites. Indirubin-3’-oxime

has also been shown to inhibit the inflammatory activation in

microglia in the rat brain (107). Lactobacillus was found to be an

important host probiotic, and its levels were reduced after

cerebral ischemia in monkeys (23). There are also studies

showing that Lactobacillus supplementation can improve

cognitive function and mood and reduce aging-related

inflammation in mice and rats (28, 108). Lactobacillus casei

subsp. casei 327 (327 strain) can indirectly promote colonic 5-

HT synthesis (109). Lactobacillus reuteri can degrade tryptophan

into indolic compounds, such as IAld, ILA, and IAA (74, 110). A

decreasing trend in serum kynurenine: tryptophan ratios was

observed in humans after 8 weeks of oral administration of

Lactobacillus johnsonii (111). As an important source of essential

amino acids, diet is considered to be an important factor in

shaping microbial tryptophan metabolism. A recent study

indicated that the microbial tryptophan degradation pathway

could be weakened under a high-fat diet (112). In addition,

increasing carbohydrate availability promotes intestinal

serotonin synthesis (113). Thus, probiotic supplementation
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and a reasonable diet can theoretically improve ischemia

stroke prognosis; however, whether it is indeed beneficial in

post-stroke patients needs to be tested in future clinical trials.

Ramos et al. showed that the function of AHR and its

downstream signaling pathways are impaired in the elderly

and AD patients (114). The role of AHR ligands in improving

learning memory deficits was also confirmed in a mouse model

(104). Activation of the AHR signaling pathway by endogenous

ligands such as L-Kyn and 6-Formylindolo[3,2-b]carbazole

(FICZ), or exogenous ligands such as diosmin and indole-3-

carbinol, could increase the expression and enzymatic activity of

neprilysin in amyloid precursor protein/presenilin 1 (APP/PS1)

mice, and improve cognitive impairment effectively in these

mice. Tryptophan metabolites, such as 5-hydroxy indole-acetic

acid and kynurenic acid, could reduce cognitive impairment in

mice and Ab load in patients with mild cognitive impairment by

activating AHR (115–118).
Present shortcomings and
future perspectives

New therapies, such as the application of recombinant

thrombolytic tissue plasminogen activator (r-tPA) and intra-

arterial thrombectomy, have been developed for the treatment of

acute ischemia stroke (119). However, due to the narrow time

windows and the limitations of endovascular treatment

techniques, only a small number of patients with acute

ischemia stroke can benefit from these new therapies. There

are limited treatment options for patients with subacute and

chronic ischemia stroke. In light of this, AHR can be used as a

potential therapeutic target for the treatment of these patients

(85). Inhibition of AHR signaling in acute ischemia stroke has

the potential to benefit the patients by reducing pro-

inflammatory gliosis and enhancing neurogenesis. In contrast,

tryptophan metabolites, as the AHR ligands, can interact with

microglia and astrocytes and prevent neurodegeneration.

Supplementation of tryptophan metabolites, probiotics

producing AHR agonists, and FMT from normal donors may

be potential therapeutic strategies that can improve the

prognosis of certain types of ischemia stroke. Delivering drugs

to the brain directly has long been a major challenge in treating

neurodegeneration, and thus these proposed strategies might

overcome this barrier.

However, there is still a long way to go for researchers

despite the substantial progress. Firstly, the composition and

immunological characteristics of human gut microbiota are not

completely the same as those of animals such as mice. Secondly,

the effects of intestinal fungi and protozoa on tryptophan

metabolism and severity of ischemia stroke are unclear.

Whether there are other endogenous or exogenous AHR

ligands besides tryptophan that have not been identified and
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whether there are any other endogenous inhibitors of the AHR

pathway are unknown as well. Tryptophan can also directly be

absorbed by the host gut and the complex interactions between

intestinal flora, intestinal lumen tryptophan availability, and

host tryptophan metabolism need further study. Thirdly, it

requires validation that whether the results from animal

studies could be used for the effective treatment of human

diseases such as ischemia stroke. Developing a humanized

mouse model might help explain the well-known differences

regarding AHR between humans and mice. Finally, large-scale,

highly controlled clinical studies are urgently needed to further

validate the role of AHR in ischemia stroke development.
Conclusion

The role of AHR and tryptophan metabolism in the

communication between the gut microbiota and CNS has been

increasingly well known. Tryptophan metabolism is directly or

indirectly regulated by the gut microbiota and many tryptophan

metabolites can act as endogenous AHR activators, activating

AHR, which can further regulate neuroinflammation by

interacting with microglia and astrocytes. Since many factors

can affect the gut microbiota composition and metabolism,

including diet, antibiotics, and probiotics, as well as FMT, the

manipulation of the gut microbiota modulating tryptophan

availability may be a therapeutic method for neuroinflammation

after ischemia stroke. In conclusion, we argue that the AHR and

tryptophan metabolism play an important role in ischemia stroke.
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