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ABSTRACT Stress-induced psychological and somatic diseases are virtually endemic nowadays. Written
self-report anxiety measures are available; however, these indices tend to be time consuming to acquire.
For medical patients, completing written reports can be burdensome if they are weak, in pain, or in acute
anxiety states. Consequently, simple and fast non-invasive methods for assessing stress response from
neurophysiological data are essential. In this paper, we report on a study that makes predictions of the state-
trait anxiety inventory (STAI) index from oxyhemoglobin and deoxyhemoglobin concentration changes of the
prefrontal cortex using a two-channel portable near-infrared spectroscopy device. Predictions are achieved by
constructingmachine learning algorithmswithin a Bayesian frameworkwith nonlinear basis function together
with Markov Chain Monte Carlo implementation. In this paper, prediction experiments were performed
against four different data sets, i.e., two comprising young subjects, and the remaining two comprising elderly
subjects. The number of subjects in each data set varied between 17 and 20 and each subject participated only
once. They were not asked to perform any task; instead, they were at rest. The root mean square errors for the
four groups were 6.20, 6.62, 4.50, and 6.38, respectively. There appeared to be no significant distinctions of
prediction accuracies between age groups and since the STAI are defined between 20 and 80, the predictions
appeared reasonably accurate. The results indicate potential applications to practical situations such as stress
management and medical practice.

INDEX TERMS Anxiety index, blood oxygenation, health and safety, near infrared spectroscopy, neuronal
activity, oxyhemoglobin, predictionmethods, preventionmedicine, regional cerebral blood flow, translational
engineering.

I. INTRODUCTION
Stress-induced psychological and somatic diseases are
becoming endemic in many contemporary societies. A first
step in the prevention of stress-induced diseases could be to
quantify anxieties that individuals have, although quantifi-
cation per se may not prevent the diseases. While a variety
of written self-report anxiety measures provide valid and
reliable measures of anxiety, these indices tend to be time
consuming to acquire. For medical patients, completing a

written report can be burdensome if they are weak, in pain,
or in acute anxiety states. Cumbersomeness is another aspect
of such written tests that needs improvement. Thus, simple
and fast non-invasive methods for assessing stress response
from neurophysiological data are essential.
In [1]–[7], we used a near-infrared spectroscopy (NIRS)

device to investigate neurophysiological mechanisms of
stress responses. One of our findings was that the prefrontal
cortex (PFC) plays an important role in stress response as the
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asymmetry of PFC activitymeasured byNIRS correlatedwith
behavioral and somatic responses to mental stress. It has been
observed that there is left/right asymmetry of oxy hemoglobin
concentrations in PFC activities during tasks involving men-
tal stress. We measured these activity patterns using a
two-channel NIRS device instead of fMRI or EEG and found
that they correlated with the systemic stress responses of the
autonomic nervous system and the hypothalamic-pituitary-
adrenal (HPA) axis system [3]–[7].

Our present study attempted to go beyond the study of such
asymmetries of PFC activities in two directions:

A) The first direction was to consider the resting state of
a subject instead of the subject being under a stress task.
This makes task design easier because it is nontrivial and
often difficult to design a stress task that is effective for every
subject. It should be noted that research on the brain under
resting conditions is an active study area [8]–[14], and it has
been reported that the brain at rest consumes a significant
amount of energy andmuch activities with distinctive patterns
are reported.

B) The other direction was to make predictions about
anxiety index from oxy and deoxy hemoglobin concentration
changes of PFC using a two-channel portable NIRS device.
We achieved this by constructing a machine learning algo-
rithm within a Bayesian framework and implemented it with
Markov Chain Monte Carlo (MCMC). A brief overview of
MCMC is given in Appendix B.

Specifically the study proceeded in the following steps:
i) Acquire the anxiety index via the state-trait anxiety

inventory (STAI) test.
ii) Use a two-channel portable NIRS device to measure

oxy and deoxy hemoglobin concentration changes of
PFC in four different groups, where two of them com-
prise young subjects, whereas the other two comprise
elderly subjects.

iii) Place each subject in a resting state in which no task is
performed.

iv) Build a Hierarchical Bayesian machine learning algo-
rithm for anxiety index predictions by taking into
account both oxy and deoxy hemoglobin concentration
changes. Because the amount of data was limited, the
predictive capability of the algorithm was evaluated by
excluding one set of data and using the remaining set for
learning. Following the learning phase, the set of data
previously withheld was used to examine the predictive
capability of the algorithm. The Hierarchical Bayesian
algorithm does not need a validation set since it does
not utilize leave-one-out cross validation.

v) Evaluate the prediction capabilities of the algorithm
against four different datasets from each of which one
set of data was withheld for testing.

The remainder of this paper is organized as follows:
Section II reviews work related to our study. Section III
describes the materials and methods used as well as the
experimental settings, subjects, machine learning algorithm,
and feature extraction method. Section IV presents our

prediction results. Section V discusses the overall study and
the results obtained. Section VI concludes this paper and
outlines future work. The appendix outlines the measurement
principle of the NIRS device employed in the study.

II. RELATED WORK
NIRS is a relatively well established method of mea-
suring oxy hemoglobin (oxy-Hb) and deoxy hemoglobin
(deoxy-Hb) concentrations in cerebral vessels [15]. Changes
in oxy-Hb are correlated with changes in regional cerebral
blood flow (rCBF) [16], whereas changes in total hemoglobin
(sum of oxy-Hb and deoxy-Hb; t-Hb) reflect regional cerebral
blood volume (rCBV) changes [17]–[19].
The results of a number of studies indicate that correlations

exist between the electrical neural activity and changes in the
blood oxygenation levels measured by NIRS. Simultaneous
recordings of NIRS and visual evoked potential signals in
humans during visual stimulation reveal a linear correlation
between hemodynamic changes and evoked potential ampli-
tude [20]. Further, simultaneous measurements of NIRS and
EEG at rest indicate that an increase in oxy-Hb is associated
with an increase in neuronal activity and vice versa [21], [22].
fMRI measurements in the resting state also display the same
phenomena [23].
Various written tests are available for assessing anxieties.

A verbal evaluation method attempted in [24] proved faster
than the written method and demonstrated a high correlation
with STAI. In [25], a visual analog scale was considered and
compared with STAI.
We conclude this section by stating that this paper is a

significantly improved and expanded version of [26] in that
four datasets from different age groups are analyzed here,
whereas only one target dataset was used in [26].

III. MATERIALS AND METHODS
A. EXPERIMENTAL SETTINGS
We acquired four datasets from different locations and on
different occasions in 2010 and 2011. Each individual par-
ticipated only once.

i) Dataset 1
Population: 19 subjects
(six women; 13 men), age range: 19–26 years.

ii) Dataset 2
Population: 19 subjects
(13 women; six men), age range: 20–24 years.

iii) Dataset 3
Population: 17 subjects
(10 women; seven men), age range: 61–79 years.

iv) Dataset 4
Population: 20 subjects
(16 women; four men), age range: 60–79 years.

All the subjects were healthy, with no history of psychiatric
or neurological disorders. They all gave written informed
consent on forms approved by the ethical committees of the
Nihon University School ofMedicine andWaseda University.
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FIGURE 1. (a) Experimental setup; (b) Two-channel pocket NIRS;
(c) International 10–20 system—red circles indicate the measurement
areas.

In our experiments, each subject was seated in a
comfortable chair in a dimly lit room (Fig. 1(a) and we mea-
sured the oxy- and deoxy-Hb concentration changes using a
portable two-channel NIRS system (PNIRS-10, Hamamatsu
Photonics K.K., Japan) (Fig. 1(b). The NIRS probes were
set symmetrically on the forehead of each subject; the posi-
tioning is similar to the midpoint between the electrode
positions Fp1/F3 (left) and Fp2/F4 (right) of the international
10-20 system, as demonstrated in Fig. 1(c) [6].

The sensor part (with weight approximately 100 g, result-
ing in only a very small burden on the subject) communicated
with a PC via Bluetooth (class 2).

FIGURE 2. Experimental protocol observed.

Fig. 2 illustrates the experimental protocol observed.
It consisted of the following steps. First, each subject com-
pleted the STAI questionnaire before NIRS measurements.
Second, we calibrated the equipment. Third, the subject was
told that the preparation period would begin. Fourth, the
subject was instructed to rest quietly: rest period. This cor-
responded to the analysis period.

B. MACHINE LEARNING
In general, the machine learning paradigm comprises the
following three ingredients:

i) preprocessing
ii) feature extraction
iii) learning/prediction algorithm.
The nature of NIRS data is not well understood; conse-

quently, the procedure that needs to be followed in each step
is nontrivial. This paper reports on our attempts to carry
out (ii) and (iii), with (i), which is no less important, being
left for future work. Although the results are not included
in this paper, we attempted to devise third and fifth order
Butterworth bandpass filters (passband 0.01–1.0 Hz) and
LOF outlier detection/deletion on the NIRS raw data for (i).

This preprocessing improved the performance only for two of
the four datasets. We will report on the effects of preprocess-
ing in a future paper; in this paper, our focus is on (ii) and (iii).
The following subsections discuss (ii) and (iii) above.

C. FEATURE EXTRACTION
Using all the available features is information rich; however,
less relevant features often degrade predictive performance.
This is due to the fact that as the number of features increases,
the number of unknown parameters also increases, such that
poorly learned parameters degrade prediction capabilities.
Note that each channel of the target device acquires the

concentration changes of oxy- and deoxy-Hb so that the
acquired data is a four-dimensional vector. Fig. 3 shows
typical NIRS data.

FIGURE 3. Typical NIRS data consisting of four quantities: right/left 4 oxy
and right/left 4 deoxy. Note that the measured quantities from the device
used in this study are the concentration changes 4 oxy and 4 deoxy,
instead of absolute quantities.

In extracting appropriate features, we first noted that the
measured quantities from the device used in the study were
the concentration changes 4 oxy and 4 deoxy, instead of
absolute quantities [27], [28] (see the appendix also). There-
fore, the first order statistics, the mean values, should be
avoided for prediction purposes. In the study, we used the
following three Pearson correlation coefficients that were
reported as effective in [26]:

i) 4 oxy (left)/4 deoxy (left)
ii) 4 oxy (left)/ 4 deoxy (right)
iii) 4 deoxy (left)/4 deoxy (right)

across the four datasets.
The three quantities are illustrated in Fig. 4 in a schematic

manner, with an arrow indicating Pearson correlation coeffi-
cient between the two associated quantities. Note that Pearson
correlation coefficients are normalized in the range [−1,+1].
All the arguments in the ensuing section are based on these
three second-order features.

Since the acquired NIRS data was four-dimensional, there
are six Pearson correlation coefficients so that there were∑6

n=1 6Cn = 63 possibly combinations. By exhaustive
search, we found [26] that the three-dimensional features
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FIGURE 4. Schematic showing the three extracted features.

demonstrated in Fig. 4 gave good performance in terms of
prediction errors.

D. ALGORITHM USED
Let x(i) := (x(i)1 , . . . , x

(i)
K ) ∈ RK , i = 1, . . . ,N be the NIRS

feature vector of the i-th individual. For our selected features,
K = 3, as described in Fig. 4. Let y(i), i = 1, . . . ,N be
the STAI state index obtained from the questionnaire, where
N is the number of subjects in an experiment. Of the N
available pieces of data, we reserved one (xreserved , yreserved )
and attempted to fit the N − 1 remaining pieces of data with
the following machine learning model:

P(y(i)|x(i);ω, β) =

√
β

2π
exp(−

β

2
(y(i) − f (x(i);ω))2)

i = 1, . . . ,N − 1 (1)

where f is a basis function for data fitting, and ω denotes
the associated unknown parameter to be learned. β is another
parameter to be learned that is often called the hyperparam-
eter, and corresponds to the uncertainty level associated with
the acquired STAI value. In order to capture the potential
nonlinear relationship between the NIRS data and the STAI,
we considered the following nonlinear basis function:

f (x(i);ω) :=
H∑
h=1

(
ω(K+1)hσ

( K∑
k=1

ωkhx
(i)
k + ω0h

))
+ ω0(K+1)

(2)

where σ is a sigmoidal function. This basis function
is nonlinear with respect not only to x but also ω,
which makes the learning algorithm nontrivial. It is
known that this basis function (perceptron) can approxi-
mate any nonlinear function with arbitrary precision [29].
As in [26], the unknown parameter vector ω is decom-
posed as ω =

{
{ωk}

K
k=1, ω(K+1), ω0, ω0(K+1)

}
with ωk :=

(ωk1, . . . , ωkH ) ∈ RH , ω(K+1) := (ω(K+1)1, . . . , ω(K+1)H ) ∈
RH , ω0 := (ω01, . . . , ω0H ) ∈ RH and ω0(K+1) ∈ R.
This decomposition amounts to the fact that each ωk is
the first-layer weights, associated with each feature x(i)k ,
k = 1, . . . ,K . ω(K+1) are the second-layer weights, asso-
ciated with hidden units. The remaining two parameters
{ω0, ω0(K+1)} were the bias parameters. The number of hid-
den units H can be estimated within the present Hierarchi-
cal Bayesian framework. This endeavor, however, requires

a more complicated algorithm and much more time to exe-
cute. From our own experiences, as well as those reported
by other researchers, we used eight as the choice for H . Our
study formulated the prediction problem within a Bayesian
framework, where a prior distribution was assumed about the
unknown parameters and that information incorporated into
the data fitting model given by (1). The prior distribution for
ωk was assumed to be specified by

P(ωk |αk ) = N
(
0,
(

1
αk

)
I
)

(3)

which is the Gaussian distribution with a zero mean vec-
tor and covariance matrix (1/αk )I ;αk is the hyperparam-
eter, associated with first-layer weights ωk , and I denotes
the identity matrix, k = 1, . . . ,K . This prior distribution
often prevents overfitting. α(k+1) is associated with second-
layer weights ω(k+1). There were two other hyperparameters
{α0, α0(K+1)}, which were associated with the bias parame-
ters {ω0, ω0(K+1)}. The prior distributions for β and α were
assumed to follow the gamma distribution. Let

α : = {{αk}
K
k=1, α(K−1), α0, α0(K−1)}, x := {x

(i)
}
N−1
i=1 ,

y : = {y(i)}N−1i=1 . (4)

The rationale behind the gamma distribution for prior is
explained in Appendix C.

Assuming the data from each individual to be independent,
the Bayes formula gives the posterior distribution:

P(ω, α, β|x, y)

=

N−1∏
i=1

P(y(i)|x(i);ω, β)P(ω|α, β)P(α, β)

∫∫∫ N−1∏
i=1

P(y(i)|x(i);ω, β)P(ω|α, β)P(α, β)dωdαdβ

(5)

Prior distribution for hyperparameter α and β are not explic-
itly written in (5), for the purpose of clarity.
Given the reserved NIRS data xreserved , the prediction of

the STAI index associated with the reserved data yreserved was
performed by computing the predictive distribution:

P(yreserved |xreserved , x, y)

=

∫∫∫
P(yreserved |xreserved , ω, β)P(ω, α, β|x, y)dωdαdβ.

(6)

E. PREDICTION CAPABILITY EVALUATION
As described in subsection IIID, one piece of data
(xreserved , yreserved ) out of N was reserved, whereas
the remaining N −1 pieces of data were used for learning the
unknown parameters. After the parameters were learned, the
reserved data were input to the algorithm for STAI prediction.
Because one STAI value was also reserved, we were able
to compute the difference between the predicted and the
reserved STAI values, which can signify prediction error.
Since hyperparameters (α, β) can also be learned via (5), the
method is called the Hierarchical Bayesian algorithm.
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FIGURE 5. Overall flow of activities carried out in the project.

FIGURE 6. Scatter plots of actual STAI and predicted STAI values with the proposed algorithm based on the nonlinear model: (a) dataset 1; (b) dataset 2;
(c) dataset 3; (d) dataset 4.

There were four datasets, each comprising 17-20 sets of
data. We performed four prediction experiments, one exper-
iment for each of the four datasets. Within each dataset, one
set of data was reserved for testing while the rest were used
for learning. The reserved data were not used in the learning
process. It should be noted that in the STAI prediction of
each subject, the algorithm had never seen the data from the
particular subject to be tested. It should also be noted that
this is not leave-one-out cross validation. The Hierarchical
Bayesian method used in this study does not use a validation
dataset.

Only the state anxiety index was used in the present study,
even though the trait anxiety index was available. We will
attempt to make predictions of the trait anxiety index in our
future project.

Fig. 5 demonstrates an overall flow of the prediction
algorithm.

IV. EXPERIMENTAL RESULTS
In this section, we evaluate the prediction capabilities of the
proposed algorithm.

A. PREDICTION CAPABILITY EVALUATION
Fig. 6 depicts scatter plots of the actual STAI val-
ues and the predicted values with the nonlinear model.
Figs. 6(a)–(d) are the scatter plots corresponding to datasets
1 to 4. It should be noted that the figures are not the results
of linear regression between the quantities of the horizontal
and the vertical axes (see subsection IIID). The blue lines
signify the RMSE of 10, which is an empirical value proposed

by one of the coauthors of this paper who is a clinician in
neurosurgery in the sense that an RMSE of 10 for STAI could
be tolerable in a clinical practice where the STAI score is
between 20 and 80. We note that only a limited amount of
data was available for STAI values near 20 and 80. As a result,
the algorithm had very little chance of seeing very low/high
STAI scores and it was difficult to make good predictions;
however, the results appear to be reasonable, including the
low/high STAI values.
Table 1 summarizes the results with multiple evaluation

indices: RMSE, Pearson Correlation Coefficients, and the
p-values of two tailed t-tests between the actual STAI values
and the predicted STAI values. Note that datasets 1 and 2were
acquired from young subjects (19–26 years and 20–24 years,
respectively) whereas datasets 3 and 4 were obtained from
elderly subjects (61–79 years and 60–79 years, respectively).
The effect of aging did not appear to be critical within this
prediction framework.
The table also compares nonlinear and linear models. The

nonlinear model of our proposed method gave better results
in all cases. It can be seen that the linear predictions were
much less accurate than those with the proposed nonlinear
predictions. Significant prediction improvements are dis-
cernible with the nonlinear model. Table 2 summarizes the
proportions of RMSE upper bounds for each dataset.

B. INTRA-SUBJECT-VARIATIONS
To assess the ‘‘intra-subject’’ variation of the proposed
algorithm, we used the following multiple NIRS measure-
ment data. Following acquisition of dataset 1, we asked the
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TABLE 1. Prediction results. Performance indices are RMSE, pearson correlation, and the associated P-value of two tailed T-test between the actual STAI
and the predicted values. It also compares linear and nonlinear models.

TABLE 2. Summary of the proportions of RMSE for differing upper
bounds with the proposed algorithm based on the nonlinear model.

19 subjects to repeat three more trials subsequent on the trial
described in IIIA. There was a 3-5 min resting period between
two trials. The Bayesian learning was conducted using the
(18 out of 19) first set of trial data, which was in fact the same
as those used in IIIA and tested against the remaining data.
Using the parameters learned from the first set of trial data,
tests were performed against the second, third, and fourth set
of trial data.

FIGURE 7. Intra-subject variability of the prediction capability of subject 1
over four trials. Learning was performed with the data from the first set of
trial data for 18 subjects other than subject 1, whereas prediction
capability was tested against the withheld data for subject 1. With the
same learned data, tests were performed on the second, third, and fourth
sets of data from subject 1. In 10 of the 19 subjects, the prediction error
of the fourth trial was greater than that of the first trial.

Fig. 7 demonstrates the prediction error variations over the
four trials of subject 1.

The prediction error for the fourth trial was greater than
that for the first trial in 10 subjects out of 19. However, in nine

subjects, the prediction error for the fourth trial was less than
that for the first trial. Fig. 8 shows the results for subject 10.

FIGURE 8. Intra-subject variability of the prediction capability of subject
10 over four trials. Learning and prediction are similar to those in Fig. 7.
In nine of the 19 subjects, the prediction error for the fourth trial was less
than that for the first trial.

The overall average intra-subject prediction error was
7.638, which is greater than those listed in Table 1.

V. DISCUSSION
A. THE BRAIN AT REST
The brain at rest has been an active research area and
numerous activities with distinctive patterns have been
reported [8]–[14]. Our study considered the NIRS data in the
resting condition. The method used in the study did not need
task design, which made experimentation easier. With NIRS
measurements for stress task [3]–[7], a subject’s NIRS data
started changing when the subject was told that the task would
begin in 30 s, even before the actual stress task began. In the
resting condition assumed in our study, that effect was less
than in the stress task; however, we could not exclude the
potential effect of the information on the subject when the
subject was informed of the beginning of the measurement
30 s before the measurements began.

B. BEYOND OXY HEMOGLOBIN ASYMMETRY
The present study went beyond investigating the left/right
asymmetry of oxy-Hb concentrations in the PFC activity
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during tasks involving mental stress [3]–[7] such that
the STAI index predictions were performed based on the
four-dimensional NIRS values instead of the mere oxy-
Hb concentration changes. The three-dimensional features
were extracted from the oxy- and deoxy-Hb concentrations
changes acquired from a two-channel NIRS device placed on
the PFC.

C. PREDICTIONS ON FOUR DIFFERENT DATASETS
Note that the prediction experiments were performed on four
different datasets that were acquired from different individ-
uals on different occasions. Since the STAI values varied
between 20 and 80, the RMSE values 6.20, 6.62, 4.50, and
6.38 appear reasonable.

Table 2 summarizes the proportions of the RMSE values
that were less than 10 as well as those less than five in each
dataset. It also gives the minimum prediction errors as well.
There are three facts that should be mentioned here:

i) The algorithm had never seen the NIRS values as
well as the associated STAI of a particular individual
before. The parameters were learned from the data of
other subjects only, suggesting that the STAI values of
unknown subjects may be predictable once the machine
learned.

ii) There were several subjects whose STAI values could
be predicted by the proposed algorithmwith reasonable
accuracy. Table 2, for instance, shows that there were
84.2–100% of the young as well as elderly subjects
whose STAI prediction errors were less than 10, which
appears reasonable since the STAI varied between
20 and 80. The rightmost column of Table 2 gives the
minimum RMSE for each dataset.

iii) Inmachine learning prediction problems, it is often crit-
ical to choose appropriate features. Our study employed
the three features depicted in Fig. 4 throughout the four
datasets, irrespective of age.

D. COMPARISON WITH LINEAR MODEL
Recall that our basis function (2) is nonlinear not only with
respect to feature vector x, but also with respect to unknown
parameters. We tested a linear model instead of the nonlin-
ear model and found that the linear model was much less
accurate than the proposed nonlinear model, as summarized
in Table 1.

E. AGE GROUPS
Two groups comprised young subjects (19–26 years and
20–24 years, respectively), whereas the remaining two com-
prised elderly subjects (61–79 years and 60–79 years, respec-
tively). The results in Table 1 appear to indicate that age does
not play any significant role in the STAI prediction problem.

F. GENDER DIFFERENCE
We note that a gender difference is discernible in that the
highest RMSEwas 6.62, followed by 6.38 in datasets 2 and 4,

respectively, where the result for the female subjects domi-
nates that for the male subjects.
It is not clear whether this is a limitation of themodel or not.

Potential differences in the results due to gender difference
are not surprising because it is a known fact that gender
differences exist in brain functions. In language processing
tasks, for example, the right PFC is often activated in male
subjects, whereas both the right and left PFC are activated in
female subjects [30].

G. INTRA-SUBJECT PREDICTION ERRORS
Fig.7 appears to suggest that the subject could have started
becoming tired as the trial proceeded. However, there were
other cases where the prediction error decreased instead of
increased over the four trials, as was shown in Fig.8. It is
difficult at this point to draw any conclusion.

H. PORTABLE NIRS DEVICE
On comparing our experiences with EEG-based experi-
ments, both portable and non-portable, we determined that
the two-channel portable NIRS device is easier to equip
than EEG devices. This is mainly because when conducting
EEGmeasurements, one needs to carefully reduce the contact
impedance between the head and the probe, whereas there is
no such intricacy associated with the NIRS device used in
our study. The burden on the part of the subjects was also
light compared with EEGmeasurements because the subjects
could blink and carry outminormovements, whereas blinking
and head movement significantly distort EEG signals. The
fact that the NIRS device was portable and lightweight also
helped subjects to participate in the experiments with relative
ease.

I. POTENTIAL APPLICATIONS
The results of our prediction experiments, which we report in
Section IV, appear to indicate that the proposed algorithm is
functional at least in the target datasets because the average
prediction error is relatively small. Further, the prediction
capabilities do not appear to depend on age. The device is
portable, weighs 100 g, and is easy to attach; therefore, there
could be potential applications in practical situations.
One of the coauthors of this study, who is a neurosurgeon

and routinely examines the STAI index of patients before
major operations, found that it helps when reasonable anxiety
is predictable with this kind of simple device without a written
self-report.
The proposed method can be utilized in cases where

patients are weak, in pain, or in acute anxiety states such that
it is difficult for them to complete written questionnaires.
One of the coauthors of this paper is a neurosurgery clini-

cian and routinely acquires STAI questionnaires from patients
prior to major operations. Sometimes, however, a patient is
not able to answer the questionnaire in a credible manner.
If the prediction method reported in this paper is functional,
it could help in such scenarios.
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J. LIMITATIONS
Our predictions are based on a Bayesian machine learning
algorithm using the features extracted in terms of predic-
tion errors. The fact that our predictions were reasonable
means that the acquired NIRS data contained information
about the STAI index via a complicated nonlinear manner
provided appropriate features are found. One of the limita-
tions of our study is that physiological mechanisms were not
investigated. For instance, deciphering why the three selected
features given in Fig. 4 are important is still an outstanding
research question. This endeavor, however, necessitates a sig-
nificant amount of effort and will therefore be left for future
research.

Another limitation is that NIRS measures the blood oxy-
gen changes within illuminated pathways such that measured
values of hemoglobin changes are also affected by extra-
cranial tissues, not only intracranial tissues. This means that
the NIRS measurements could contain multiple sources of
hemoglobin changes [11]. In addition, it was suggested that
the experiment itself could affect PFC activity at rest since
the subject might feel the strain during NIRS measurements,
depending on their anxiety levels.

K. FUTURE PROJECTS
The following possible future research projects are under
consideration:

i) It would be interesting to study if the capability of the
proposed prediction algorithm depends on gender and
handedness, among other characteristics.

ii) It would also be worth investigating the prediction
capability of the STAI trait index, which is the feel-
ings of stress, worry, discomfort, etc. that one expe-
riences on a daily basis, instead of the STAI state
index, which is the feeling solely at the time of the
experiment.

iii) NIRS measurements are the building blocks for the
proposed algorithm; therefore, we need to eliminate
possible uncertainties and examine its prediction capa-
bilities. For instance, a project worth pursuing would be
to consider a particular subject performing the exper-
iment over several time intervals, e.g., one or several
weeks or several months, and examine the predic-
tion capabilities of the proposed method. Another is
to examine how the measurement environment might
affect the prediction capabilities. Environmental factors
worth considering include room temperature, humidity,
lighting, time of a day, among others.

iv) An advantage of the present method is that it is not
restricted to the STAI data and the NIRS data, as long
as targeted written test data and associated sensor data
are available.

v) Providing experimental data considering both cases,
i.e., answering the questions before or after acquisition,
could reveal useful information about NIRS measure-
ment sensitivity at resting protocols.

VI. CONCLUSION
In this paper, we reported on a study in which we attempted
to make predictions of the anxiety index of subjects from data
acquired by a two-channel NIRS device placed on the PFC.
The method utilized comprised several steps:

i) data acquisition
ii) feature extraction
iii) construction of machine learning algorithm
iv) prediction

Datawere acquired from four different groups—two compris-
ing young subjects and the remaining two comprising elderly
subjects. Care had to be taken in constructing the machine
learning algorithm because the amount of data acquired was
highly limited to 17–20 subjects in each dataset, in addi-
tion to the potentially significant amount of uncertainties
contained. The proposed algorithm was formulated within
a Bayesian framework and MCMC. Prediction errors were
4.50–6.62 among the four datasets. Since the STAI score
varies between 20 and 80, the prediction accuracies appeared
reasonably accurate. There appeared no significant difference
in prediction capabilities between the young and the elderly
subjects. The device is portable, weighs only 100 g, and is
easy to position; therefore, themethod can be used in practical
situations.
In one of our ongoing research projects, a new algo-

rithm for improving prediction accuracies is being developed.
We will report on this in the future.

APPENDIX A
MEASUREMENT PRINCIPLE OF THE TARGET NIRS DEVICE
Let us now briefly look at the measurement principle of
the target device. First, assume that one is interested in
a single substance. Let ε(λ), C(λ, t), and L(λ) denote
absorption concentration coefficient (µM−1cm−1), concen-
tration of the absorbent (mL) at time t, and the optical
path length (mm), respectively, at wavelength λ. Then, the
modified Beer-Lambert law [28], [30], [31] asserts that the
optical densityOD(λ, t) of the quantity of interest is given by

OD(λ, t) = ε(λ)C(λ, t)L(λ)+ OD(λ, t)R (7)

where the last term represents the term that cannot be detected
by the sensor because of photon scattering. Consider the
change defined by

1OD(λ, t, t0) := OD(λ, t)− OD(λ, t0) (8)

where t0 is the reference time. If one assumes that OD(λ, t)R
is approximately constant over the target time interval, then
this term is removed from (8). Consequently, given the mea-
surement 1OD(λ, t, t0), one can compute

(C(λ, t)− C(λ, t0))L(λ) =
ε(λ)

1OD(λ, t, t0)
(9)

provided that ε(λ) is available. Therefore, the measured
quantity is the change instead of the absolute quantity in
an arbitrary unit. Since there are more than one quantity
of interest, i.e., oxy- and deoxy-Hb, the equipment utilized
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in our study used equations similar to (8) at several differ-
ing wavelengths and computed a two-dimensional vector of
changes.

APPENDIX B
MARKOV CHAIN MONTE CARLO (MCMC)
Since analytical closed form equations are not available for
equations (5) and (6), an approximation method is needed.
MCMC constructs a Markov Chain over the parameter space
and regards the resulting Markov Chain samples as the sam-
ples from the posterior and predictive distributions.

Theoretical results of MCMC guarantee convergence of
the MCMC samples to the target distribution, and methods
that check how close the samples are to their target are
available. These convergence check methods are themselves
ongoing vital research projects [32]; however, it appears that
no comprehensive method currently exists. In practical situ-
ations, one often decides when to end the burn in phase and
how many samples to draw after the burn in, from experi-
ence. In our study, the burn in period was 3000, after which
3000 samples were drawn.

APPENDIX C
PRIOR DISTRIBUTIONS
The prior distribution for the parameters specified by (3)
discourages the parameters becoming large, thereby prevent-
ing overfitting, which is reasonable, and has been success-
fully used in many practical problems. In order to explain
prior distributions for hyperparameters, let αi be one of the
components of the hyperparameter vector defined in (4).
Since this hyperparameter appears in (3) and is the inverse of
the variance of a Gaussian distribution, ωi controls how ωi
is scattered. There are at least three desired properties
for αi:

(a) it should be positive,
(b) it should have a large range for variations,
(c) it should be tractable for drawing posterior samples.
These are fairly standard requirements in many practical

problems, including the present study. One such candidate is
Beta distribution:

P(αi) :=
(ψi/2κi)ψi/2

0(ψi/2)
α(ψi/2−1)e−αi(ψi/2κi),

where κi and ψi are the width and the shape parameters.
In addition to (a) and (b) above, this distribution has one addi-
tional desirable property—it is equipped with natural conju-
gacy [33]. Specifically, the posterior distribution belongs to
the same distribution family as the prior distribution, which
enables easier posterior sampling. It should be noted that even
though the hyperparameter prior distributions are indepen-
dent, their posterior distributions are generally dependent on
each other. Theoretically, κi andψi can be further learnedwith
another hierarchy; however, it is often sufficient to assume
empirical fixed values in many practical problems. In this
study, κi = 0.02 and ψi = 0.01 , for all i, were assumed.
For hyperparameter β, which appears in (1), κβ = 60 and

ψβ = 720 were used. These are based on our previous
experiences with other data.
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