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In order to understand the process of terminal differentiation in salivary acinar cells, mRNA and microRNA ex-
pression was measured across the month long process of differentiation in the parotid gland of the rat. Acinar
cells were isolated at either nine time points (mRNA) or four time points (microRNA) in triplicate using laser cap-
turemicrodissection (LCM). One of the values of this dataset comes from the high quality RNA (RIN N 7) that was
used in this study, which can be prohibitively difficult to obtain from such an RNaseI-rich tissue. Global mRNA
expression was measured by rat genome microarray hybridization (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE65586), and expression of microRNAs by qPCR array (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE65324). Comparing expression at different ages, 2656 mRNAs and 64 microRNAs were
identified as differentially expressed. Because mRNA expression was sampled at many time points, clustering
and regression analysiswere able to identify dynamic expression patterns that had not been implicated in acinar
differentiation before. Integration of the two datasets allowed the identification of microRNA target genes, and a
gene regulatory network. Bioinformatics R code and additional details of experimentalmethods and data analysis
are provided.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Specifications
rganism/cell line/tissue
 Rat (Sprague Dawley); parotid acinar cells isolated by
LCM
x
 N/A

quencer or array type
 Affymetrix microarray Rat 230 2.0;

microRNA PCR mouse and rat panel I, V1.M

ata format
 Microarray: raw .CEL files; RMA normalized Log2

values in Excel
qPCR array: raw CT values in Excel; normalized
deltaCT in Excel
xperimental factors
 Age of animal: E18, E20, P0, P2, P5, P9, P15, P20, P25

xperimental features
 Global changes of mRNAs were measured in triplicate

at 9 time points of salivary gland differentiation, and
microRNAs were measured in triplicate at 4 time
points. Pattern analysis across time allowed inference
of a transcriptional regulatory network.
onsent
 N/A

ample source location
 N/A
S
1. Direct link to deposited data

Microarray (mRNA data): http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE65586.

qPCR array (microRNA data): http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE65324.
arling).

. This is an open access article under
2. Experimental design, materials and methods

2.1. Objective and design

Differentiation requires enduring changes in gene expression. Our
objective was to use mRNA and microRNA expression measurements
to identify a transcriptional regulatory network driving expression of
terminal differentiationmarkers in parotid acinar cells. Using laser cap-
turemicrodissection (LCM), parotid acinar cells could be isolated during
the process of differentiation. The timing of parotid terminal differenti-
ation is well known in rats [1,2], and occurs largely postnatally. For
mRNA measurements, RNA was extracted at nine time points (embry-
onic days 18, and 20; and postnatal days 0, 2, 5, 9, 15, 20, and 25) in trip-
licate, and expression wasmeasured bymicroarray (Affymetrix Rat 230
2.0). For microRNA, RNA was isolated at four time points (embryonic
day 20; and postnatal days 5, 15, and 25) in triplicate, and expression
was measured by qPCR array (microRNA PCR mouse and rat panel I,
V1.M) (Exiqon, Vedbaek, Denmark).
2.2. Animals and tissue

Sprague Dawley rats were obtained from Harlan Laboratories.
The study was carried out in accordance with the Guide for the
Care and Use of Laboratory Animals of the National Institutes of
Health. The protocol was approved by the Institutional Animal Care
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Raw and normalized expressionmeasurements. (A) Box plots generated from raw and RMAnormalizedmicroarraymeasurements. X-axis: individual replicate samples grouped by
age; Y-axis: Log2 intensity. Independent samples of the same age group are color coded. (B) Box plots generated from raw andmedian normalized CT values from a qPCR arraymeasuring
microRNA expression. X-axis: individual replicate samples grouped by age; Y-axis: Log2 intensity. Samples of the same age group are color coded.
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and Use Committee of the University of Louisville (#11059). Timed
pregnant females were used for embryonic and early postnatal
time points. For animals P9 and older, the parotid was removed,
and immediately placed in Tissue-Tek CRYO-OCT Compound (Fisher
Scientific). For younger animals the head was bisected and placed in
OCT. Biological triplicates for embryonic time points were obtained
Fig. 2. Hierarchical clustering of mRNA and microRNA expression across acinar differentiation
filtered dataset from rat genomemicroarrays. Columns: Average expression of triplicates at tha
pression was row normalized. (B) Heatmap of differentially expressed microRNAs (64). Colum
essed expression were used to cluster samples in R, gene expression was row normalized.
from 3 separate litters. Blocks were immediately frozen in a bath of
dry ice andmethyl butanol. Blocks were stored at−80°, andwarmed
to −30 °C for cryosectioning. H&E was used to identify acinar cells
which were captured using an Arcturus PixCell IIe LCM System
(Life Technologies/Thermo Fisher Scientific). Because extracting in-
tact RNA is difficult in RNaseI rich tissues, the aqueous staining
. (A) Heatmap of RMA normalized mRNA expression of transcription factors (538) in the
t age. Rows: Affymetrix probe sets (not listed). Samples were clustered in R, and gene ex-
ns: individual samples. Rows: microRNAs. −ΔCT values of median normalized and proc-



Table 1
Differentially expressedmRNAs. Pairwise comparisonsweremade between adjacent time
points, as well as the first (E18) vs. the last (P25) time point. FDR corrected p-value b0.05
was considered significant.

Comparison Up-regulated mRNAs Down-regulated mRNAs

E18 vs. E20 2 0
E20 vs. P0 2 1
P0 vs. P2 31 17
P2 vs. P5 0 0
P5 vs. P9 2 3
P9 vs. P15 6 6
P15 vs. P20 32 12
P20 vs. P25 7 83
E18 vs. P25 794 1763

Table 2
Differentially expressed microRNAs. Pairwise comparisons were made between time
points. FDR corrected p-value b0.05 was considered significant.

Comparison Up-regulated microRNA Down-regulated microRNA

E20 vs. P5 1 0
E20 vs. P15 14 2
E20 vs. P25 52 12
P5 vs. P15 0 0
P5 vs. P25 7 0
P15 vs. P25 0 0
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steps were kept short (15–30 s), and no more than 150 laser pulses
were used when capturing tissue in the older animals when RNaseI
expression is high.
Fig. 3. Expression patterns of differentially expressed mRNAs. The 2569 differentially expresse
scaled expression data. Eight clusters were identified. For each cluster, average expression at
Log2 intensity (gene expression for each gene was scaled to mean = 0 and stdev = 1).
2.2.3. RNA extraction and expression measurement

2.2.3.1. mRNA
PICO Pure RNA isolation kit from Life Technologies was used per the

manufacturer's instructions. Quantity and quality was assessed by
Bioanalyzer (Agilent) using the RNA 6000 Pico kit. Only samples with
a RIN of 7 or above were used for expression measurement. For the mi-
croarray, biotinylated cRNA was prepared according to the standard
protocol for NuGENOvation PicoWTA System V2, cRNAwas hybridized
for 16 h at 45 °C to Affymetrix Rat 230 2.0 Arrays, GeneChips were
scanned using GeneChip Scanner 3000 7G (Affymetrix) and the
GeneChip Command Console 1.0 (Affymetrix).

2.2.3.2. microRNA
Ambion's RNaqueous micro-kit was used per the manufacturer's in-

structions. Quantity and quality were assessed by Bioanalyzer (Agilent)
using the RNA6000 Pico kit. Sampleswith a RIN of 7 or abovewere used
for expression measurement. For qPCR, Exiqon's Universal cDNA Syn-
thesis Kit was used per the manufacturer instructions and combined
with their SYBR green master mix. Samples were applied to miRCURY
LNA Universal RT microRNA PCR mouse and rat panel I, V1.M, qPCR
was run on an ABI 7900.

2.2.4. Normalization and filtering

The processing and analysis of the data was carried out in R, and the
source code is available in the Appendix.
d mRNAs identified by ANOVA were clustered by k-means clustering using the per-gene
each age is plotted in red, and each individual microRNA is plotted in gray. Y-axis: scaled



Fig. 4. Regression analysis and quadratic trends inmRNA expression. Regression analysis was used to identify mRNAswith a significant quadratic trend. These genes were then clustered.
Eight clusters were identified. For each cluster, average expression at each age is plotted in red, alongwith two example genes that aremembers of the cluster. Y-axis: scaled Log2 Intensity
(gene expression was scaled to mean = 0 and stdev = 1 within each gene).
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2.2.4.1. mRNA
The datawere normalized using the rma function in the Bioconductor

package affy [3], with the default settings. Boxplots for each sample be-
fore and after normalization can be seen in Fig. 1A. Quality was also
checked using PCA analysis (Partek). Probeswere then filtered according
to the following criteria: 1) required mapping to an Entrez Gene ID
(11,660 probes removed), 2) removal of duplicate probes which map
to the same Entrez Gene ID (5749 probes removed, probe with the larg-
est variability in each case retained). To focus on genes involved in the
process of differentiation, probeswith variability below the 50th percen-
tile across all samples (as measured by the interquartile range) were re-
moved. Data filtering was done using the nsFilter function in the
Bioconductor package genefilter [4]. 6842 probes were carried forward
for statistical analysis. Note that the number of filtered probes differs
slightly fromwhat we previously reported [5] due to the updating of ref-
erence genomes and annotation packages since our previous analysis of
this data. The supplemental Rfiles provide version numbers of all R pack-
ages used to produce the analysis presented here (via the sessionInfo
function). However, the main results and conclusions from the analysis
did not change.
2.2.4.2. microRNA
microRNAs were removed that had N50% missing data (i.e. expres-

sion was not detected in seven or more samples, which excluded 100
microRNAs), missing values from remaining probes were imputed
using R function imputeKNN in Bioconductor package MmPalateMiRNA
[6](14.5% of values were imputed) [7]. A median sweep was performed
to normalize delta Ct values by subtracting the global median for each
array. Box plots of raw and normalized values are shown in Fig. 1B.
Two-hundred and eightymicroRNAswere carried forward for statistical
analysis.
2.2.5. Hierarchical clustering

2.2.5.1. mRNA
Broad patterns of gene expressionwere initially examined by hierar-

chical clustering to test for changes across differentiation.We have pre-
viously reported that clustering of all differentially expressed mRNAs
indicates the presence of 4 stages of differentiation [5]. We tested
whether these changes may be supported by changes of transcription
factor expression. After normalization and filtering, 538 transcription
factormRNAswere clustered into a heatmap (Fig. 2A). The transcription
factor data cluster into the 4 stages which were previously observed
using all differentially expressed mRNAs [5]. The 4 stages guided choice
of time points for microRNA samples. The embryonic ages (E18 and
E20) cluster with the day of birth (P0) distinct from other ages. Similar-
ly, a distinct separation is observed between younger ages and the clus-
tered pair of P20 and P25.



Fig. 5. Regression analysis and linear trends inmicroRNA expression. Regression analysis was used to identify microRNAswith a significant linear trend. These genes were then clustered
into six clusters. For each cluster, average expression is plotted in red, and each individual microRNA is plotted in gray. This emphasizes patterns of progressive increases or decreases. Y-
axis: scaled Log2 intensity (gene expression for each gene was scaled to mean = 0 and stdev = 1).
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2.2.5.2. microRNA
Differentially expressed microRNAs were clustered using the hclust

function (hierarchical clustering) in the stats package in R. Distance d
was calculated based on the correlation coefficient r, with d = 1 − r.
A heatmap was generated from the microRNA clusters using the
heatmap_2 function in the Bioconductor package Heatplus (expression
was scaled by rows) (Fig. 2B). There is a clear division between embry-
onic and postnatal microRNA samples. The embryonic time points form
a distinct cluster. P5 samples cluster close together, but the P15 samples
cluster with both P5 and P25.
Fig. 6.Gene regulatory network during parotid acinar cell differentiation. Regulatory network d
between each node are either activating (green arrow) or repressing (red lines). Beside each no
divided into three broad arms, on the right a pro-stemness arm, in the middle a genetic switch
2.2.6. Differential expression analysis

2.2.6.1. mRNA
Normalized Log2 values were used for analysis. One-way ANOVA

was used to identify differential expression of mRNA, with a false dis-
covery rate (FDR) correction to account for multiple tests [8]. A p-
value b0.05 was considered significant. An analysis of all nine time
points identified 2569 differentially expressed mRNAs [5]. Of these,
1763 genes have a net decrease in expression (from E18 to P25) and
794 have a net increase. Comparisonswere alsomade between adjacent
erived from the network analysis of differentially expressedmRNAs andmicroRNAs. Edges
de, a small graph depicts its relative expression across the time points. The network can be
that reduces repression of Xbp1, and a pro-differentiation arm on the left.
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time points by empirical Bayes t-tests using the Bioconductor package
limma [9](Table 1). At the early stages, relatively fewmRNAs are differ-
entially expressed (DE) between time points within a stage, with more
changes occurring between time points that span stages. The only ex-
ception being P20 vs. P25 which are in the same stage but also have a
high number of DE genes, indicating that additional inputs of regulation
occur in the adolescent pup.

2.2.6.2. microRNA
Normalized −ΔCT values were used for analysis of microRNA re-

sults. Differential expression was analyzed by one-way ANOVA and
also by FDR corrected empirical Bayes t-tests comparing pairs of time
points (Table 2). 64 unique differentially expressed microRNAs were
identified by empirical Bayes t-tests across all comparisons. The E20
vs. P25 comparison contained all significant DE miRNAs identified by
other comparisons. 52 microRNAs increased in expression while 12 de-
creased. These data are consistent with relatively gradual and relatively
linear changes of microRNA expression. This was further supported by
linear trend analysis of microRNAs (below).

2.2.7. Expression patterns and regression analysis

2.2.7.1. mRNA
Having nine time points ofmeasurements allows the identification of

dynamic and complex patterns of mRNA expression over time. Hierar-
chical clustering of the mRNA dataset indicated several patterns of ex-
pression (Fig. 2 in [5]). We extended this by the independent approach
of k-means clustering of the per-gene scaled expression data (function
kmeans in R package stats). The 2569 differentially expressed mRNAs
were separated into eight clusters (Fig. 3). Many mRNAs are either pro-
gressively increasing (cluster 2) or decreasing (clusters 1 and 7). Howev-
er, cluster 4 identifies a group of 137 genes that are transiently activated
midway through differentiation. This cluster contains the transcription
factor Pparg along with many of its downstream targets, due to which
gene ontology (GO) analysis shows significant (p ≤ 0.05) enrichment in
pathways related to adipogenesis and RXR signaling. Clusters 6 and 8
identified genes that were repressed (cluster 6) or activated (cluster
8) only during the last stage of differentiation (Fig. 3). In addition, regres-
sion analysis was used to identify genes that significantly fit into either
linear, quadratic, or cubic trends. The trends were then grouped into
clusters. Quadratic regression in particular was able to group a relatively
large number of genes (419) into dynamic expression patterns (Fig. 4).
This analysis also identified the group of transiently activated genes
that were found with the k-means clustering (Fig. 4, cluster 7). Regres-
sion also identified the group of genes activated only in the last stage
of differentiation (Fig. 4, cluster 6), which contains many parotid secret-
ed proteins, emphasizing that parotid differentiation is not a linear
process.

2.2.7.2. microRNA
Normalized expression values of microRNAs exhibiting a significant

linear trendwere clusteredusing hierarchical clustering (function hclust
in R package stats) and between 2 and 6 clusters were evaluated for va-
lidity using R package clValid [10]. Expression largely fit into only two
clusters: increasing expression or decreasing expression. Fig. 5 demon-
strates the cluster profiles for six clusters. None of themicroRNAs had a
significant quadratic trend.

2.2.8. Integration of mRNA and microRNA data

All differentially expressed microRNAs were used to identify
prospective target mRNAs by TargetScan Mouse 6.2 [11–13]. Well
conserved target sites were considered for further analysis by integrat-
ing mRNA and microRNA expression patterns. Inverse correlations
were calculated using the four time points in which both mRNA and
microRNA were measured (E20, P5, P15, and P25). Only expression
patterns for significantly differentially expressedmRNAs andmicroRNAs
were considered. For mRNA expression Log2 values were used and for
microRNA the −ΔCT. Expression of biological replicates at each time
point was averaged before correlations were calculated using the correl
function in Excel.

2.2.9. Network analysis

All differentially expressed mRNAs were uploaded into Metacore
(Thomson Reuters Inc., Carlsbad, CA). Markers of terminal differentia-
tion with increasing expression (i.e. PSP, amylase) were used as initial
nodes. The neighborhood around each of these nodes was explored
using the expand function to identify possible regulating factors. DE
genes in the neighborhood were kept for another round of expanding
only if their expression pattern over time was consistent with the re-
ported interaction (i.e., activating vs. repressing) and the pattern of
the target gene. The expand function was used iteratively until no fur-
ther DE genes were identified. microRNAs predicted to target any
nodes were incorporated into the network when their expression pat-
terns had an inverse correlation with the pattern of the target mRNA.
The resulting network (Fig. 6) can be divided into three arms: on the
right, pro-stemness factors such as Egr1 and Klf4 decrease as differenti-
ation proceeds, in the middle a genetic switch mediated by miR-200a
and miR-30a, Sox11, Prdm1, and Pax5 removes repression of the tran-
scription factor Xbp1, and on the left pro-acinar differentiation factors
stimulate the expression of terminal differentiation markers such as
PSP and Connexin32. Several of the proposed interactions in this net-
work were validated in vitro using luciferase assays [5].

3. Discussion

In this study, we present both mRNA andmicroRNA expression pro-
filing from high quality samples during acinar cell differentiation in the
parotid gland. Sampling multiple time points across in vivo differentia-
tion allows the identification of dynamic, and sometimes transient,
expression changes, which can facilitate our understanding of gene ex-
pression regulation during salivary gland development. The use of mul-
tiple time points is essential for integration of mRNA and microRNA
expression, allowing identification of mRNA:microRNA interactions
which are supported by in vivo changes of expression.
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