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Abstract: Machine learning techniques are widely used nowadays in the healthcare domain for the
diagnosis, prognosis, and treatment of diseases. These techniques have applications in the field of
hematopoietic cell transplantation (HCT), which is a potentially curative therapy for hematological
malignancies. Herein, a systematic review of the application of machine learning (ML) techniques
in the HCT setting was conducted. We examined the type of data streams included, specific ML
techniques used, and type of clinical outcomes measured. A systematic review of English articles
using PubMed, Scopus, Web of Science, and IEEE Xplore databases was performed. Search terms
included “hematopoietic cell transplantation (HCT),” “autologous HCT,” “allogeneic HCT,” “machine
learning,” and “artificial intelligence.” Only full-text studies reported between January 2015 and July
2020 were included. Data were extracted by two authors using predefined data fields. Following
PRISMA guidelines, a total of 242 studies were identified, of which 27 studies met the inclusion
criteria. These studies were sub-categorized into three broad topics and the type of ML techniques
used included ensemble learning (63%), regression (44%), Bayesian learning (30%), and support
vector machine (30%). The majority of studies examined models to predict HCT outcomes (e.g.,
survival, relapse, graft-versus-host disease). Clinical and genetic data were the most commonly
used predictors in the modeling process. Overall, this review provided a systematic review of ML
techniques applied in the context of HCT. The evidence is not sufficiently robust to determine the
optimal ML technique to use in the HCT setting and/or what minimal data variables are required.

Keywords: machine learning; artificial intelligence; sensors; mobile health; mHealth; hematopoietic
stem cell transplantation; HSCT

1. Introduction

1.1. Background: Machine Learning (ML)

Machine learning is an application of artificial intelligence (AI) that provides machines
the capability to automatically learn and improve from experience without being explicitly
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programmed [1,2]. It is a natural extension of traditional statistical approaches [3], focusing primarily
on predictions, automatically identifying patterns within data, and performing tasks beyond human
capabilities (i.e., classification of images) [4]. Applying machine learning (ML) algorithms on given
data include building a model (i.e., learning relationship between the data features and outcome),
then validating (i.e., tuning the model parameters) and testing the model (i.e., applying the tuned
model on a new testing dataset to make predictions and evaluations). The predictions improve
with more experience (i.e., training data). Some ML applications include autonomous vehicles [5],
automated detection of diabetic retinopathy on retina images [6], identification of skin lesions on skin
images [7], Google translate [8], and Facebook facial recognition [9]. Overall, the most important
component for applying ML algorithms is data, which must be abundant to build robust and generalized
predictive models.

An enormous amount of healthcare data is being generated nowadays from electronic health
record (EHR) systems that include medical diagnosis, prescriptions, lab test results, imaging data,
vital signs, and patient demographics. [10,11]. Multi-omics (e.g., genomics, proteomics) data further
enhance complexity. However, data analytics of these multidimensional data using ML techniques
potentially open avenues for early diagnosis, prognosis, as well as treatment of diseases [3]. Moreover,
such novel data analytics may inform clinical decision-making sooner and more efficiently in efforts to
prevent life-threating diseases.

1.2. Applying ML Techniques in the Context of Hematopoietic Stem Cell Transplantation (HSCT)

Hematopoietic stem cell transplantation (HSCT) [12] is a potent form of immunotherapy that
is used for treatment of various malignant and non-malignant hematological malignancies (e.g.,
leukemia, lymphoma, and multiple myeloma). Despite recent advances, HSCT remains a complex
procedure that includes high-dose chemotherapy followed by infusion of autologous stem cells or from
a related or unrelated human leukocyte antigen-matched (HLA-matched) donor (e.g., allogeneic) [13].
Hematopoietic stem cell transplantation recipients face numerous post-transplant related complications,
including life-threatening infections, graft-versus-host-disease (GVHD), and relapse or recurrence of
disease, which may lead to morbidity and mortality [14].

Machine learning techniques have the capability to extract patterns from large amounts of
complex data and build predictive models, to automate various tasks in the HSCT context, such as
selecting the appropriate donor for a HSCT recipient, identifying biomarkers for early diagnosis of
post-HSCT complications, and GVHD risk stratification modeling. However, there are challenges:
First, HSCT is a complex procedure that involves numerous post-transplant complications such that
selecting the appropriate ML technique is not straightforward. Second, the real-time data capture
of various post-HSCT complications as well as other clinical, demographic, and/or genomic data
variables for algorithm training and predictive modeling can be limited. Third, the captured data
are typically dispersed among various data stores (e.g., EHR, cloud storage, individually managed
databases), which require integration and standardization before ML algorithms can be applied. Lastly,
the evolution of disease states during HSCT further complicate the process of applying ML techniques
as predictive models may become obsolete at given time points.

There are several advantages of using ML techniques in HSCT, such as rapid and early diagnosis
of various post-HSCT diseases (e.g., GVHD), efficient donor selection, personalized patient care, and
reduced costs-of-care.

The motivation behind this manuscript was to better understand the existing use of ML applications
as well as provide research directions for potentially developing new data analytics techniques in
the field of HSCT. Thus, herein, we sought to systematically review the published literature of ML
techniques currently being applied in the HSCT setting. We specifically examined the type of data
streams included, specific ML techniques used, relevant predictors identified, and type of clinical
outcomes measured. Moreover, we discuss the current challenges in applying these existing ML
techniques in HSCT settings and provide future research directions to possibly tackle such challenges.
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The goal of this review is not to analyze ML techniques applied for all hematological malignancies, but
to specifically focus on recent work in pre-and post-HSCT settings, which has not yet been previously
reported in the literature, according to our knowledge. In doing so, we then conclude the review
with a current case study of an mHealth app (Roadmap 2.0) that incorporates wearable sensors to
highlight the current challenges in the field as well as propose potential novel ML techniques that
could be applied in analyzing the data output. Different supervised, unsupervised, and reinforcement
learning techniques used in the reviewed studies are shown in Supplementary Figure S1 and described
in Supplementary Table S1.

This review is organized according to the following sections: Section 2 (Methods) describes
existing methods used in the systematic review, and Section 3 (Results) presents the systematic review
findings. Section 4 (Discussion) discusses the reviewed methods, including current challenges and
future research directions. Section 5 (Case Study) describes a case study of a proposed mHealth
platform that addresses existing challenges and offers possible robust solutions. Finally, Section 6
(Conclusions) concludes the paper.

2. Methods

2.1. Search Strategy

We conducted a systematic review of articles written in English, using the following online
literature databases: PubMed, Scopus, Web of Science, and IEEE Xplore, following the Preferred
Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines [15]. The workflow
diagram for the systematic identification of scientific literature is shown in Figure 1 Search terms
included different combinations of keywords related to “HSCT” and “machine learning” joined by
Boolean operators “OR” (to combine the terms related to specific domain) and “AND” (to combine
the terms from different domains). A search query using the terms listed in Table 1 was used for the
retrieval of primary studies: The search was performed on July 2020 using the above search query.
It was targeted to retrieve recent articles from the last five years (January 2015–July 2020), identifying
current state-of-the-art ML techniques being applied in HSCT.

Table 1. Search query for the retrieval of studies.

(HSCT OR HCT OR GVHD OR acute GVHD OR aGVHD OR leukemia OR lymphoma OR autologous HCT
OR allogeneic HCT OR Hematopoietic Cell Transplantation OR Bone marrow transplant OR Hematopoietic

cell transplant OR Hematopoietic stem cell transplantation OR Graft-versus-host disease) AND (Machine
Learning OR Artificial Intelligence).

2.2. Study Selection

We started our search with the search query (Table 1) on the databases listed above. The title and
abstracts of the resulting studies were first screened to identify the studies related to ML applications
in HSCT settings. After identifying the eligible studies, additional inclusion-exclusion criteria were
applied to retrieve the primary studies of our review (details are provided in Figure 1).

Studies were eligible if they fulfilled the following inclusion criteria in our review: (1) focused on
ML techniques in HSCT (i.e., specifically on pre-and post-complications of HSCT); (2) written and
published in English; (3) published between January 2015 and July 2020; (4) full text available
rather than abstracts; (5) original studies published in peer-reviewed journals or appeared in
conference proceedings.

Studies were not eligible if they fulfilled the following exclusion criteria in our review: (1) review
articles rather than primary research; (2) conducted system analysis without incorporating ML
techniques for predicting post-HSCT complications; (3) used ML algorithms to diagnose specific
hematological malignancies; (4) used comparison and evaluation of prognostic score tools for
risk stratification models. The identified studies meeting the inclusion criteria were subsequently
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categorized into three broad categories based on major themes identified: (1) post-HSCT complications,
(2) pre-HSCT factors, and (3) predictive tools development.
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Figure 1. PRISMA Workflow for systematic identification of scientific literature.

2.3. Data Extraction and Evaluation

The data were extracted from all studies meeting our inclusion criteria for the review. It consists
of tables containing study information (e.g., authors’ name, title, year of study); type of data streams
included (e.g., clinical, genomic, physiological, other longitudinal data streams); sample size (e.g.,
number of participants); type of ML techniques used (e.g., ensemble, decision tree, SVM, regression
techniques); and clinical outcomes measured (e.g., risk prediction, survival, relapse) (Table 2). The data
for all studies were extracted independently by 2 authors (VG and SWC) by mutual agreement and
discrepancies were resolved by discussion with other authors (TB, MC, and MT). The extracted data
were finally evaluated by all authors independently.
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Table 2. A brief summary of reviewed studies.

Reference No. of Participants Data Streams Used Outcomes Best ML Technique Compared ML Techniques Major Theme Identified

Lu et al., 2019 [16] 637 Clinical, genomic &
demographics AML 2-years survival and relapse, mortality Att-BLSTM SVM, LR Post-HSCT complications

Fuse et al., 2019 [17] 217 Clinical Risk of Leukemia relapse after 1 year of
allo-HSCT - ADT Post-HSCT complications

Goswami et al., 2019 [18] 347 Clinical Relapse risk within 36 months of
autologous-HSCT - Stacked ML Post-HSCT complications

Ritari et al., 2018 [19] 161 Clinical & genomic
Genomic biomarkers for relapse risk of
various hematological malignancies for

allo-HSCT recipient
- RF Post-HSCT complications

Marino et al., 2016 [20] 2107 Clinical
High-risk amino acid substitutions and

position types for grade III-IV acute-GVHD,
TRM, disease free survival

- RF, LR Post-HSCT complications

ArabYarmohammadi et al.,
2020 [21]

39 Images Relapse risk in AML patients post-HSCT - Deep learning, LDA Post-HSCT complications

Krakow et al., 2017 [22] 9563 Clinical Adaptive treatment strategies - RL Post-HSCT complications

Liu et al., 2017 [23] 6021 Clinical Optimal Dynamic treatment regimes - Deep RL Post-HSCT complications

Shouval et al., 2016 [24] 26,266 Clinical NRM 100 days post HCT in acute leukemia - NB, ADT, LR, MLP, RF,
AdaBoost Post-HSCT complications

Shouval et al., 2015 [25] 28,236 Clinical Overall Mortality 100 days post-HSCT - ADT Post-HSCT complications

Tang et al., 2020 [26] 324 Clinical Grade II-IV acute-GVHD risk - L2 regularized LR Post-HSCT complications

Arai et al., 2019 [27] 26,695 Clinical grade II-IV & III-IV aGVHD risk ADT NB, MLP, RF, Ada- boost Post-HSCT complications

Kuang et al., 2019 [28] 28 Clinical & sensor Non-invasive biomarkers for acute-GVHD
diagnosis in mice - PCA, k-means Post-HSCT complications

Serrano-López et al., 2020 [29] 29 Genomic Gene biomarkers for
chronic-GVHD diagnosis - RF Post-HSCT complications

Sharifi et al., 2020 [30] 66 Images Differentiate among pulmonary
complications post-HSCT - k-means + SVM Post-HSCT complications

Gandelman et al., 2019 [31] 339 Clinical Classify patients with chronic-GVHD
according to organ scores - k-means Post-HSCT complications

Sharafeldin et al., 2020 [32] 277 Clinical, genomic &
demographics post-BMT cognitive impairment - ENR Post-HSCT complications

Cocho et al., 2015 [33] 36 Clinical & genomic Genomic biomarkers for GVHD associated
Dry eye SVM k-NN, SDA Post-HSCT complications

Leclerc et al., 2018 [34] 155 Clinical & biological initial cyclosporine dose blood
concentrations Post-HSCT BN NB, SVM, RF Others

Li et al., 2020 [35] 10,258 Clinical &
Demographics Donor availability BDT LR, SVM Pre-HSCT factors
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Table 2. Cont.

Reference No. of Participants Data Streams Used Outcomes Best ML Technique Compared ML Techniques Major Theme Identified

Sivasankaran et al., 2018 [36] Not clear
Demographics &
member related

factors
Donor availability GBM SVM, LR Pre-HSCT factors

Buturovic et al., 2018 [37] 1255 Clinical Selecting appropriate unrelated donor for
patients undergoing HSCT - SVM Pre-HSCT factors

Sivasankaran et al., 2015 [38] 3035 Clinical Selecting appropriate unrelated donor for
patients undergoing HSCT SVM k-NN, CART Pre-HSCT factors

Brasier et al., 2015 [39] 68 Clinical Detection of pre-HSCT infection in patients
undergoing chemotherapy GPS RF, CART, MARS Post-HSCT complications

Lee et al., 2018 [40] 9651 Clinical Grade II-IV agvhd risk or death within 100
days post-HSCT SL LR, BRT, MARS, BART, RR,

ENR, ANN
Predictive Tools

Development

Okamura, et al. 2020 [41] 363 Clinical 1-year overall survival, PFS, relapse,
and NRM - RSF Predictive Tools

Development

Leclerc et al., 2020 [42] 211 Clinical & biological Best first cyclosporine dose - BN Predictive Tools
Development

Abbreviated Terms: BDT: Boosted Decision Tree; LR: Logistic Regression; SVM: Support Vector Machine; HSCT: Hematopoietic stem cell transplantation; GVHD: Graft-versus-host-disease;
RF: Random Forest; AML: Acute Myeloid Leukemia; Att-BLSTM: Attention Bidirectional Long-short-term-memory; PCA: Principal Component Analysis; NRM: Non-relapse mortality;
NB: Naïve Bayes; MLP: Multilayer Perceptron; AdaBoost: Adaptive Boosting; GPS: Generalized Path Seeker; CART: Classification and Regression Tree; MARS: Multivariate Adaptive
Regression Spline; ADT: Alternating Decision Tree; ENR: Elastic Net Regression; BN: Bayesian Network; SL: Super Learner; GBM: Gradient Boosting Machine; BRT: Boosted Regression
Trees; BART: Bayesian Additive Regression Tree; RR: Ridge Regression; ANN: Artificial Neural Network; SDA: Shrinkage Discriminant Analysis; LDA: Linear Discriminant Analysis; RSF:
Random Survival Forest; SM: Stacked Model; PLR: Penalized Logistic Regression; k-NN: k-nearest Neighbor.
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3. Results

We identified 242 articles in the identification phase. Twenty-one duplicate articles were removed
to produce 221 articles for title and abstract screening. We further excluded 152 articles in the title
and abstract screening and accessed full text of remaining 69 articles for further evaluations in the
eligibility phase. Finally, 27 articles met our inclusion criteria and were considered as primary studies
for this review, as shown in Figure 1. Out of 27 primary studies, 18 were from PubMed, three from
Scopus, and six from other databases.

In terms of publication years, the application of ML techniques in the HSCT setting has steadily
increased in recent years. As shown in Figure 2, the number of studies published between 2018 and
2020 examining the application of ML techniques in HSCT contributed to 70% of the total studies with
only eight studies published before 2018. Notably, the number of studies published through July 2020
was greater than the total studies published during years 2016 and 2017.
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Figure 2. Distribution of studies by publication year.

We have broadly categorized the ML techniques into nine categories. Supplementary Figure S1
shows the taxonomy of ML techniques used in the reviewed studies. Each broad category contains a
specific subcategory of ML technique. The majority of studies fell under four broad ML categories:
ensemble learning (63%), regression (44%), Bayesian learning (30%), and support vector machines
(SVM) (30%). More details are provided in Supplementary Table S2 and Figure S2.

Clinical data (e.g., stem cell source, conditioning regimen, graft type, blood characteristics) was
the most frequently used data stream in the studies. Eighty-five percent of studies used clinical data
and the remaining 15% used other types of data streams. As shown in Table 2, out of 27 studies, 15 used
only clinical data, while the rest used clinical with genomic and biological data (eight), imaging data
(two), and other types of data (e.g., demographics, gene expression) (two). In terms of data sources,
registries were used in nine of the studies, five studies used other databases and EHR as data source,
six used the hospital data, while a data source was not found/clear in seven of the studies.

3.1. Major Themes Identified

Three major themes were identified: (1) post-HSCT complications; (2) pre-HSCT factors; and (3)
predictive tools development. These were further subcategorized based on clinical outcomes.
Post-HSCT complications comprised studies related to modeling the risk of survival/death, relapse,
and GVHD. Pre-HSCT factors and predictive tools development included tasks, such as the identification
of appropriate donors for HSCT, detection of pre-HSCT infections, and development of risk prediction
tools to facilitate personalized clinical care. Not surprisingly, more than half of the studies (19) were
categorized into post-HSCT complications, followed by pre-HSCT factors (five) and predictive tools
development (three).
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3.1.1. Post-HSCT Complications

Studies belonging to risk of death and relapse post-HSCT (12) were predominant compared with
studies related to risk stratification (two) and disease diagnosis (six). Research on death and relapse
prediction studies utilized different clinical, genomic, demographics and transplant features to first
build a predictive model from a training set and then apply to a validation/test set to predict the
likelihood of death and relapse in a pre-specified time duration (e.g., six months, 12 months, two years,
five years) post-HSCT.

Lu et al. [16] presented a deep learning approach (attention based bi-directional long short-term
memory [Att-BLSTM]), utilizing clinical and genomic features, in order to predict the likelihood of
relapse and survival/death in patients with acute myeloid leukemia (AML). For time- dependent
clinical and genomic features, they collected blood test results (e.g., complete blood count (CBC),
white blood count (WBC)), information about medications, and time of HSCT with relapse and gene
mutation. For static features, they considered demographics (e.g., age, gender) and cytogenetics
test at diagnosis. A total of 65 features were used for predictions. Best performance was achieved,
while predicting likelihood of death and relapse for the next 0–3 months. Another study [17] analyzed
data of 217 patients with acute leukemia to predict relapse within one year of HSCT using ADT.
However, major clinical and demographic factors considered here for building predictive model were
age, diagnosis (e.g., AML), rDRI (refined disease risk index) [43], donor type, graft source, use of total
body irradiation, and conditioning regimen. Goswami et al. [18] applied a stacked ML technique
to predict relapse within 36 months of autologous HSCT in patients with multiple myeloma (MM).
They applied spectral clustering [44] to cluster patients into low- and high-risk groups (i.e., relapse
within 36 months as high-risk otherwise low-risk) and then fast and frugal trees [45] to further calibrate
relapse risk groups.

There are some studies [19,20] that applied ML techniques to identify specific genes responsible
for relapse in patients undergoing HSCT. Ritari et al. [19] performed a genomic-wide-sequencing of
active immunoregulatory regions, whole exome, and MHC regions on 151 HSCT recipients with HLA
matched donors. They employed random forest classification model to identify the genetic variants
associated with the relapse risk. The results showed that germline genetic variations were highly
associated with relapse. Marino et al. [20] identified 19 amino acid substitutions associated with risk of
adverse outcomes following HSCT using ML techniques. The outcomes included incidence of grade
III-IV acute GVHD, disease-free survival, and overall survival. Random forest and logistic regression
models were constructed using donor-recipient clinical characteristics (e.g., recipient age, gender
match, type of disease, disease stage) and all candidate amino acid substitutions. None of the identified
substitutions were associated with high-risk outcomes when validated on an independent cohort.

Recently, Arab Yarmohammadi et al. [21] proposed an algorithm to detect post-HSCT relapse in
AML patients using automated image analysis. Bone marrow Wright–Giemsa aspirate slides were
collected from 39 AML patients and a deep learning algorithm was employed to segment myeloblasts
(i.e., a cell type in bone marrow to characterize AML). Shape and texture features were subsequently
extracted from the segmented blasts and feature selection algorithm were applied to generate top
features for the predictive model. Three predictive models were developed using random forest and
linear discriminant analysis to predict the likelihood of relapse across patients.

Some prior works [22,23] utilized reinforcement learning to improve the prevention and treatment
of acute and chronic GVHD. Krakow et al. [22] also used reinforcement learning to develop an adaptive
treatment strategy (ATS) for immunosuppressive management while treating acute GVHD that would
maximize disease-free survival two years post-HSCT. Liu et al. [23] used deep reinforcement learning
to accomplish three tasks: (1) treatment after transplant; (2) prevent GVHD; and (3) treatment of acute
and chronic GVHD. It comprised of a deep neural network for predicting the expert actions and a
deep reinforcement learning to choose actions and update Q-value estimates. The results provided
promising accuracy in predicting human expert decision and implementing reinforcement learning.
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Studies have also investigated the use of ML applications in prediction of death post-HSCT.
Shouval et al. [24] proposed an in-silico (i.e., iterative computerized simulations) AI based approach
for predicting non-relapse mortality (NRM) within 100 days post-HSCT and improving the prediction
accuracy affected by the quality of features, statistical methods, and population size, etc. This study
was a large-scale multi-center study with a total of 26,266 patients. Various ML algorithms were
applied, such as AdaBoost, Logistic Regression (LR), Random Forest (RF), Alternating decision tree
(ADT), and Naïve Bayes (NB). The stage of disease, type of donor, and conditioning regimen were the
major clinical variables identified for predicting the outcome. In another study [25], ADT was used for
predicting death within 100 days post-HSCT and focused on the prediction of leukemia-free survival,
NRM, and overall survival at two years.

Predicting the risk of post-HSCT complications (e.g., GVHD) using ML techniques was investigated
in some studies [26,27]. Tang et al. [26] examined 324 allogenic HSCT recipient data from the EHR using
penalized logistic regression to predict risk of grade II–IV acute GVHD. They utilized longitudinal vital
sign features (e.g., body temperature, heart rate, respiratory rate, diastolic and systolic blood pressure,
peripheral capillary oxygen saturation) along with patient demographics and donor and transplant
characteristics for building the predictive model. The investigators found that temperature, systolic
blood pressure and features representing longitudinal trends were the most significant features for
predicting risk of acute GVHD. Another study [27] developed a predictive model for predicting acute
GVHD (grades II–IV and III–IV), using ADT. Pre-transplant donor and recipient clinical characteristics
were used for the prediction model. Interestingly, using mouse model systems, Kuang et al. [28]
developed an early diagnostic model of acute GVHD. They analyzed continuous temperature profiles
using principal component analysis and k-means clustering and captured temperature differences
post-HSCT between mice that developed acute GVHD and those that did not. Their results suggested
that continuous body temperature may signal early acute GVHD.

Lopez et al. [29] used random forest to identify genes associated with the incidence of chronic
GVHD while Sharifi et al. [30] used unsupervised methods to distinguish pulmonary complications
post-HSCT. Gandelman et al. [31] also utilized unsupervised machine learning techniques for risk
stratification of chronic GVHD. They first converted multidimensional transplant recipient data into
two dimensions using vi stochastic neighbor embedding (viSNE), then applied a self-organizing maps
(SOM) algorithm for patient clustering based on organ scores. Risk scores were the computed for the
resulting clusters and overall survival was calculated for the identified risk groups of patients with
chronic GVHD. Sharafeldin et al. [32] identified genetic biomarkers to predict cognitive impairment
post-HSCT using elastic net regression. The authors built and compared three risk prediction models
using different set of variables (i.e., sociodemographic, clinical, and combined, including genetic
variables). Significant associations were identified between gene variants and cognitive impairment
post-HSCT. Gene signature was investigated by Cocho et al. [33] using ML techniques to diagnose
GVHD-dry eye. Shrinkage discriminant analysis, SVM and k-nearest neighbor algorithms were
used for gene signature identification that identified four genes with significant predictability of
GVHD-dry eye.

Leclerc et al. [34] proposed an ML approach to predict appropriate cyclosporine drug dosage
after pediatric HSCT to prevent acute GVHD. The authors employed a Bayesian learning model on
clinical and biological data collected from 155 pediatric patients. Their model identified the best dosing
regimen reaching therapeutic range after HSCT.

3.1.2. Pre-transplant Factors

Selecting an appropriate donor-recipient pair is challenging in HCT field. Overall, 30% of
patients in United states find HLA-matched sibling donors [46], while the remaining rely on public
registries to identify unrelated donors. An essential condition for an unrelated donor to be genetically
compatible for the recipient, is to match at least eight out of 10 of the recipient’s HLA alleles along
with other donor characteristics. Moreover, determining the availability of unrelated donors is also a
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key concern. Therefore, research has been done to automate the donor selection and availability tasks
using ML techniques [35–38]. A recent study by Li et al. [35] proposed an ML approach to predict
donors’ availability by considering five years of donor information as input variables and responses to
verification typing (VT) requests as outcome variables. VT requests consist of a set of tests to verify
the donor’s identity and concordance. The authors found that the boosted decision tree technique
performed well in predicting donor availability with an Area Under curve (AUC) of 0.826 compared
with other techniques (e.g., LR, SVM). In another study [36], the authors proposed an ML approach to
predict the availability of registered donors and found that donor availability could be determined by
using demographics and non-genetic factors.

For donor selection algorithms, some studies [37,38] utilized SVM for building a predictive model
to identify appropriate unrelated donors. Buturovic et al. [37] developed a model to prioritize
donors as preferred or not preferred based on the five-year survival status of their recipient,
while Sivasankaran et al. [38] developed a model to select optimal HLA-matched donors based
on donor characteristics and historical choice behavior. However, the authors in [37] were unsuccessful
in predicting the unrelated donor. Finally, Brasier et al. [39] utilized ML techniques for diagnosis of
pre-HSCT infections (i.e., Aspergillus) in immunocompromised patients undergoing chemotherapy.
They utilized the ensemble algorithm generalized path seeker for identifying molecular biomarkers
that correlated with infection.

3.1.3. Predictive Tools Development

Few studies [40–42] were identified regarding AI based tools to facilitate decision-making and
personalized treatment. Lee et al. [40] developed a risk prediction tool using super learner technique to
predict risk of grade III-IV acute GVHD. They considered two binary outcomes: (1) diagnosis of grade
III-IV acute-GVHD within 100 days post-HSCT; and (2) composite outcome considering both whether
the patient developed acute-GVHD or died within 100 days post-HSCT. The tool was validated in
9651 patients who underwent unrelated donor HSCT. Okamura et al. [41] developed a web application
tool for personalized prognosis prediction post-HSCT using an ensemble algorithm (random survival
forest). Their tool provided functionalities to plot the prognosis prediction curves for one-year overall
survival, progression-free survival, relapse, and NRM, by using patient-specific pre-transplant factors
that can be adjusted according to the patients’ characteristics. Leclerc et al. [42] developed a decision
support tool to predict optimal cyclosporine drug dosing, which is a major immunosuppressant for
preventing GVHD. Authors utilized Bayesian networks for building predictive models.

4. Discussion

Herein, we systematically reviewed ML techniques currently being applied in the HSCT setting.
The findings suggest a remarkable increase in its application over recent years. This is likely due to
multiple factors, including advances in technology, such as better computing and storage capabilities
(e.g., cloud computing), broad-scale implementation of EHRs, adoption of smart technologies (e.g.,
wearable sensor technologies, mobile health platforms (mHealth)), and emergence of more powerful
and automated ML techniques (e.g., deep learning, stream learning). Additionally, the results indicate
that the majority of ML applications were related to post-HSCT complications, such as risk prediction
of survival/death and relapse in patients undergoing HSCT or of post-HSCT complications (e.g.,
acute/chronic GVHD, infections) (Table 2). Clinical and genetic data were the most commonly used
predictors in the primary studies since these data were largely associated with clinical HSCT outcomes.

SVM, RF, BN, ADT, and LR were the most commonly used ML techniques in the published HSCT
studies. SVM was used for its robustness to noise and high dimensional data. SVM performed the best
in two studies where it was used for selecting an appropriate donor for the HSCT recipient [36,37].
Donor selection is challenging due to highly imbalanced data, which can be handled by cost sensitive
SVM, as in [38]. However, one of the major drawbacks of SVM is its “black-box” nature due to
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its generated model that cannot be interpreted easily by clinicians, possibly reducing the clinical
applicability of SVM.

Our review found that the RF technique was the only technique used in two of the studies for
identifying significant genes associated with HSCT outcome [19,29]. Random forest can potentially
reduce overfitting and generate an accurate model. This technique can also rank features based on
relevance to the outcome. Thus, enabling one to rank highly significant genes associated with the
HSCT outcome. However, drawbacks of RF include complexity, including interpretability of the
findings. Interestingly, we found that BN was used in two studies where they were used to predict
optimal cyclosporine drug dosing to prevent GVHD [34,42]. The unique ability of BN to encode
domain knowledge and consider various variability factors make them attractive in the HSCT setting.
However, the requirement of discretizing input variables could be a major drawback. ADT technique
was used in four of the reviewed studies where it was used primarily to predict survival/death and
relapse post-HSCT [17,24,25,27]. ADT outperformed RF model in one study [16,20,24,26,35,36,40].
Finally, logistic regression was used in six of the primary studies as a comparator technique, but it did
not outperform any of the other ML techniques.

Some of the other best performing ML techniques used in the primary studies were BDT, GBM,
Att-BLSTM, SL, and generalized path seeker (GPS). All of these models belong to ensemble category,
which combines multiple models to improve performance, reduces overfitting, and eases the modeling
of high-dimensional datasets. However, longer training times and non-interpretability limit these
models in clinical settings. Overall, evidence is not sufficiently robust to determine the optimal ML
technique to use in the HSCT setting. Importantly, due to dynamic characteristics unique to each study,
it remains challenging to identify an optimal ML technique that can be applied robustly across all
conditions. However, our results suggest that ADT technique could be useful in the field of HSCT due
to their interpretability which is crucial in the clinical settings as shown in primary studies [17,24,25,27].
The findings were generalizable, robust, and clinically relevant.

Our review suggests that despite the increase in ML techniques applied to HSCT studies in recent
years, challenges remain with major gaps in the literature that need to be addressed. In doing so,
there is exciting opportunity to develop and apply novel analytics in the field. Table 3 highlights
some of these challenges, which may potentially lead to future research directions that address these
challenges and Table 4 discusses the summary of limitations identified in the reviewed studies with
the potential solutions to overcome those limitations.

Table 3. Summary of challenges in applying ML techniques in HSCT.

Challenges Reasons Potential Solution

Limited Data Capture

� Complex HSCT procedure with numerous
post-transplant complications

� Lack of continuous and real-time capture of
various data streams involved

� Mix of automated and manual data capture

� Utilize wearable sensor devices
or leverage mHealth platforms
for robust data collection

Data Quality Issues

� Lot of missingness and inconsistencies due
to complex data collection procedures

� Loss of important variables lead to loss of
relevant information

� Developing autonomous,
adaptive, and online
preprocessing algorithms that
can automatically capture the
data quality issues and resolve
them by employing appropriate
techniques in real-time
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Table 3. Cont.

Challenges Reasons Potential Solution

High Dimensional Data
� Large number of clinical and/or genomic

variables associated with the
HSCT outcome

� Developing novel streaming
dimension reduction techniques
for efficient processing of large
number of features associated
with the HSCT outcome

Data Privacy Issues

� Large amount of sensitive patient data is
required in building predictive models due
to numerous factors involved

� Combining multiple data streams from
disperse data stores leads to potential data
privacy issues

� Developing appropriate privacy
measures, such as data
anonymization techniques to
ensure complete privacy of
patients’ data

� Using technique such as
“federated learning” [47] that
trains a shared global model via
a centralized aggregation server,
while keeping sensitive data in
local institutions of their origin

� Enabling some form of privacy
access control to different data
streams that can ensure that only
those with proper authorization
can access a patient’s
data streams

Obsolete Predictive Models
� Dynamic evolution of disease states in

patients undergoing HSCT

� Developing adaptive ML
techniques having capability of
detecting data changes over time
and adapting accordingly

Diverse Data Types
� Captured data are of different modalities

and sampled at different rates

� Multi-modal data integration
techniques using deep learning
has to be developed for
effective integration

Data Integration issues

� Most of the captured data are typically
dispersed among various data stores (e.g.,
cloud storage, EHR,
individually-managed databases)

� Using mHealth platforms could
be a potential solution.

Table 4. Summary of limitations of reviewed studies.

Limitations Consequences Potential Solution

Lack of interpretable predictive models

� Biased results
� Lack of generalizable models
� Non-applicability to clinical

decision making

� Development or application of more
interpretable ML techniques such as
ADT in HSCT setting

� Utilizing methods such as shapely
additive explanations (SHAP) [48]
and Local Interpretable
Model-Agnostic Explanations
(LIME) [49] for
better interpretability

� Better data visualization techniques

Lack of model validation
� Leads to

non-generalizable models

� Use of validation sets to check initial
errors of the built model and
calibrate the model further before
applying it to test sets
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Table 4. Cont.

Limitations Consequences Potential Solution

Smaller sample size
� Biased results
� Not clinically relevant model

� Larger representative sample has to
be used for applying ML techniques
to produce robust, scalable and
unbiased results

Lack of multi-center studies
� Leads to

non-generalizable models

� Registries having multicenter data
from heterogeneous set of patients
has to be used in the studies

Lack of diverse data streams used
� Leads to

non-generalizable models

� Studies with diverse data streams
are required that could potentially
help in providing personalized
healthcare solutions

Importantly, our systematic review identified a gap in application of ML techniques in mHealth
platforms along with wearable sensors technology. To our knowledge, using the search terms listed in
Table 1, there were no published studies that examined multi-parameter data streams (e.g., clinical,
genomic, psychosocial, physiological) using new or emerging ML techniques. Thus, based on the
compiled evidence-based literature, we present a case study for a proposed mHealth platform (Roadmap
2.0) that could address some of the major challenges discussed above, which hints toward a potential
robust solution. Limitations of our review process may have included restriction to original research
published in English language as well as the reporting period (2015–2020).

5. Case Study: Roadmap 2.0

“Roadmap 2.0” is an mHealth platform designed for real-time capture of large volumes of
wearable sensor data (e.g., heart rate, sleep, activity/steps) through a Fitbit API (https://dev.fitbit.
com/build/reference/web-api/), longitudinal health outcome measures (e.g., survey questionnaires
[patient-reported outcomes, PROs], EHR data variables), and interaction with a multi-component
app, including positive psychology-based exercises (https://roadmap.study/). This study is registered
on ClinicalTrials.gov (NCT040984844). In the proposed clinical trial [50], large, multi-parameter
data streams will be generated, utilizing clinical, physiological, psychosocial, demographics, EHR
datasets. For example, clinical data will consist of patient biological variables (e.g., age, gender,
race/ethnicity), demographics (e.g., marital status, education, employment), health variables (e.g.,
comorbidities), disease variables (e.g., disease, disease risk); PRO data will collect health-related quality
of life (HRQOL) information from questionnaires; sensor data will collect physiological information
(e.g., sleep, activity/steps, heart rate). These data streams will be captured and stored in secure
HIPAA-compliant servers where initial exploratory analyses will be performed, including descriptive
statistical summary of clinical data variables, scoring of PROs according to manuals, classical biostatical
techniques that assess patient outcomes (e.g., Kaplan–Meier survival [51] outcomes, Fine and Grey [52]
competing risks of GVHD/relapse), and searching motifs in physiological data streams. Qualitative
data of HSCT semi-structured interviews will also be generated in efforts to identify themes or patterns
of patient views and perspectives.

Data analytics could include signal processing and supervised ML techniques. A single high
dimensional feature vector will be generated by combining the PRO scoring, statistical summaries,
and Motif search features in the feature extraction part of the data analytics pipeline. These features
will act as an input to potential ML techniques applied. These ML techniques could be considered
depending on the following cases: (1) perform analytics on the collected data at a later time point;
(2) continuously perform real-time analytics on the collected data and learn from the data; (3) perform
analytics efficiently to save resources and processing time. For each of the mentioned cases, the type of

https://dev.fitbit.com/build/reference/web-api/
https://dev.fitbit.com/build/reference/web-api/
https://roadmap.study/
ClinicalTrials.gov
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ML technique as well as its application will be different. In the first case, four ML techniques could
be considered: (1) penalized LR; (2) linear SVM; (3) boosted trees; and/or (4) RF due to their large
applicability in HSCT settings, as shown in this review. Additionally, these techniques are suitable
in batch scenarios where predictive models are built on the assumption of static data distribution
and model update frequency is longer. Moreover, there are no limits on processing time to produce
results. However, in the second case, since data will require continuous processing (i.e., real-time or
near real-time), results will need to be generated faster. In this case, the ML technique should process
data in real-time, track dynamic changes in data distribution and update the model accordingly. Thus,
online/incremental learning algorithm, such as NB, Hoeffding trees [53], LR with stochastic gradient
descent [54] and OzaBoost [55] could be used. For the third case, online learning algorithms and
distributed stream analytics platforms, such as Apache Spark [56], Storm [57], and Flink [58] could be
useful since large amount of data can be processed in minimal time and memory. Moreover, distributed
platforms may be useful as the number of individuals using mHealth platforms, like Roadmap 2.0,
will likely continue to rise.

A general analytics workflow (Figure 3) with the mHealth platform, Roadmap 2.0, could begin
with the division of the dataset into training and testing sets (80/20) with cross validation for
parameter-tuning. An appropriate ML technique will be applied on the training set based on the above
three cases, and the trained model can then be applied to the test set for classification of patients with
unseen labels. Finally, the model will be evaluated by computing area under curve (AUC). Moreover,
feature importance will be calculated to identify features most responsible for the given outcome.
This framework may address some of the major challenges identified in this review. Firstly, it provides
a continuous data capture using wearable sensors (e.g., Fitbit), which alleviates the limited data
capture issue. Secondly, it provides a secure comprehensive data store (i.e., secure HIPPA compliant
repositories) of longitudinal, multi-parameter data that may facilitate real-time data access. Thirdly,
identifying patterns in high-dimensional, multivariate time-series may further enable capture and
real-time analyses of large clinical data. A supervised learning algorithm will be used, similar to the
approaches described in the primary studies of this review.
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Figure 3. Schematic workflow of Roadmap 2.0. Firstly, (a) large volumes of wearable sensor (i.e., Fitbit)
data stream (e.g., heart rate, sleep, activity/steps), Electronic health Records and physiological data
streams will be captured in real-time in mHealth platform Roadmap 2.0. The captured multi-parameter
data streams (b) will be stored in secure HIPPA compliant server. It will contain multivariate
physiological signals and patient reported outcomes data (generated from patients’ response of survey
questionnaires). (c) The stored data will be processed in data analytics pipeline. Here, firstly features
will be extracted from all diverse types of data and then machine learning algorithms will be used to
build a predictive model. This model will be applied to test set for predictions on the unseen data.
Finally, the predictive model will be evaluated using AUC. Also, feature importance will be computed.
(d) The final results will be stored in the secure server.
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6. Conclusions

We conducted a systematic review of ML techniques in the HSCT setting. In recent years, there has
been increasing interest in the application of ML techniques in healthcare. The majority of studies used
supervised ML techniques (e.g., ensemble learning), related to post-HSCT complications, but were
limited by small numbers of patients. None of the studies provided robust evidence to determine an
optimal ML technique for HSCT or minimal number of variables required to build predictive models.
However, our results suggest that ADT could be applicable in HSCT setting due to their interpretability.
Our findings suggest possible improvement by selecting a larger sample size, evaluation measures,
and modelling validation sets. Our review did not identify any published studies incorporating ML
applications for wearable sensors or mHealth platforms. The described Roadmap 2.0 case study
showed there may be potential for such technologies to address certain limitations in healthcare
through longitudinal monitoring of patients. This review provides a current-state-of-the-art application
of ML techniques in the healthcare domain, particularly HSCT, discusses current challenges, provides
potential future research directions, and presents a case study to address challenges through technology.
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ML Machine Learning
AI Artificial intelligence
GVHD Graft-versus-host-disease
ATS Adaptive treatment strategies
HSCT Hematopoietic stem cell transplantation
HLA human leukocyte antigen
SVM Support vector Machines
EHR Electronic health record
mHealth Mobile health
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
LR Logistic Regression
RF Random Forest
PCA Principal Component Analysis
BLSTM Bidirectional Long-short-term-memory
ADT Alternating Decision Tree
NB Naïve Bayes
MLP Multiplayer perceptron
RL Reinforcement Learning
CART Classification and Regression Trees
BRT Boosted Regression Trees
SR Spline regression
BART Bayesian additive regression trees
NN Neural networks
k-NN k-nearest neighbor
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LDA Linear Discriminant analysis
SDA Shrinkage Discriminant analysis
RSF Random survival Forest
BN Bayesian Network
GBM Gradient Boosting Machines
DT Decision Tree
BL Bayesian Learners
EL Ensemble learners
AML Acute Myeloid Leukemia
CBC Complete blood count
WBC White blood clount
rDRI refined disease risk index
MM multiple myeloma
NRM Non-relapse mortality
SOM Self-organizing map
GVHD-DE Graft-versus-host-disease- dry eye
VT Verification Typing
BDT Boosted decision Trees
AUC Area under curve
GPS Generalized path seeker
API Application programming Interface
PRO Patient reported outcome
HRQOL Health related quality of life
HIPPA Health Insurance Portability and Accountability Act
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