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Abstract

We propose a new method for the classification task of distinguishing atrial fibrillation
(AFib) from regular atrial tachycardias including atrial flutter (AFlu) based on a surface
electrocardiogram (ECG). Recently, many approaches for an automatic classification of
cardiac arrhythmia were proposed and to our knowledge none of them can distinguish
between these two. We discuss reasons why deep learning may not yield satisfactory
results for this task. We generate new and clinically interpretable features using mathe-
matical optimization for subsequent use within a machine learning (ML) model. These
features are generated from the same input data by solving an additional regression prob-
lem with complicated combinatorial substructures. The resultant can be seen as a novel
machine learning model that incorporates expert knowledge on the pathophysiology of
atrial flutter. Our approach achieves an unprecedented accuracy of 82.84% and an area
under the receiver operating characteristic (ROC) curve of 0.9, which classifies as “excel-
lent” according to the classification indicator of diagnostic tests. One additional advantage
of our approach is the inherent interpretability of the classification results. Our features
give insight into a possibly occurring multilevel atrioventricular blocking mechanism,
which may improve treatment decisions beyond the classification itself. Our research ide-
ally complements existing textbook cardiac arrhythmia classification methods, which can-
not provide a classification for the important case of AFib—AFIlu. The main contribution is
the successful use of a novel mathematical model for multilevel atrioventricular block and
optimization-driven inverse simulation to enhance machine learning for classification of
the arguably most difficult cases in cardiac arrhythmia. A tailored Branch-and-Bound
algorithm was implemented for the domain knowledge part, while standard algorithms
such as Adam could be used for training.
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Introduction
Automatic classification of cardiac arrhythmias

The recent success of ML algorithms to classify cardiac arrhythmias is impressive [1]. However,
the authors of this survey state: “A known limitation of current ML methods is that it is challeng-
ing to understand the rationale behind their results. The algorithms are not able to provide expla-
nations for the pathophysiological basis of classification outcomes, as they are unable to reveal the
functional dependencies between data inputs and classes.” We agree with this point of view. For
example, it is usually not clear if the classification results [2-5] were due to heart rate variabil-
ity, the particular shape of the electrocardiogram (ECG) curve (including low voltage flutter
waves that correspond to atrial polarizations), or a mix of both. Wavelets have been used to
extract features automatically [6], but this approach is limited to easy classification cases and
does not directly provide physiologically interpretable features. Usually, parameters such as
atrial cycle length are not provided, although they may be relevant for treatment decisions [7].

Moreover, none of the surveyed studies addressed the especially difficult case of atrial fibril-
lation (AFib) versus regular atrial arrhythmias including atrial flutter and focal atrial tachycar-
dias with irregular ventricular response (AFlu), summarized as AFib«< AFlu hereafter. It is
either completely omitted as in [6], which focuses on the classification classes normal beat, left
bundle branch block beat, right bundle branch block beat, atrial premature beat, paced beat,
and premature ventricular contraction, or both physiological cases are grouped together in
deep learning (“The atrial fibrillation class combined atrial fibrillation and atrial flutter” [3])
and algorithms based on heart rate variability for smartwatches [8]. Studies that explicitly
address “detection of AFib” in the title [9-11] can only detect the grouped class of irregular
ventricular response which may either be due to AFib or to AFlu. The reason for this is that
the special case AFib«— AFlu is difficult. The typically available data, a surface ECG or a time
series of heart beats, look very similar in both cases to most laymen, physicians, and computer-
ized algorithms alike. High rates of misdiagnosis and possible causes have been reported [12-
14]. This is concerning, as different treatments (often antiarrhythmics in AFib versus a highly
successful ablation therapy in AFlu) are implied by the diagnosis [15]. Diagnosing atypical
forms of AFlu is becoming increasingly important in clinical practice due to complications of
left atrial ablation procedures [16]. See Scholz et al. (“Discriminating atrial flutter from atrial
fibrillation using a multilevel model of atrioventricular conduction”) [17] for a more detailed
discussion. The poor quality of expert opinion due to the difficult discrimination poses a chal-
lenge to automated classification by supervised ML, which often uses it for labeling training
samples [3-5]. We used an expert analysis based on intracardiac measurements, which is only
available with invasive procedures, as our gold standard.

Interestingly, the case AFib« AFlu seems to be difficult for deep learning approaches. As
stated before, the differentiation between AFib and AFlu has been avoided in Hannun et al.
(“Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms
using a deep neural network”) [3], where a deep convolutional net with 34 layers was trained
using 91232 singe-lead ECGs. Moreover, our results show poor performance of neural-net-
work-based approaches. We conjecture that this is due to the non-continuous nature of the
underlying process, which contrasts to the approximation properties of deep neural networks
and the relatively small size of the training set.

Complementing previous work in automatic arrhythmia classification

Fig 1 visualizes our workflow. Deep learning (DL) can robustly distinguish samples of either
AFib or AFlu from sinus rhythm and twelve cardiac arrhythmias [3] with high accuracy. Other
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Fig 1. Visualization of our workflow from surface ECG to decision support for treatment. We focus on phases 1
(generation of physiologically interpretable features) and 2 (using them for AFib«AFlu classification), thus assuming
a pre-classification of all samples.

https://doi.org/10.1371/journal.pone.0261571.g001

studies achieved similar results [6, 9-11]. For a survey on general ECG-based automatic
arrhythmia classification, see Luz et al. (“ECG-based heartbeat classification for arrhythmia
detection: A survey”) [18].

As a reliable pre-classification (Phase 0) can thus be achieved, we focus here on Phase 1
(generation of physiologically interpretable features) and Phase 2 (using them for AFib«<>AFlu
classification). In the following, we assume that it has been verified that only either AFib or
AFlu is present, which is also true for our gold standard data set (expert classification of intra-
cardiac measurements that are only available after invasive procedures).

We propose to extend and complement the mentioned approaches with generated fea-
tures based on a pathophysiological rationale allowing classification of AFib«AFlu. Thus,
our approach is not an alternative to previous work of automatic classification, but is rather
complementary to it. In previous works, neural networks were trained with genetic algo-
rithms [6] or with tailored stochastic gradient methods [3]. Our approach differs as it uses
optimization in two different phases. In Phase 1, features are generated solving mixed-inte-
ger optimization problems. In Phase 2, an automatic classification is calculated using opti-
mization. This approach is very modular and any classification algorithm can be applied in
Phase 2.

PLOS ONE | https://doi.org/10.1371/journal.pone.0261571 December 23, 2021 3/22


https://doi.org/10.1371/journal.pone.0261571.g001
https://doi.org/10.1371/journal.pone.0261571

PLOS ONE

Expert-enhanced machine learning for cardiac arrhythmia classification

Feature generation and hybrid modeling

Feature construction has a long history, with early work dating back to the 1960s [19]. Since
then, there has been a plethora of feature generation methods, such as polynomial [20], discre-
tization [21, 22], normalization [23], or grouping operations involving min, max, averaging,
etc. The current state-of-the-art in feature construction methods suffer from three main draw-
backs: exponential explosion of the feature space, difficulty to embed domain knowledge, and
loss of interpretability. While the first drawback can be mitigated by feature selection methods,
which themselves can be based on machine learning technology [24], the difficulty to embed
domain knowledge and to interpret the automatically generated and selected features still
remains. Our proposed feature generation overcomes the three drawbacks. Because it is based
on the idea to embed domain knowledge (distilled into a mathematical optimization model),
the generated features provide insightful interpretation to experienced medical practitioners.
in addition, exponential explosion of the feature set is not an issue because only a few addi-
tional real-valued features need to be added.

As our feature generation procedure uses only the input data (RR interval times) and is
based on optimization, the whole procedure can be seen as a completely novel machine learn-
ing model, with a nested hybrid structure. The outer level contains a classical ML part such as
a support vector machine (SVM), and at the inner level an inverse simulation domain knowl-
edge model. The optimization on the outer level interacts with the results of the optimization
at the inner level.

Combining machine learning models with domain knowledge is an active and promising
field of research, e.g., [25, 26]. A survey on how first principle models can be combined in dif-
ferent ways with generic machine learning models is given in Bikmukhametov et al. (“Combin-
ing machine learning and process engineering physics towards enhanced accuracy and
explainability of data-driven models”) [27] in the context of process engineering systems. One
way is to replace uncertain parts in differential equations with neural nets using the concept of
universal differential equations [28]. ML can also be applied to make the solution of differen-
tial equations more efficient [29]. The alternative is to develop and use physics-informed or
biology-informed machine learning approaches [30-34]. The general idea is to design ML
models such that important physical properties like conservation laws are automatically ful-
filled. This promising line of research is often linked to the simulation of complex flows. A
physics-informed neural network was applied to noisy clinical data in Kissas et al. (“Machine
learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive
4D flow MRI data using physics-informed neural networks”) [35]. Here, arterial pressure was
predicted from MRI data of blood velocity and wall displacement. Common results of these
studies show that by combining physics-based and machine learning models it is possible to
improve the performance of the purely black-box ML models making them more transparent
and interpretable.

The mathematical model develop and applied in this study can be seen as a simplification
of first-principle models for electrical conductivity in the heart, such as the Hodgkin-Huxley
equations [36]. In this sense, our approach can also be interpreted as a biology-informed
machine learning approach. See Villaverde et al. (“Structural Properties of Dynamic Systems
Biology Models: Identifiability, Reachability, and Initial Conditions”) [37] for a survey of sys-
tems biology models and important properties.

Summary of our approach

The most important building block in Phase 1 is the inclusion of medical expert knowledge. It
was unclear for a long time which role the atrioventricular (AV) node played in the transfer of
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fast but regular activations of the atrial chambers into irregular activations of the ventricular
chambers. As Douglas P. Zipes stated in 2000, the AV node is still “a riddle wrapped in a mys-
tery inside an enigma” [38]. Key to solving this riddle is the idea of a multilevel AV block
(MAVB) [39-43]. The tedious procedure of manually adjusting possible MAVB combinations
has been successfully automated in the algorithm HEAT (Heidelberg Electrocardiogram Anal-
ysis Tool, [17]). The underlying hypothesis is that fast but regular activations of the atrial
chambers result in irregular responses of the ventricles because of a multilevel succession of
simple blocks of Type I or II. We considered atrial cycle length, blocktype, a vector of block-
type-specific internal offset counters and conduction constants as optimization variables. For
different values of these variables, forward simulation of ventricular responses (RR interval
lengths) is possible, which can be compared to given RR measurements. A penalization of the
difference in an appropriate metric gives a suitable objective function. In an inverse simula-
tion, HEAT can calculate optimal solutions resulting in the smallest deviations for each train-
ing sample. The combination of a mathematical model and optimization algorithm could be
seen as an interpretable expert system. The basic idea of using a mathematical model and
inverse simulation for AFib« AFlu classification has been published before in [17]. We report
a significantly matured approach with a larger (4x) data set which allows for a systematic
cross-validation, an improved mathematical model of MAVB with a better pathophysiological
interpretation, a computational speed up to 5000x, and an increased accuracy (the area under
the ROC of 0.9 in [17] was not cross-validated). Most importantly, for the first time we use
HEAT for multi-dimensional ML feature generation and show the advantages of using clinical
domain knowledge. The general approach to use domain knowledge plus combinatorial opti-
mization for feature generation may overcome intrinsic approximation limits of deep learning
for difficult-to-label and non-smooth systems that often occur in medicine and biology [44-
47].

Structure of this paper

The paper is structured per PLOS One guidelines. In Section Methods we describe our
machine learning approach and data. In particular, we explain a mathematical model that is
used as domain knowledge to describe AFlu and derived features. In Section Results we pres-
ent numerical results showing that the proposed approach reaches an unprecedented accuracy,
while a direct use of neural networks perform poorly on the data. In Section Discussion we dis-
cuss these results in several directions: approximation properties of machine learning as a pos-
sible explanation, accuracy and impact, interpretability, and transfer to other clinical domains.
Concluding remarks are given in Section Conclusions.

Methods
Multilevel atrioventricular block (MAVB)

We developed a mathematical model for MAVB based on the following rationale. In physiol-
ogy, refractoriness specifies the time period in which a cell is incapable of repeating a certain
action. Applied to any component in the cardiac conduction system, the absolute refractory
period (ARP) describes the duration in which a cell cannot be stimulated under any circum-
stances. The relative refractory period (RRP) describes the duration in which the cells can be
stimulated under certain conditions, but may react with a modified conduction [48]. Depend-
ing on incoming signal and RRP, a block ratio of # + 1: n can occur, where n+ 1 is the number
of incoming signals, and # the number of conducted signals. This ratio may vary due to
changes in cell fatigue or in the frequency of the incoming signals, even on short time hori-
zons. For larger values of n the conduction times may change as well.
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Fig 2. Visualization of our inverse simulation approach applied to samples of atrial flutter (AFlu, left, regular intracardiac measurement) versus
atrial fibrillation (AFib, right, irregular intracardiac measurement) based on the surface electrocardiogram (ECG, bottom). In this example, a
two-level atrioventricular (AV) block was calculated for both samples.

https://doi.org/10.1371/journal.pone.0261571.9002

Reviewing the physiology of the AV node, we considered it as a series of cell compounds in
which a signal may potentially be blocked. Hence, the outgoing signal of block level I becomes
the incoming signal of block level I (see Fig 2).

Classifying atrial flutter with irregular ventricular response (AFlu, left) versus atrial fibrilla-
tion (AFib, right) based on the surface electrocardiogram (ECG, bottom) is difficult for experts
and algorithms. If intracardiac measurements were available after invasive procedures, like in
our data set, the classification would be easier, allowing the measurements to be used as a gold
standard for training of machine learning models and for a-posteriori analysis. The input data
of the feature generation, the measured ventricular (V) signals (rawRR), were extracted from
the surface ECG. For both samples, a two-level atrioventricular (AV) block was calculated
such that the model parameter Ag, the cycle length in the atrial chambers (A), is regular and
the forward simulation in V is close to rawRR. We hypothesized that a small deviation (left)
can be interpreted as a high likelihood for regular behavior (AFlu), and a large deviation
(right) for chaotic behavior which cannot be explained well by the model (AFib). Comparing
bottom zooms in Fig 2, cf. Scholz2014, it visually confirmes that for AFlu the calculated Aa cor-
responds well to the intracardiac measurements.

This theoretical concept allows to combine different blocking ratios n + 1: # on an unlim-
ited number of levels. Possibly varying and linearly changing conduction times due to RRP are
denoted as Type I. Sensibly, the number of possible combinations should be limited to avoid
overfitting, reduce computational time, and stay close to clinical observations. We restricted
our MAVB model to the five combinations shown in Fig 3 with a maximum of three block lev-
els, consistent with cases described in recent publications.

The resulting mathematical model is a combination of most different classical and
advanced block types, particularly, typical Type I block [49-51], atypical Type I block [50, 52],
the special cases of 2:1 and 3:2 Type I blocks, Type II block [53-56], advanced second-degree
AV Block [57, 58], and MAVB [39-43]. Invoking Occam’s razor, this unified model also allows
an efficient calculation of the most likely block for given RR data.
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MAVB 1 MAVB 2a MAVB 2b MAVB 2c MAVB 3

AV 1 2:1 2:1/3:2 2:1/3:2
1 I I I

AV 2 Type I Type I Type I 1:1/2:1 1:1/2:1
l I I

AV 3 2:1 1:1/2:1

Fig 3. The five considered blocktypes, having up to three multilevel atrioventricular block (MAVB) levels.
https://doi.org/10.1371/journal.pone.0261571.9003

HEAT

For the inverse simulation optimization problem we considered optimization variables x =
(Aa, bt, oc), where Aa is the atrial cycle length, bt the blocktype, and oc a vector of auxiliary var-
iables representing blocktype-specific internal offset counters and conduction constants. Inter-
nally, time points t; are calculated and denote, when the signal originating from signal j in the
atrium reaches level i. Due to the assumed regularity in the atrium we have

ty = t, + jAa

with an unknown offset £, On levels 1, 2, and 3 the equations for ¢; depend on the particular
blocking type bt, and hence more complicated case differentiations: if the signal can be con-
ducted,

t; = ti—l.j +f<oc>

y

with a linear function f depending on parameters oc, otherwise it will be blocked and can not

be considered in the objective function. Details can be found in the PhD thesis [59] and in the
survey paper [60]. The objective function is denoted by F; where F;(x) measures the deviation

of the resulting forward simulation based on x from the actual RR data sample 7 in the Euclid-
ean norm.

With the help of the software package, HEAT, we calculated for all training samples 7 opti-
mal solutions x], particular values for Ag;, bt;, and oc; that resulted in the smallest objective
function value

F,(x;) = min F,(x).
xeX

Here, X denotes the feasible set for (Aa,bt, oc) with lower and upper bounds for (Aa, oc)
and five most clinically observed blocktypes of MAVB (see Fig 3). The bounds on the atrial
cycle length Aa were determined using physiological observations [48] (between 175ms and
400ms) and dependent on the blocktype bt and the input RR data. The algorithm is based on
an intelligent enumeration (comparable to Dynamic Programming or Branch & Bound) of all
possible solutions, assuming a time grid of 1ms for Aa and oc. The proprietary software and
the data set heatDS are available for academic studies by request.

Features and feature sets

As features, we investigated the time series of raw input RR interval times (RR), together with
the derived scalar features heart rate variability (RRvar) and average heart rate (RRmean);
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the HEAT optimal objective function value F(x*) (HEATob37) and the HEAT optimal solution
(variable assignments) x* = (Aa*, bt*, oc*) (HEATso01).

Increasing accuracy and stability, we applied a moving horizon strategy to generate addi-
tional features. From the npg = 22 time intervals, we considered only n_, €
T = {10,...,ng} onwindows [1, 2, ..., ngy] until [#gg — #igup, + 1, 2, . . ., figr]. This results in

additional solutions F,, (x;

igub N\ gyl

ated F,;(x;,) for j, k € Z, the performance of the optimal solutions on time window j on time

window k. We computed the features HEATobj and HEATsol for each subwindow of RR
intervals. The moving horizon approach enabled us to compare of the HEAT simulation based

) for i € Z. Investigating the robustness of solutions, we evalu-

on one time window with the raw RR intervals of a different one, as described above. We refer
to the resulting time series of ngr — #1g,, + 1 entries HEATobj, HEATsol, and HEATfit as
HEATseries, to the generically derived features mean and standard deviation as HEATser~
iesAvg. Finally, we also considered patient age (age). Table 1 summarizes the sets of fea-
tures and resulting dimensions.

Machine learning models

We used two classes of standard ML classification models: SVM and convolutional neural net-
works (CNN).

As SVM does not incorporate the temporal connection between sequential data, we first
computed general features based on subsequences (N-Gram s) of the underlying data. These
general features are the mean and the standard deviation of a given subsequence. For the
mean, any subsequence with length >1 and <#nyy was considered. The standard deviation was
only computed on subsequences of length >2. The hyperparameter ng,, limits the length of
the time series before computing the features. Prior to training use, each feature was standard-
ized to zero mean and unit standard deviation. The necessary parameters for this transforma-
tion were computed on the training set and used for the model evaluation. Based on these
features, we implemented a SVM model in scikit-learn based on the LIBSVM library [61]. The
underlying model is described in Cortes et al. (“Support-vector networks”) [62]. The kernel
type (radial basis functions or polynomial) with a penalty parameter C and a kernel coefficient
v (3 values each) and the length of analyzed subsequences ng, € {10, . . ., 22} were tuned as
hyperparameters using grid search cross-validation.

We used a CNN architecture consisting of two convolutional blocks followed by one fully con-
nected layer with rectified linear unit (ReLU) activation functions and one final fully connected
layer with a sigmoid activation function and output dimension one. Each of the convolutional
blocks consisted of two convolutional layers with ReLU activation functions and five filters of
width two followed by a max pooling and a dropout layer. The dropout rate (10%, 20%, 30%) and
g Were tuned as hyperparameters during training using grid search cross-validation.

Other objective functions and architectures were evaluated manually in a preliminary
phase, but eliminated as they gave no additional insight.

Table 1 shows the number of optimization parameters, scaling factors, and hyperpara-
meters for the different approaches. The number of optimized parameters depends on the
hyperparameter ng,;, (the length of analyzed subsequences); therefore, ranges are provided. To
avoid overfitting, each approach was evaluated on heatDS using repeated, stratified 10-fold
cross validation to estimate performance on new data.

Data

Our data set heatDS is a superset of one used in a previous study [17], which contains details
of the data obtained from patients exhibiting AFib or AFlu with irregular ventricular response
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Table 1. Number of optimization parameters (pars), scaling factors, and hyperparameters (hyp) for the different feature sets and ML models.

Feature Set included Features

ML Model # Pars # Scalings # Hyp
rawRR ={RR}

CNN 287-487 0

SVM N-Gram 101-485 200-968 4
heatObjective = {HEATob] }

SVM 2 2 4
heatSolution = {HEATobj, HEATsol, RRvar, RRmean }

SVM 10 18 4
heatSerAvg ={HEATseriesAvg}

SVM 21 40 4
heatSerAvgAge ={HEATseriesAvg, age}

SVM 23 44 4
heatSeries ={HEATseries}

SVM N-Gram 91-1691 180-3380 4

https://doi.org/10.1371/journal.pone.0261571.t001

during invasive electrophysiological testing or catheter ablation. The retrospective data were
extended to the period between 2011 and 2018 and 159 patients.

Classification AFib«»AFlu was performed using electrical signals measured at the atrial
electrodes by an expert in the field of cardiac electrophysiology for all 159 patients. For AFib,
we found that all examples exhibit highly irregular intervals of atrial activation (qualitative
assessment) in combination with a short mean atrial cycle length (Aa) of 182 ms. These data
correspond well with the threshold of 200 ms, referenced in the European guideline for the
management of AFib [63]. In contrast, intracardiac recordings taken from patients with AFlu
exhibited highly regular intervals (Aa ~ 240 ms). In many cases, the correct rhythm diagnosis
could be verified by evaluating the reaction of the arrhythmia to catheter ablation. Among the
group of AFlu cases, further quantitative assessment revealed a Aa variation below 5 ms.

We hypothesized that the dynamics of ventricular activations in short time periods contain
enough information for successful discrimination. Therefore, we reduced the data complexity
by extracting the time interval durations of 22 RR intervals from the surface ECG using built-
in calipers, with a precision of 1 ms. Segments containing premature ventricular beats were
excluded, which can be easily recognized by physicians or algorithms in clinical practice.

In summary, we collected 380 examples which were diagnosed either AFlu (n = 190) or
AFib (n=190). We used two or three disjoint examples per patient increasing the overall data
size. We stored the time series of 22 values corresponding to RR intervals, the patient age, and
the correct label AFib/AFlu for training and validation purposes. All other ECG data including
the intracardiac measurements, were not considered with the exception of exemplary a-poste-
riori illustration. The study was approved by the University of Heidelberg Ethics Committee
and conforms to the standards defined in the Helsinki Declaration.

In Kehrle (“Inverse Simulation for Cardiac Arrhythmia”) [59], we validated a previous ver-
sion of our algorithm against other, smaller data sets from the publications focused on
AFib— AFlu discrimination. Unfortunately, there are no larger data sets available that can be
used as an extended benchmark. Usually, these do not differentiate between AFib and AFlu
specifically, or they do not classify supraventricular tachycardias at all, such as the American
Heart Association ECG Database for example [64]. Therefore, all of the data in studies [8-11]
could not be used, as it is unlabeled with respect to AFib« AFlu.
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Table 2. Average accuracies and areas under receiver operating characteristic (ROC) curve with standard deviations for the different approaches.

Feature Set ML Model Accuracy ROC Area
rawRR CNN 57.26% *+ 6.47% 0.60 + 0.08

SVM N-Gram 62.03% * 5.25% 0.66 + 0.07
heatObjective SVM 77.58% * 4.15% 0.85 £ 0.05
heatSolution SVM 79.37% + 4.55% 0.87 +0.03
heatSerAvg SVM 82.18% + 4.48% 0.89 +£0.03
heatSerAvgAge SVM 82.47% + 3.26% 0.90 £ 0.03
heatSeries SVM N-Gram 82.84% + 4.31% 0.90 + 0.04

https://doi.org/10.1371/journal.pone.0261571.t1002

Implementation setting

All results were computed on a server running Ubuntu 16.04.4. The system had access to 1 TB
RAM, an Intel(R) Xeon(R) CPU E5-2699A v4 at 2.40 GHz with 88 cores, and two NVIDIA(R)
Quadro(R) p5000. The ML models were implemented using Python 3.5.2 and scikit-learn
0.20.3. The CNN s were based on tensorflow 1.8.0 and trained using the Adam optimizer [65]
with default parameters. The computational times were roughly 20 ms per HEAT call (times
380 samples times number of considered subproblems per sample), 30 min for training SVM,
and 3 d for training CNN.

Results
Accuracies for different feature sets and ML models

We show the mean accuracies and areas under receiver operating characteristic curves in
Table 2. The results were obtained after repeated, stratified 10-fold cross validation for differ-
ent feature sets and ML models as described in Sections Features and feature sets and Machine
learning models.

When directly applied to the input data of upto 22 RR interval times (rawRR), standard
ML approaches achieved approximately 60%. The average accuracy increased to 77.58%, when
F,(x7) was used as the only feature (generated a priori from rawRR). A higher-dimensional
classification, which also took x; and several HEAT solutions from a moving horizon strategy
into account, increased the average accuracies to 79.37% and 82.84%, respectively. Using the
best approach, we achieved a sensitivity of 87.21% and a specificity of 78.47%. An exemplary
distribution of features is shown in Fig 6.

For an implementation of a CNN, the poor performance of direct application to rawRR
was also reflected by high standard deviations. The number of ML parameters was two orders
of magnitude larger than that for SVM, although only few layers were chosen due to the small
size of the training set and compared to DL approaches to cardiac arrhythmia classification
[3]. The SVM results were considerably stable and no significant differences occurred for dif-
ferent kernel types. The approach to pre-process rawRR using medical expert knowledge
(HEAT) can be seen as an approach that increases sensitivity without overfitting the ML
model.

Interpretability

We observed that the calculated objective function values F,(x}) were the most decisive feature
for classification, and the features associated with x are interesting for clinical interpretation.
Fig 4 shows how knowing the atrial cycle length Ag* may be helpful for an a-posteriori
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Fig 4. Exemplary illustration of how the feature atrial cycle length derived from a HEAT solution can be a posteriori pathophysiologically
interpreted and used.

https://doi.org/10.1371/journal.pone.0261571.9004

identification of flutter waves for AFlu in a surface ECG. The figure shows observed and simu-
lated data, as in left-hand side of Fig 2, but for different input data from the same patient. The
actual atrial cycle length is only available with invasive procedures and is difficult to identify
from investigating the surface electrocardiogram (ECG, rightmost zoom), where almost no atrial
activation is recognizable. The intracardiac measurements are shown for illustrative purposes
and coincide with the value Aa proposed by HEAT (leftmost zoom). When no intracardiac mea-
surements are available, this value Aa can help the physician, when reanalyzing the ECG. An
overlay of Aa makes spotting atrial activations in the surface ECG easier (middle zoom).

Fig 5 shows observed and simulated data, but for different input data. Here, a three-level
atrioventricular (AV) block with a varying 2:1 / 3:2 level followed by two levels with a varying
1:1/ 2:1 conduction was calculated (MAVB 3 in Fig 3). Again, the intracardiac measurements
are shown for illustrative purposes (top). The close match to the calculated atrial cycle length
Aa highlights the plausibility of the complex blocking mechanism. The optimal blocktypes bt*,
compare Figs 4 and 5 with two and three levels with varying blockings, respectively, give
insight into the pathophysiology of the AV node and may be useful for treatment planning.

The high accuracy of ML approaches that used HEAT-generated features indicates that our
novel mathematical model is an appropriate description of the complex blocking mechanism
for AFlu.

Moving horizon approach

The results in Table 2 seem to indicate that additional accuracy can be obtained using the fea-
ture HEATseries. It consists of time-series data generated from several calls to HEAT for
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Fig 5. Exemplary illustration of how the feature blocktype derived from a HEAT solution can be a posteriori pathophysiologically interpreted and
used.

https://doi.org/10.1371/journal.pone.0261571.9g005

input data obtained from a moving horizon approach. As explained above, ng,;, € {10, .. .,
nrr} was optimized as a hyperparameter, with ng,, = 17 giving the best results. The overall
number of time intervals ngr = 22 was fixed. Therefore, the time series in HEATseries cor-
responded to entries for six different optimization problems (1...17t0 6 ...22).

An interesting and promising question is regarding how much the approach can be
improved for larger values of nzr. Unfortunately, the idea to use several optimization results in
one feature set was presented after data from many patients with small numbers of RR inter-
vals were already collected. Considering the collected number of RR intervals for the 159
patients, the average number is 51 with a range from 22 to 111. This made a rigorous cross-val-
idated comparison of larger values of ngy difficult as our data base was simply not large
enough. A study showed large potential with accuracy increasing from 82.94% to 92.50% for
long time horizons of nzr = 90 intervals. However, this result needs to be cross-validated on
larger data sets.

Discussion
Impact, accuracy, and applicability

Being able to classify AFib«»AFlu is clinically relevant. There are a variety of treatments (anti-
arrhythmics, various ablations and ablation systems) with different side effects and cure rates.
A correct classification is imperative to choose the best treatment [15]. Therefore, use of the
proposed approach for clinical decision support may be helpful, especially when considering
the excellent classification accuracy and interpretability of calculated features and the difficulty
of the classification task for unexperienced clinicians.

All ML approaches that were applied directly to the input data (rawRR) resulted in average
accuracies of approximately 60%. These low accuracies were not surprising, as AFib«>AFlu is
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a difficult case even for experts [12-14] and was explicitly excluded in recent studies [3]. AFib
may be overdiagnosed because of coarse fibrillatory waves, which are reminiscent of AFlu [13,
66], the presence of artifacts, or premature atrial complexes [67]. AFlu may be overdiagnosed
because the low-voltage flutter waves that indicate AFib are barely discernible in the surface
ECG (compare Figs 2 and 4), or because a pseudo-regularization may occur [68] (see Section
Classification failures). The achieved accuracies are similar to previous results to analyze
AFib— AFlu, e.g., based on clustering of RR times or nodal recovery approaches [59]. Note
that the N-Gram approach implicitly considers RRvar, RRmean and is thus a superset of fea-
tures used in current smartwatch algorithms [8]. Hence, the low accuracy gives a hint why
AFib«< AFlu is currently untreated by them.

Using HEAT for an a-priori calculation of heatObjective was significantly more suc-
cessful with an average accuracy of 77.58%, even though the input data was identical (rawRR).
Using heatSolution features resulted in an increased average accuracy of 82.84% (sensi-
tivity 87.21%). Further improvements can be expected if settings of the HEAT algorithm (such
as a lower bound on Aa or grid sizes) were optimized as hyperparameters, if underlying model
assumptions were adapted after careful analysis of wrongly classified samples, once more train-
ing samples become available, and if covariates were considered. Age (heatSerAvgAge) did
not seem to have a significant impact on accuracy.

Using ML with HEAT-generated features has the drawback; Each classification sample
requires calculating the optimal solution of the MAVB. However, the additional 20 ms should
be acceptable in a clinical context and negated by several advantages:

First, the approach is applicable in clinical practice. We assumed in a previous assessment
that the presence of either AFib or AFlu was verified. A different perspective shows, our
approach is a reasonable complement to generic DL approaches for cardiac arrhythmias [3].
This can use the prior one-cluster classification of AFib and AFlu, and can classify AFib«AFlu
in a following step. HEAT can run on a secure client-server, which was implemented by [59].
It can communicate with a smartphone app that generates rawRR data from ECG-derived pic-
tures or beeps from a heart monitor. A similar procedure can be implemented for wearables
and smartwatches.

Second, the dominance of the HEATob ] feature and the availability of a distribution (com-
pare Fig 6), allow calculation of a probability for the classification (the higher the value, the
more likely AFib). Such a value would help clinicians determine the validity of a suggested
diagnosis. In Fig 6 the clear separation of atrial flutter (AFlu) and atrial fibrillation (AFib) with
respect to HEATob 7 is observed. The two model parameters in x*, the atrial cycle length Aa
and the blocktype bt, do not allow a straightforward classification.

Third, the approach results in a high accuracy. It is an open question whether a similar
accuracy can be achieved with DL without the explicit modeling of expert knowledge. Probably
yes, if the number of verified training samples, hidden layers, and computational resources is
large enough. However, the approach would lack interpretability.

Interpretability

Interpretability is the fourth and most important advantage of the proposed approach.

We reduced the complexity of the data a-priori by considering only time points of the
clearly visible R waves (the beeps of a heart rate monitor) corresponding to ventricular activa-
tion. This makes the underlying data more assessible to humans. HEAT provides HEATso1,
the optimal solution x* = (Aa*, bt*, oc*). These values can be interpreted by experts, and used
for maiking treatment decisions. For example, the atrial cycle length Aa* proposed by HEAT
can help the physicians when reanalyzing the ECG (compare Fig 4). Furthermore, the absolute
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Fig 6. Representative pairwise plot of features obtained from a heatSolution SVM classification, compare
Table 2.

https://doi.org/10.1371/journal.pone.0261571.g006

cycle length can help identifying patients with typical atrial flutter (Aa ~ 200 ms) or predicting
procedural success [7]. In addition, for AFlu a thorough understanding of electrophysiological
properties and anatomical landmarks is essential in achieving a successful ablation outcome and
in reducing complication rates [69]. Sometimes it is even claimed that the classic ECG-based
diagnoses of tachycardias and AFib are of little importance today because treatment is based on
the direct management of the trigger mechanism [70]. We believe that estimates of the atrial
cycle length or the blocktype (compare Figs 4 and 5) can be a valuable asset to clinical decision
making.

Impact of ML architectures and feature selection on accuracy

Table 2 shows the accuracies for different machine learning architectures. After reasonable
effort to investigate different architectures, none resulted in an accuracy significantly above
60% when directly working with rawRR. We think that this is mainly due to the comparatively
small amount of data samples and the difficulty to tailor standard ML architectures to the spe-
cific time series character of RR intervals. When the features that were generated using domain
knowledge were considered, SVM outperformed our CNN architectures as discussed in the
next subsection. We expect a different behavior if neural network architectures are used that
explicitly address time series, such as recurrent networks.

A key ingredient in the proposed approach is the generation of features via domain knowl-
edge. We solved an inverse optimization problem for the mathematical MAVB model intro-
duced in Section Multilevel atrioventricular block (MAVB). This generic approach is
preferable for the aforementioned reason of interpretability and it obsoletes the cumbersome
tailoring of a generic neural network architecture for the specific classification task obsolete.
The classification in the low-dimensional feature space can be efficiently and accurately done
with SVMs.

The selection of features was straightforward, as there are only a few model parameters that
are calculated along with the objective function value. The latter alone was decisive and was
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enough for a high-accuracy one-dimensional linear classifier, using a simple threshold value
compare the entry for heatObjective in Table 2. The additional features considered in
heatSolution increased accuracy, although we see the main benefit of block type, atrial
cycle length, and conduction constants in the physiological interpretability. Future work
should focus on consideration of sets of optimal solutions and solutions on moving time hori-
zons. In this context, the impact of heat Solution may improve.

Approximation properties of ML approaches

It is well known that feed-forward neural networks are universal approximators of continuous
functions, if either the number of neurons on one hidden layer [71] or the number of layers
for a fixed number of neurons per layer [72] increase. However, it is also well known that these
theoretical results are obtained at the price of a potentially large number of weights distributed
over the hidden layers of the neural net. Adaptive activation functions have better approxima-
tion properties [73], but the main difficulty of current architectures is the same. To get an idea
why CNN s do not perform well on AFib« AFlu, for deep nets with 34 layers as in [3] as well as
in our prototypical implementation, we analyze Fig 7.

Fig 7 shows the feature HEATob3j, the optimal objective function value F;(x) provided by
HEAT, for 801 different artificial input vectors x. As input, 17 RR intervals of an exemplary
patient were chosen. Sixteen of them are kept fixed, while one particular interval length in the
middle was varied with deviations of -400 ms to +400 ms in intervals of 1 ms. The plot shows
locally quadratic behavior, due to the quadratic objective function (Euclidean norm). The dis-
continuities are due to the clipping of solutions that result in deviations of more than 150 ms
between signals. The main takeaway from the plot is that the minimal objective function value
as a function of the input consists of many piecewise quadratic segments. Estimating the num-
ber of ReLU-induced linear segments necessary to approximate this important feature for clas-
sification, one easily reaches large numbers: assume 20 linear segments, and use #7,, = 17 as an
exponent. Of course, the feature HEATob7j is only an approximation of the real process, but
the mathematical modeling based on physiological knowledge and the high accuracy indicate
that the real MAVB will show a similar behavior. Given the additional difficulty for this

PLOS ONE | https://doi.org/10.1371/journal.pone.0261571 December 23, 2021 15/22


https://doi.org/10.1371/journal.pone.0261571.g007
https://doi.org/10.1371/journal.pone.0261571

PLOS ONE

Expert-enhanced machine learning for cardiac arrhythmia classification

AV

\Y

24 RR
160 bpm

[

384 | 372 | 332 | 422 384 356 422 372 | 350 | 330 | 376 408 360 | 354
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classification task, only a few labeled training data sets are available. We conjecture that it will

be difficult to train CNN's with a reasonable classification accuracy without using domain
knowledge.

Classification failures

While our novel approach resulted in excellent area under the curve values, there were still
misclassification samples. Fig 8 shows an atrial fibrillation case with a very fast (160 beats per
minute), but pseudo-regular ventricular contraction, shown in the surface lead at the bottom.
The atrial contraction, however, is totally chaotic as shown by intracardiac measurements dis-
played in the top. Due to this pseudo-regularization, the best MAVB simulation matched the
observed data considerably well and led to a misclassification. It is well known that at very
high frequencies of AFib, a pseudo-regularization can occur [68]. Here, the RR variability
decreases with an increase in heart rate, which leads to an almost regular rhythm despite a
totally chaotic atrial contraction. As a consequence, these AFib cases with high ventricular
rates may be more likely to match a regular MAVB or even a 1: 1 conduction. In our approach,
pseudo-regularizations result in relatively low objective function values which impair correct
classification.

Just as for experts, the presence of artifacts or premature atrial complexes [67] may lead to a
misclassification. It is an open question how to extend the mathematical model in Section
Multilevel atrioventricular block (MAVB) for automatic detection of pseudo-regularization
and increased specifity without impairing sensitivity. Using the feature atrial cycle length more
elaborately or additionally classifying the flutter waves may be helpful in this context.

An intrinsic limitation for classification accuracy using our approach arises from false posi-
tives, cases of AFib that “by chance” are very close to multilevel blocks. The mathematical
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question of how dense random rawRR instances are in the space of all MAVB solutions is
open.

Generalization to other cases of clinical decision support

Our proposed approach can be generalized as enhance ML approaches by features based on
understandable and interpretable mathematical models of clinical expert knowledge that exhibit
complex dynamic behavior. Personalizing these mathematical models results in model parame-
ters that can be used for classification, prediction and dynamic stratification, but also be inter-
preted by clinicians. Diagnosis of other cardiac arrhythmias could be done in a similar way.
For diseases such as acute leukemias [74, 75] or polycythemia vera [76], there are mathematical
models that have been validated with measurement data, and contain estimated personalized
model parameters like stem cell proliferation rates. Such hidden parameters usually cannot be
observed directly and can be very useful for clinical decision-making [60].

Our interdisciplinary approach with cardiologists and mathematical optimizers has several
obvious benefits [77]. One of them is that the role of HEAT can be seen as a well-informed
agent interacting with a surrounding machine learning environment. Such an approach was
introduced and discussed in Holzinger (“Interactive machine learning for health informatics:
when do we need the human-in-the-loop?”) [78]. The paper exactly emphasizes the benefits of
human expertise and the search for unknown patterns in a low-dimensional feature space
upon which our approach is based.

We believe that it is better to use interpretable models than to explain black-box models
[79]. An integration of interpretable expert systems written as optimization models with
today’s powerful ML approaches may result in better healthcare with interpretable results.

Conclusions

We proposed a method for the difficult classification task AFib«<>AFlu that combines expert
models and ML. On our gold standard test set, our approach was highly successful reaching a
classification accuracy of 82.84% and area under the ROC curve of 0.9. In contrast, for short
RR time series and comparably few labeled training samples, we could not achieve such an
accuracy with a purely data-driven ML model.

Our work ideally complements deep-learning-based methods, which can provide a pre-
classification, but cannot distinguish between AFib and AFlu. However, this distinction is
highly relevant from a clinical perspective. The classification itself, together with correspond-
ing features calculated by HEAT, may be interpreted by medical experts and used for determ-
ing treatments. As runtimes of the algorithm are short enough for real-time requirements, it
can be applied as a decision-support tool for clinical practice. A combination of the presented
feature extraction and classification with state-of-the-art NN is plausible, but open due to
availability of data sets and trained models. An open question is how to further reduce failure
cases due to pseudo-regularization as discussed in subsection Classification failures.

Finally, we proposed to create features from optimal solutions of domain-knowledge mod-
els and to search for unknown patterns in a low-dimensional feature space. We think this gen-
eral approach of combining the interpretability of expert systems with the deductive power of
data-driven ML can and should be transferred to other cases of clinical decision support.
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