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Abstract: Bowing is a pathology known by the deformation experienced in some external covering
systems in ornamental stones, especially in marble, and thermal action is one of the key factors that
lead to this degradation. Previous studies presented remarkable contributions about the mechanical
behavior of bowing but they were based on classical beam’s theory and improper assumptions might
mislead the evaluation of internal stresses. This study proposes to evaluate internal stresses in
bowing due to thermal loading considering the true deformed shape in continuum media. Finite
displacement concepts are proposed to calculate stress-strain relationship and comparison with linear
elastic theory is also addressed. Internal stresses not predictable in the Euler-Bernoulli beam were
found in parametric analyses. Moreover, the numerical analysis accomplished in this paper indicates
that transient heat flux should induce higher stresses than just considering higher gradients of
temperature in steady flux which could explain the larger decohesion through width in bowing tests.

Keywords: geometric nonlinearity; FEM; thermoelasticity; bowing; transient heat flux

1. Introduction

Nonlinear mechanics theory has once been strictly applied in special problems in engineering,
such as aeronautical and mechanical fields, due to higher computational effort and accuracy required
in those analyses. Other areas have used small strain approach because it could well represent the great
majority of problems adopting simplified hypotheses. However, the advances in technology have
allowed widespread uses of nonlinear models in some areas where small strain was predominant, such
as geotechnical and rock engineering, where assumption of small deformations, in deep underground
excavation or landslides, might not be respected anymore [1–4].

In accordance with this trend it is proposed in this work to evaluate the effect of geometric
nonlinearity and internal stress development in a specific problem in rock mechanics known as bowing.
It can be defined as a pathology that affects some kind of marbles and causes permanent deformation
due to weathering of these ornamental stones when used in external environment. In ventilated façade
the deformation of marble slabs might reach large displacement easily noticed visually (see [5,6]) and
similar decay might be responsible to deteriorate some sculptures in marble.

Thermal load due to sunlight exposure was found as an important factor to contribute to
this degradation and previous studies of bowing in marble were mainly focused to understand
the micromechanical phenomenon trying to simulate the intergranular decohesion due to anisotropic
thermal expansion of calcite grains. Royer-Carfagni [7] presented an initial discussion about induced
shear stresses by thermal actions in a chessboard like mineralogical arrangement. After that,
Weiss et al. [8] improved that analysis using finite element analysis (FEA) to evaluate the stress
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distribution in microscale using the contours of calcite grains from a thin section image. One of the first
attempts to represent the macrophenomenon was proposed by Ferrero et al. [9], improved later by
Ferrero et al. [10]. These works presented models to predict the macromechanical behavior through
linear elastic fracture mechanics considering the Euller–Bernoulli beam theory.

Beam’s theories, such those used in previous studies, presume deformed shape which will fit to
equilibrium equations. For instance, in Euler-Bernoulli beam the orthogonality of planes in relation
to neutral axis in reference and deformed configuration are assumed, i.e., according to this theory
the material is infinitely rigid to distortion by shear stresses. Linear and third order approaches
considering shear strain were proposed by Timoshenko and Reddy [11] to consider this effect in thick
beams; nonetheless, deformation is still imposed by these hypotheses.

Since the thermal gradient in a ventilated façade is relatively small to generate great internal
stresses if were compared to those in thermal machines (turbines, diesel engines, etc.) it is proposed
to evaluate the problem considering a more refined solution. A different approach could be solving
the differential equations of equilibrium respecting the constitutive relationship and compatibility,
which means that the equilibrium in deformed shape will occur according to the displacement field
that minimizes the total potential energy, just as predicted in variational theorems. Advantages
over previous studies are based on the true deformed shape since no restriction to deformation is
previously imposed.

Inexact solution considering linear elasticity could also be reviewed to get more accurate solution;
hence it is proposed to evaluate the problem via FEA considering geometric nonlinearity. Different
ways could be chosen to approach the problem, such as, Cosserat continuum, true (logarithmic) strain
or corotational formulation [12,13]. Herein will be considered the updated Lagrangian formulation
using polar decomposition to overcome the approximations assumed in linear elastic theory. Nonlinear
concepts are applied to evaluate transient thermal loads in marble slabs and a MATLAB code was
implemented to compute the development of internal stresses via finite element method (FEM),
including pre and post processing analyses. The formulation herein proposed presents relevant
contribution not only to the understanding of bowing in marble slabs but also in other fields, for
instance, the influence of nonlinear thermoelasticity in thin membranes [14,15] since the consideration
of thermal stresses at micro and nanoscale, respectively, is important to understand the behavior of
these materials.

2. Review of Bowing

Despite the fact that degradation of ornamental stones has long been studied in cultural heritage
field mainly focused on preservation of monuments, historical heritages and statues [16–20], bowing
was identified just few decades ago and has degraded some specific kinds of ornamental stones in
short periods. Several types of marbles and limestones from different countries were affected by this
degradation process, although it affects the most calcitic marble. White Carrara marble is an example
of ornamental stone affected and the one more frequent in literature about this subject. It comes
from the Alpi-Apuane complex formed by metamorphic processes in limestone deposits and can be
considered a monomineralic rock composed mainly by calcite.

Many efforts were made to understand this complex phenomenon but still remains some open
questions about it. The major research projects about this theme were MARA [21] and TEAM [22]
which produced good insight into this problem. Some hypotheses proposed by Winkler [23] were
verified in laboratory tests, such as the influence of thermal anisotropy and the microstructure, while
other aspects are not yet quite understood.

One of the most known cases was verified at the Finland Hall’s façade in which bowing affected
the external covering system twice. According to Gelk et al. [24], the first time the panels were composed
by white Carrara marble fixed at vertical joints by dowels and the largest ones were 140 cm length
and 3 cm thickness. Just some years later the deflection of bowed panels reached up to 5 cm inward
relative to the façade (concave). In the renewal façade, though, bowing occurred outward (convex).
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Similar problems were also verified in other buildings spread in Europe and North America [22].
Siegesmund et al. [6] verified correlation between height of the buildings and deflection of bowed
slabs, even if it were not possible to apply for general cases.

Thermal anisotropy of calcite grains has been considered as one of the major causes responsible to
contribute to this degradation since that mineral is the primary component of limestones and marbles.
Calcite belongs to the hexagonal crystal family and the thermal expansion coefficients aligned with
these optical axes present antagonist behavior. When a calcite grain is submitted to heating load it
tends to expand in C-axis direction, but contracts in A-axis direction, which generates internal stresses
during heating-cooling cycles.

Gelk et al. [25] verified that cyclic thermal loading could cause some deformation on marble
specimens, nonetheless, it is extremely influenced by humidity. Plastic deformation rate is
larger at the first cycles and decreases. In dry environments the residual deformation stabilizes
after some heating-cooling cycles. On the other hand, in those marble specimens tested in wet
environment, the residual deformation could increase continuously. Similar results were found by
Koch and Siegesmund [26], Rodriguez-Gordillo and Saez-Perez [27], Luque et al. [28] and others.
Bellopede et al. [29] verified that artificial weathering could be used to represent the natural one in
accelerated way. These authors also verified that the decohesion of calcite grains increases from the less
to the more weathered faces, which agrees with deformed shapes of weathered marbles.

Correlation between microstructure and bowing were also found in previous studies. Regular
structures (granoblastic texture) tend to bow more than irregular (xenoblastic) ones. Influence of
locked-in stresses due to metamorphic process, exploitation procedures, external forces applied by
supporting anchorage systems can also be cited as contribution factors.

3. Fundamentals

Typical problems in rock engineering are usually dealt with engineering strain because rocks are
assumed as brittle materials and small deformations are expected previous failure. Engineering strain,
or small strain, assumes some linearities to approach stress-strain relationship, however, cases in which
deformation becomes non infinitesimal are not so uncommon. Limitation previously imposed by small
strain might lead to inexact evaluation when the hypothesis of infinitesimal deformation no longer
occurs, or refined approach is required.

Even considering the small gradient of temperature between internal and external faces in
ventilated façades studies have shown the importance of these induced stresses in bowing. For
this reason, it is proposed to study the problem using nonlinear concepts, which take into account
the continuous deformation of a body and due to corrections at each step even large deformations can
be assessed.

3.1. Finite Displacement Concepts

In continuum mechanics the deformation gradient (F) is used to express the current configuration
in relation to a reference state. There are several ways to represent this tensor and a useful one
to understand it could be in terms of principal stretches and principal directions as presented in
Equation (1), in which λ represents the stretch in each principal direction. Due to polar decomposition
it can be decomposed as the product of a pure rotational (R) and a pure stretch tensor (U or V). Right
polar decomposition considers that stretch of fibers occurs first and then rotation tensor is applied; in
the left polar decomposition the order of deformation is changed.

F =
3∑

i=1

λiei,x ⊗ ei,X (1)

Green–Lagrange strain is defined as the quadratic changing of a fiber prior to its rotation and can
be expressed in terms of deformation gradient as given by Equation (2). Since the stretches are rotated,
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it can be used in problems of finite deformation without the approximation assumed in small strain
theory [30]. Substituting F by the product of right polar decomposition in Equation (2) one can get to
Equation (3) which proves that rotation does not affect this strain measure.

2 ε = FTF− I (2)

2 ε = (RU)TRU− I = UT
(
RTR

)
U− I = U2

− I (3)

The energetic conjugate of Green strain is the 2nd Piola–Kirchhoff stress tensor. It does not
have direct physical interpretation such as Cauchy stresses because it considers stresses acting on
the reference configuration rotated to the current state, but it can be related with real stress as given in
Equation (4) [30]:

S = |F| F−1 σ F−T (4)

Since these stress-strain measures are energetic conjugate pairs, the product of these tensors
produces a scalar quantity, energy per volume, such as the integration using Cauchy stress and real
strain tensors, as indicated by Equation (5). It must be pointed out that the left-hand side is integrated
over the reference configuration, i.e., known shape, and the other is related with the deformed shape.∫

Ω0

S δεdΩ0 =

∫
Ω
σ δεdΩ (5)

3.2. Constitutive Model

As described in the previous section, the correlation between deformation due to weathering
and the influence of some factors which induce bowing are known, but the real mechanisms are not
yet fully understood. Internal stresses developed by thermal gradient have shown as an important
factor acting on bowing, thus, it will be the object of this study. Since the purpose of this work remains
on the evaluation of induced strains it is proposed a 2-D solid formulation in plane strain state with
homogeneous characteristics.

According to theory of elasticity no stress should be induced in a continuous homogeneous
isotropic material subject to uniform temperature increasing. Nonetheless, gradient of temperature
occurring in the inner part of a body would induce stress due to differential strain [31–33]. In such
analysis the total strain could be decomposed in thermal and mechanical strain, in which the last one
would be responsible for induce internal stresses. Then, the total strain is given by:

ε = εθ + εmec (6)

Assuming St. Venant-Kirchhoff nonlinear material, internal stresses in bowing could be calculated
via the constitutive stress-strain relationship written in Equation (7):

S = C εmec = C (ε− εθ) (7)

where

C = A


1− ν′ ν 0
ν′ 1− ν′ 0
0 0 1

2 − ν
′

, A =
E′

(1− 2ν)(1 + ν)
, E′ =

E
1− ν2 and ν′ =

ν

1− ν

For sake of simplicity, one considers a coarse discretization of a slab laid on the ground subject to
sunlight exposure on the external face, as illustrated in Figure 1. In this example the deformation will
be limited only to y direction and uniform increase of temperature inside each element is assumed.
According to classical elastic theory, for a generic material with positive thermal expansion coefficient,
the right-hand side should present larger expansion than the other. However, due to compatibility,



Materials 2020, 13, 4367 5 of 17

the displacements of pairs 3A–3B and 4A–4B must coincide, therefore, shear stresses on this interface
should induce compressive stress at the upper element and tensile stresses at the lower. It is clear that
the shear stress along the interface must not be constant once it should be zero at the boundary (nodes
3 and 4) and at the symmetry plane. The same concept can be applied to a more refined mesh and to
other directions.
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Figure 1. Idealization of the deformation due to thermal loading in continuum media.
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Figure 1. Idealization of the deformation due to thermal loading in continuum media.

In continuum media the stress-strain relationship could be solved for a displacement field which
satisfies the equilibrium, compatibility and constitutive relationship by the principle of virtual work.
Considering that only mechanical strain should induce stresses in the body, the variation of total
potential energy can be described as presented in Equation (8), and the equivalent internal and external
works as follow in Equations (9) and (10), respectively.

δΠ =

∫
Ω0

δεv
TC (ε− εθ)dΩ0 −

∫
Ω0

δuT
v fBdΩ0 −

∫
Γ0

δuT
v fSdΓ0 (8)

δWint =

∫
Ω0

δεv
TC εdΩ0 (9)

δWext =

∫
Ω0

δEv
TC (εresidual)dΩ0 +

∫
Ω0

δuT
v fBdΩ0 +

∫
Γ0

δuT
v fSdΓ0 (10)

4. Numerical Implementation

Using the discretization via FEM, the displacement field in a continuum media is described by
interpolation of nodal displacement according to specifics shape functions:

u =
∑

Ni(ξ, η) ũ (11)

Deformation gradient and the Green strain tensor are given by [34]:

FIJ = δiI +
∂ui
∂XI

(12)
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εIJ = 0.5
(
δiI
∂ui
∂XJ

+ δiJ
∂ui
∂XI

+
∂ui
∂XI

∂ui
∂XJ

)
(13)

where δiI and δiJ are Kronecker delta
Finite strain equations are solved similarly as in small strain problems but considering the reference

configuration instead. Through Newton–Raphson procedure, the variation of internal work is calculated
by increments of displacements that minimize the variation of total energy, then, the new value is
updated from previous step:

δδWt+∆t
int = δWt

ext − δW
t
int (14)

δWt+∆t
int = δWt

int + δδW
t+∆t
int (15)

4.1. Discretization of Equivalent Internal Work

Variation of equivalent internal work can be described as:

δWint =

∫
Ω0

SIJδεIJdΩ0 (16)

where the variation of Green strain is given by:

δεIJ = 0.5
(
∂δui
∂XI

FiJ +
∂δui
∂XJ

FiI

)
(17)

Increments of internal work is given by linearization of Equation (16) through directional
derivatives in displacement direction:

δδWi =

∫
δεIJδSIJdΩ0 +

∫
δδεIJSIJdΩ0 (18)

At the first step, initial guess for increment of nodal displacements is set as zero, therefore, nonlinear
terms (KII and KIII) would not change tangent stiffness matrix and both (linear and nonlinear) could be
calculated at the same way (KI). Difference between linear and nonlinear approaches appears at the next
incremental steps of Newton–Raphson procedure. According to de Borst et al. [35], the geometric term
(KIII) is important because it considers numerical instability due to geometry changes.

[KI + KII + KIII ]̃u
t+∆t = δWt

ext,i − δW
t
int,i (19)

4.2. Discretization of Equivalent External Work

Since the variation of equivalent external work is function of temperature it was necessary to
calculate the temperature field through Fourier’s law. It was considered heat flow in 1-D direction
with fixed boundary conditions (Equation (20)):

∂θ
∂t

=
∂2θ

∂x2 (20)

Dimensionless functions were assumed as solution to previous equation, then, the dimensionless
Fourier’s law could be written as presented in Equation (22):

Θ =
θ(x, t)
θ0

, χ =
x

X0
and T =

α t
X02 (21)

∂Θ
∂T

=
∂2Θ
∂χ2 (22)
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Using the concept of separation of variables and assuming that each function will individually
satisfy the boundary condition, it is possible to rewrite a multivariable function as a sum of the product
of these functions. Then, the dimensionless temperature function could be rewritten as:

Θ(T,χ) =
∑

ciTi(T)χi(χ) (23)

Substituting Equation (23) into Equation (22) one gets that each individual equation is related as:

.
Tiχi = Ti

..
χi (24)

Previous equality could be represented by a constant value as given in Equation (25) just
rearranging Equation (24), since dimensionless time function is not related with dimensionless position
function and vice-versa: .

Ti
Ti

=

..
χi
χi

= −M2
i (25)

Equations (26) and (27) can be assumed as solutions that satisfy Equation (25):

Ti = Cie−M2
i T (26)

χi = Ai cos(Miχ) + Bi sin(Miχ) (27)

Substituting Equations (26) and (27) into Equation (23) and applying the boundary restraint
conditions for a nontrivial solution one can find the first unknown coefficient:

Θ(T,χ) =
∑

e−M2
i T[A′i cos(Miχ) + B′i sin(Miχ)] (28)

Θ(T = 0,χ = 0) = 0→ A′i = 0 (29)

sin(Mi·1) = 0→Mi = n·π (30)

The other coefficient can be calculated considering the boundary conditions at initial configuration:

Θ(T = 0,χ) =
∑

B′i sin(Miχ) (31)

∫ 1

0
Θ(T = 0,χ) sin

(
M jχ

)
dχ = B′i

∫ 1

0
sin(Miχ) sin

(
M jχ

)
dχ = B′i

X0

2
(32)

B′i =
2

X0

∫ 1

0
Θ(T = 0,χ) sin

(
M jχ

)
dχ (33)

Accordingly, the temperature could be calculated at each integration point just recalling Equation
(21). Considering known the temperature distribution at each time t, the deformation gradient due to
thermal expansion could be calculated as:

Fθ = α·∆θ·I + I (34)

and the equivalent external work can be represented as function only of the thermal actions since
isostatic condition is considered in this study:

δWe =

∫
δεIJS(θ)IJdΩ0 (35)
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5. Validation and Discussion

In the first part of this section it is presented the verification of numerical formulation with
analytical solutions to verify the accuracy, then comparison with results in literature are proposed.
The validation tests were accomplished in two steps, one to evaluate the convergence of the nonlinear
model and other to verify the numerical formulation of thermal loading. The flowchart used to code
the MATLAB program is presented in Appendix A.

The nonlinear model was verified considering mechanical loads applied on a beam. Since finite
displacements are assumed, the external loads used in this example are not constant, as indicated in
Equation (8), because they will vary according to geometry changes. A way to solve them could be
expressing the follower loads in terms of parametric variables which will be updated according to
the current geometry, as indicated in Equation (36). The linearization of these surface forces must also
be considered when the tangent stiffness matrix is calculated, as explained by Bonet and Wood [36].

An example with a built-in beam with bending moment applied at the end is now considered.
Since the bending moment is constant along the beam, rotated Cauchy stresses (recall Equation (4))
must remain invariant in perpendicular sections along this beam, as indicated in Figure 2.

δWext =

∫
Nap

(
∂x
∂ξ
× e3

)
dξ (36)
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Figure 2. Normal stress induced by bending moment applied at the end of a built-in beam.

Henceforth the numerical formulation of thermal stresses is considered. Thermal stresses in
unrestrained slab could be calculated adding the thermal component to the Airy stress function [37,38]
which, in rectangular slab in plane strain analysis, could be given by Equation (37). Since the slab is
free to expand no stress is expected at the borders; hence the first term of Equation (37) corresponds to
suppression of internal stresses generated due to thermal expansion (second term). The third term is
related with equilibrium since asymmetric thermal distribution could result in eccentric load.

σ = −
E

1− ν
αT +

1
2b

∫ b

−b

E
1− ν

αTdx +
3x
2b3

∫ b

−b

E
1− ν

αTxdx (37)

In these analyses the transient heat flux was considered with fixed boundaries conditions.
The temperature on the external face was assumed as 50 ◦C along the whole surface, for the internal
side it was assumed 20 ◦C. Thermal and mechanical properties of marble were assumed the same used
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in Ferrero et al., [9], as indicated in Figure 3. Transient heat flow was calculated to four elapsed times
(5 s, 10 s, 25 s and 50 s) and good correlation was achieved between linear and analytical solution, as
presented in Figure 4.
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Figure 4. Comparison between analytical and numerical (linear) solution for several elapsed times. (t
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Pescara’s Building
Ferrero et al. [9] monitored the temperature of the internal and external face of a ventilated façade

at the Pescara’s building during six days in 2007. An automatic system recorded the temperatures at
each 15 min. The highest gradient of temperature was 4.7 ◦C which induced about 0.04 MPa in tensile
stresses according to that model. Similar analyses were performed using the formulation presented in
this work for several elapsed times to evaluate the differences between that model and the numerical
approach herein proposed.

In Figures 5–7 are presented the thermal stresses for each analysis. Normal stress distributions
were considered at the symmetric planes and the shear stresses were represented in two orthogonal
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planes. The results show that internal stress distribution is different from the one usually found in
classical beam theories, in which the traction and compression stresses belong to opposite sides of
the neutral axis. Nevertheless, considering the theoretical formulation presented in the previous
section it would be expected to find such a distribution because the fibers on the external face, where
the thermal expansion is greater, would try to expand but they will be constrained by the adjacent
fibers in which the thermal deformations are smaller. Then, the external fibers should be under
compression and those on the left side would be under tensile stresses. Symmetric behavior is expected
on the left-hand side.
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a generic normal stress distribution (b) linear analysis (c) nonlinear analysis.
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Shear stresses and normal stresses in x direction were concentrated at the ends of the slab. Similar268

results were found by Carpinteri and Paggi [39] in nonhomogeneous beams using the classical beam’s269

theory, however, in that formulation shear stresses tend to infinity when they approach the boundaries.270

In the numerical formulation proposed in this study the shear stresses at the boundaries in simply271

supported slabs tend to zero.272
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Materials 2020, 13, 4367 12 of 17Version October 10, 2020 submitted to Materials 12 of 17

0.060.03-0.03 0

0.00

0.01

0.02

0.03

0.04

0.05

-3.0 -2.0 -1.0 0.0 1.0

Normal stress - σxx (105 Pa)

D′

D

���

D-D’ (Nonlinear)D-D’ (Linear)

H
ei

g
h

t 
(m

)

��� ���

�

y

0.98

0.99

1

1.01

1.02

1.03

-3.0 -2.0 -1.0 0.0 1.0

5

25

50

100

0.98

0.99

1

1.01

1.02

1.03

-3.0 -2.0 -1.0 0.0 1.0

5

25

50

100

H
ei

g
h

t 
(m

)

0.00

0.01

0.02

0.03

0.04

0.05

-3.0 -2.0 -1.0 0.0 1.0

Width (m) 

H
ei

g
h

t 
(m

) 

0

0.5

1.0

N
o

rm
al

 s
tr

es
s 

–
σ

x
x

 

scale

compressive 
stress

tensile
stress

Normal stress - σxx (105 Pa)

Normal stress - σxx (105 Pa) Normal stress - σxx (105 Pa)

	




Figure 7. Comparison between linear and nonlinear numerical analysis of σxx: (a) Representation of a
generic normal stress distribution (b) linear analysis (c) nonlinear analysis.
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Figure 7. Comparison between linear and nonlinear numerical analysis of δxx: (a) representation of
a generic normal stress distribution (b) linear analysis (c) nonlinear analysis.

It must be noted that internal stresses are greater at the initial instant of the transient regime
and they reduce until it becomes constant in stationary condition. The results are consistent with
those expected if the shape of the internal temperature curve in transient regime is considered. At
the beginning only those fibers close to the right-hand side are deformed by thermal expansion, thus,
greater amount of stress will be induced to counterpoise these unbalanced loads. Nonetheless, when
the transient gradient approaches to stationary condition these unbalanced loads reduce. The greater
stresses developed in transient analysis at the beginning could explain why the intergranular decohesion
in thermal treated marble is higher close to the exposed surface, as identified by Bellopede et al. [29].
This phenomenon can also be related with the increase of bowing with the height of buildings related
by Siegesmund et al. [6], since the thermal exchanges could increase according to elevation due to
wind action.
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Shear stresses and normal stresses in x direction were concentrated at the ends of the slab. Similar
results were found by Carpinteri and Paggi [39] in nonhomogeneous beams using the classical beam’s
theory, however, in that formulation shear stresses tend to infinity when they approach the boundaries.
In the numerical formulation proposed in this study the shear stresses at the boundaries in simply
supported slabs tend to zero.

The shear stress distribution is consistent with the theory of long thin beams, in which most
of its length follow a strain profile almost translation-symmetric. At the slab edges, in which
the translation-symmetry cited does not hold, there are other bidimensional deformation modes,
which dissipates the energy induced by thermal strains in a more efficient way. These edge
deformation modes explain why the stress calculated by the finite element method does not fit
exactly to the analytical solution.

In transient condition the difference between stress distribution in linear and nonlinear analysis is
minimal, just as expected due to the magnitude of the deformation. However, for stationary condition,
the internal stresses completely vanish over the entire body in linear analysis just as expected by
the analytical solution if one recalls Equation (36) considering linear distribution of temperature though
width. Although, in nonlinear analysis, residual stresses still remain, as indicated in Figure 8.Version October 10, 2020 submitted to Materials 13 of 17
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(a) linear (b) nonlinear.
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Moreover, shear stresses appear at the ends of the body, hence, for short beams or greater loads, more294
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6. Conclusions

This paper presents a numerical formulation to evaluate stresses in nonlinear thermoelastic
materials. According to our model transient thermal analysis has proven to induce higher levels of
stress at the beginning, i.e., at the early stages of the transient heat flux higher stresses were developed to
balance the locally differential strains. These results are important to understand bowing phenomenon
because transient heat flux continuously occurs in ventilated façades due to the variation of insolation
and thermal exchanges between marble slabs and external environment (due to rain, wind, etc.).
Therefore, even the small gradients of temperature through width can be harmful in long-term and it
help to explain why the intergranular decohesion is more intense at the exposed face. The nonlinear
analysis also identified remaining stresses in the slab even in stationary thermal flow. Moreover, shear
stresses appear at the ends of the body, hence, for short beams or greater loads, more sophisticated
models should be considered.
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List of Symbols

A constant
b slab width
B constant
C constitutive elastic matrix
ei,x orthonormal basis in the deformed configuration
ei,X orthonormal basis in the reference configuration
E Young modulus
F deformation gradient
I identity tensor
K stiffness matrix
M constant
N shape function relative to node i
p pressure load function
R rotation tensor
S second Piola-Kirchhoff stress tensor
t current time
T dimensionless time function
U right Cauchy-Green tensor
V left Cauchy-Green tensor
u displacement vector
ũ nodal displacement
Wext external virtual work
Wint internal virtual work
x coordinates in current configuration
X Coordinates in reference configuration
α thermal expansion coefficient
δ Kronecker delta
δ directional derivative
ε engineering strain tensor
ε Green strain tensor
εθ strain tensor due to thermal action
εmec strain tensor due to mechanical action
Π total potential energy
θ temperature function
Θ dimensionless temperature function
λ eigenvalues of the tensor U
ν Poisson ratio
σ Cauchy stress tensor
τ shear stress
Ω current configuration
Ω0 reference configuration
(·)θ relative to the thermal actions
χ dimensionless position function

Appendix A
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Compute the tangente stiffeness matrix and apply boundary restraint conditions
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Figure A1. Procedure used to evaluate thermal stresses in marble slabs.
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