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Abstract: Respiratory RNA viruses are responsible for recurrent acute respiratory illnesses that still
represent a major medical need. Previously we developed a large variety of benzimidazole derivatives
able to inhibit these viruses. Herein, two series of (thio)semicarbazone- and hydrazone-based
benzimidazoles have been explored, by derivatizing 5-acetyl benzimidazoles previously reported by us,
thereby evaluating the influence of the modification on the antiviral activity. Compounds 6, 8, 16 and 17,
bearing the 5-(thio)semicarbazone and 5-hydrazone functionalities in combination with the 2-benzyl
ring on the benzimidazole core structure, acted as dual inhibitors of influenza A virus and human
coronavirus. For respiratory syncytial virus (RSV), activity is limited to the 5-thiosemicarbazone
(25) and 5-hydrazone (22) compounds carrying the 2-[(benzotriazol-1/2-yl)methyl]benzimidazole
scaffold. These molecules proved to be the most effective antiviral agents, able to reach the potency
profile of the licensed drug ribavirin. The molecular docking analysis explained the SAR of these
compounds around their binding mode to the target RSV F protein, revealing the key contacts for
further assessment. The herein-investigated benzimidazole-based derivatives may represent valuable
hit compounds, deserving subsequent structural improvements towards more efficient antiviral
agents for the treatment of pathologies caused by these human respiratory viruses.

Keywords: (thio)semicarbazone-based benzimidazoles; hydrazone-based benzimidazoles; anti-RSV
activity; anti-influenza activity; anti-coronavirus activity; molecular modelling studies

1. Introduction

The benzimidazole scaffold is a structural isostere of naturally occurring nucleobases. Many
approved drugs bear a benzimidazole ring as their main unit or important substructure [1,2].
Benzimidazole-based agents are also considered for antimicrobial purposes, such as antituberculosis,
antiprotozoan or antiviral activities [3,4]. Maribavir, a benzimidazole riboside with strong activity
against cytomegalovirus (HCMV), is undergoing Phase III evaluation (clinicaltrials.gov NCT02927067
and NCT02931539) (Figure 1). Different substitutions on the benzimidazole nucleus of maribavir
were reported to entail activity against flaviviruses, HIV, hepatitis B virus, hepatitis C virus (HCV)
or respiratory syncytial virus (RSV) [5]. Besides, a few non-nucleoside benzimidazole derivatives
interfering with RSV F protein-mediated fusion, namely, JNJ-2408068 (R-170591), BMS-433771 and
TMC353121, have reached a far stage of (pre)clinical development, but have been halted after a negative
outcome [6,7] (Figure 1). Two FDA-approved inhibitors of the HCV NS5A protein, pibrentasvir and
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velpatasvir, contain a benzimidazole nucleus (Figure 1). The benzimidazole derivative B5, under clinical
evaluation for the treatment of neurodegenerative diseases, was shown to delay HCV infection in a
humanized mouse model [8] (Figure 1). The literature further contains examples of other benzimidazole
derivatives with activity against unrelated viruses, such as influenza virus or poliovirus.
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Figure 1. Some prototypic benzimidazole derivatives with activity against distinct viruses (mentioned
between brackets).

Another chemical entity with relevance for antimicrobial drug development is the
(thio)semicarbazone moiety. Compounds containing this structure may interfere with processes
that are essential for microbe survival, such as deoxyribonucleotide synthesis, bacterial cell wall
synthesis or maintenance of thiol content [9,10]. Interest in their antiviral properties dates back to
the discovery of methysazone (Marboran®), which was used to treat smallpox prior to its global
eradication [11]. More recent studies have reported activity against other poxviruses, herpes simplex
virus or influenza virus [12]. Transformation of some 5-acetyl-2-phenylbenzimidazoles into the
corresponding (thio)semicarbazone analogues yielded new agents with activity against HCV and the
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related bovine viral diarrhea virus (BVDV) [13]. Inhibition of the BVDV RNA polymerase was reported
for 5,6-dimethoxy-1-indanone-derived thiosemicarbazones [14].

During the few last years, we synthesized a large variety of benzimidazole-based derivatives
and we explored their antitumor [15], analgesic [16] or antiviral potential. We focused on two series,
i.e., 2-benzylbenzimidazoles (Series 1) [17] and 2-[(benzotriazol-1/2-yl)methyl)benzimidazoles (Series
2) [18,19] 1-substituted with a basic chain. Among them, we obtained analogues with promising
activity against diverse RNA viruses (Figure 2).
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Figure 2. Scaffold structures of our Series 1 (5-acetyl substituted 2-benzylbenzimidazoles) and Series 2
(2-[(benzotriazol-1/2-yl)methyl]benzimidazoles), which we previously reported as antiviral agents.

In the light of our previous findings, we deemed it interesting to explore new additional substitution
patterns on the benzimidazole main core, with the aim of gaining a better understanding of the potential
of this nucleus towards the development of novel series of antiviral agents.

2. Results and Discussion

Since the 5-acetyl substituted benzimidazoles were generally endowed with low efficacy,
we explored alternative substitutions at position 5 of the benzimidazole ring, by synthesizing
(thio)semicarbazone and hydrazone derivatives (Figure 3). These new compounds were evaluated
for their activities against a broad panel of viruses and cytotoxicity in several mammalian cell lines.
The main results are presented in Tables 1 and 2, from which we omitted the compounds having no
antiviral nor cytotoxic activity (at 100 µM, the highest concentration tested).

Table 1. Activities of compounds 6, 8, 16, 17, 22, 24 and 25 against three different human
respiratory viruses.

Compound Antiviral EC50
a (µM)

RSV Influenza A/H1N1 Influenza A/H3N2 Coronavirus 229E

6 >100 25 81 38
8 >100 38 >100 56
16 >100 47 >100 39
17 >100 47 >100 41

22 b 7.0 41 >100 >100
24 >100 >100 >100 43
25 2.4 >100 >100 >100

Zanamivir - 0.6 31 -
Ribavirin 6.7 7.4 7.5 -

DS-10,000 c 0.01 - - -
UDA c - - - 2.2

a EC50: 50% effective concentration or concentration giving 50% protection against virus-induced reduction in cell
viability, as determined by the colorimetric formazan-based MTS assay. b This compound was also active against
Coxsackie B4 virus with an EC50 value of 20 µM. c For dextran sulfate MW 10,000 (DS-10,000) and UDA lectin,
concentrations are in µg/mL.
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These investigations were accompanied by docking studies of the title compounds in complex
with the RSV fusion F protein, which allowed the identification of the most relevant features involved
in the protein-inhibitor recognition.
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Table 2. Cytotoxicity of compounds 6, 8, 16, 17, 22, 24 and 25 in four mammalian cell lines.

Compound CC50
a (µM)

Hep-2 HEL Vero MDCK

6 >100 >100 >100 >100
8 >100 >100 44 >100
16 >100 >100 >100 >100
17 48 >100 43 >100
22 >100 100 >100 >100
24 >100 >100 51 35
25 >100 >100 >100 33

Zanamivir - - - >100
Ribavirin >250 - >250 >100

DS-10,000 b >100 - >100 -
UDA b - >100 - -

a CC50: 50% cytotoxic concentration based on the MTS cell viability assay. Hep-2: human epithelial type 2 cells;
HEL: human embryonic lung fibroblast cells; Vero: African green monkey kidney cells; MDCK: Madin–Darby
canine kidney cells. b For dextran sulfate MW 10,000 (DS-10,000) and UDA lectin, concentrations are in µg/mL.

2.1. Chemistry

The starting 5-acetyl-2-benzylbenzimidazoles (Series 1) have been synthesized according
to the literature [20], by the reaction of the proper 4-acetyl-1,2-phenylenediamine
with the hydrochloride of the iminoester, previously obtained from the corresponding
nitrile under Pinner conditions. The condensation at 180 ◦C of a mixture of
the proper 1,2-phenylenediamine with the (benzotriazol-1/2-yl)acetic acid has given the
5-acetyl-2-[(benzotriazol-1/2-yl)methyl]benzimidazoles [21].

Our target compounds 1–25 have been obtained following the synthetic routes presented in
Schemes 1 and 2. Thiosemicarbazones 1–9, 18, 19, 21 and 22, and semicarbazones 10–17 and 20 have
been prepared by refluxing an ethanolic/aqueous solution of thiosemicarbazide or semicarbazide
hydrochloride in the presence of glacial acetic acid or sodium acetate, respectively.Molecules 2020, 25, x FOR PEER REVIEW 6 of 21 
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Scheme 2. Reagents and conditions: (i) EtOH/H2O, NH2NH2 · H2O (1.15 equiv.), 120 ◦C, 5 h.3.

The reaction at reflux of the proper 5-acetyl benzimidazole with a slight excess of hydrazine
hydrate for 5 h has afforded the target hydrazone derivatives 23–25 (Scheme 2). The structures of the
novel compounds have been confirmed using 1H and 13C NMR, and elemental analysis. The purity of
compounds (checked by elemental analysis) has been in all cases >95%.

Thiosemicarbazones are known to display thione-thiol tautomerism, since they contain the
hydrazidic proton (-C(=S)NH-N=) that can shift onto the sulfur atom, leading to a thiol form stabilized
by conjugation (-C(-SH)=N-N=). Indeed, on the 1H NMR spectra our compounds do not exhibit the
signal at 4.00 ppm, attributable to –SH proton, suggesting that the thione form is the only tautomer.
The Schiff base of our thiosemicarbazone moiety acquires E isomerism since the hydrazinic proton
(-C(=S)NH-N=) falls in the 9–12 ppm range [22]. In fact this signal appears at ca 10.18 ppm, whilst
the thioamide protons (-C(=S)NH2) exhibit two different chemical shifts at ca 8.25 ppm and 7.94
ppm. The same consideration can be made for semicarbazones with the exception of the signal of
amide group (CONH2) which appears as a broad singlet (ca 6.50 ppm) with the two protons being
indistinguishable. The different behaviors of the two series may be explained by the restricted free
rotation brought about by the formation of the carbon–nitrogen double bond character relative to
thione-thiol tautomerism [23]. In addition, it is noteworthy that the sulfur atom of the thione tautomer
has a greater atomic radius than oxygen atom of the corresponding semicarbazone, thereby making
the thioamide protons magnetically different for steric hindrance.

2.2. Biological Evaluation SAR

As explained above, the new compounds were synthesized from 5-acetyl substituted
2-benzylbenzimidazoles and 2-[(benzotriazol-1/2-yl)methyl]benzimidazoles (Series 1 and 2; Figure 2).
We previously published that Series 2 has high potential against RSV, with the best performing
derivatives having nanomolar activity [18,19]. These compounds carried at position 1 of
the benzimidazole ring different basic chains, such as the most efficacious quinolizidinylalkyl
[(octahydro-2H-quinolizin-1-yl)alkyl] chains or the dialkylaminoalkyl ones [18,19].

The new compounds (1–25) were evaluated against a broad panel of RNA and DNA viruses in
suitable mammalian cell culture assays [24–27]. The antiviral activity data obtained by microscopic
inspection of the viral CPE (data not shown) were in agreement with those obtained by the colorimetric
MTS cell viability test (Table 1). The most active compounds 22 and 25 exhibited EC50 values of 7.0
and 2.4 µM in the MTS method, versus 8.9 and 2.4 µM in the microscopic method.

Seven compounds displayed activity against one of more human respiratory viruses; i.e., RSV
(22 and 25), influenza A virus (6, 8, 16, 17 and 22) or human coronavirus (6, 8, 16, 17 and 24) (Table 1).
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Compounds 22 and 25 had anti-RSV EC50 values of 7.0 and 2.4 µM, respectively, which makes
them equipotent to the reference drug ribavirin (EC50 of 6.7 µM). A lower level of activity was seen
for influenza A and coronavirus, with the EC50 values falling in the range of 25–86 µM. Despite
this relatively weak activity, it is relevant to note that compounds 6, 8, 16, 17 and 24 are the first
benzimidazole derivatives reported as active against coronavirus.

The following careful SAR analysis could be made. For RSV, activity is
restricted to the 5-(thio)semicarbazone (25) and hydrazone (22) compounds carrying the
2-[(benzotriazol-1/2-yl)methyl]benzimidazole scaffold, in line with the previously synthesized
analogues (see above), which show comparable potency in the low micromolar range.

Regarding influenza A and coronaviruses, the activity is promoted by (thio)semicarbazone and
hydrazone functionalities, especially when combined with the benzyl ring (6, 8, 16, 17 and 24) compared
to the bulkier (benzotriazol-1/2-yl)methyl skeleton (22). The nature of the substituent in the para
position of the benzyl ring (H, Cl, OCH3) does not seem to have significant impact on the antiviral
activity, since the unsubstituted derivatives (8, 16; R1 = H) had comparable potency of those decorated
with electron-withdrawing (6; R1 = Cl) or electron-donor groups (17; R1 = OCH3).

Finally, most compounds were devoid of cytotoxicity at 100 µM, the highest concentration tested.
Two compounds, 17 and 24, produced cytotoxicity in two of the four cell lines. The other molecules
were either not toxic or exhibited a CC50 value of about 50 µM in one of the four cell lines.

Interestingly, influenza A and human coronavirus shared sensitivity to the same inhibitors, 6, 8,
16 and 17, whose definition of the mechanism of action is beyond the scope of this exploratory work.

As is well-known from literature, the antiviral activity against RSV is limited to several
benzimidazole derivatives (Figure 1) [28,29], and also to the more recent analogue JNJ-53718678
(Figure 4) [30], which were demonstrated to impair the viral replication machinery by blocking the
F protein-induced membrane fusion. From 2017, JNJ-53718678 entered Phase 2 studies in adults
and infants for therapy of RSV infections (ClinicalTrials.gov Identifier NCT03379675, NCT03656510,
NCT04056611). Due to the substantial structural similarity between the newly synthesized compounds
and the above anti-RSV (pre)clinical candidates, molecular modeling studies were performed in order
to reveal the most important features underlying the F protein/ligand interactions.
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Figure 4. Chemical structure and X-ray positioning of BMS-433771 (pdb code: 5EA7) [31] and
JNJ-53718678 (pdb code: 5KWW) [32] in complex with the RSV F protein. The chemical motifs of the
two inhibitors featuring quite comparable contacts with the biological target are highlighted in blue
and red. Hydrophobic and polar areas of the protein are represented as blue and orange regions on the
RSV F protein’s Connolly surface.
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2.3. Molecular Modelling Studies

During the last few years, a number of crystallographic structures of the prefusion RSV glycoprotein
became available focusing on several benzimidazole-based or bioisosteres inhibitors as co-crystallized
ligands [31–33]. A number of them highlighted a small number of contacts responsible for the inhibitor
positioning at the exposed surface area of the protein, occupying one hydrophobic region of the
biological target especially, including the F137 residue. As shown in Figure 4, the inhibitors BMS-433771
and JNJ-53718678 move the 1,3-dihydroimidazo[4,5-c]pyridin-2-one ring into the proximity of the
aforementioned F137 and F488 amino acids, detecting the first one π-π stacking with these residues.
The substitution of the alkoxy chain of BMS-433771 with the JNJ-53718678 sulfone moiety makes the
compound more hydrophobic than the prototype, flatting the JNJ-53718678 indole core towards F137,
F140 and F488.

Interestingly, the presence of the alkyl-morpholine chain linked to the dihydrobenzimidazole core
of the compound TMC353121 allowed us to explore another RSV F protein binding pocket, which is
able to anchor the inhibitor at the exposed surface of the protein (see Figure 5).
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Figure 5. Chemical structure and X-ray positioning of TMC353121 (pdb code: 5EA5) [31] in complex
with the RSV F protein. The chemical motif of the inhibitor maintained the key contacts displayed
by the analogues BMS-433771 and JNJ-53718678; they are highlighted in blue and red. Hydrophobic
and polar areas of the protein are represented as blue and orange regions on the RSV F protein’s
Connolly surface.

Indeed, the X-ray crystallographic data of this ligand in complex with the F protein reveal polar
contacts between the TMC353121 protonated nitrogen atom of the morpholine ring and a polar area
of the protein, including D486 and E487. On the other hand, the pyridine group and the terminal
phenyl ring were properly oriented toward T397, detecting one H-bond with the biological target, and
around the hydrophobic pocket previously discussed for BMS-433771 and JNJ-53718678 characterized
by F137 and F488. On this basis, it is thought that interactions with F137 are mandatory to exert RSV F
protein inhibition; the most promising compounds are better stabilized at the surface of the protein by
additional H-bonds with the near polar pocket.

Herein we discuss this computational work with the aim of exploring an adequate RSV F protein
inhibition activity of the newly synthesized antiviral compounds, by means of molecular docking
simulations taking into account the X-ray crystallographic structure of the RSV F protein in complex
with JNJ-53718678 (pdb code = 5KWW; resolution = 2.5 Å) [32]. This crystallographic data have been
chosen based on the structural similarity shown by the reference compound JNJ-53718678 with the
in-house, benzimidazole-based hydrazones and thiosemicarbazones. Currently, JNJ-53718678 is the
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more promising clinical candidate, whose potential therapeutic is undergoing evaluation in patients
at high risk to developing acute RSV lower respiratory tract infections (ClinicalTrials.gov Identifier
NCT03379675, NCT03656510, NCT04056611).

The main issues to be addressed were to clarify the role played by the hydrazone moiety and by
the thiosemicarbazone at the position five of benzimidazole main core, especially when accompanied
by a benzyl or a benzotriazole-1-yl or benzotriazole-2-yl ring linked at position 2 of the inhibitor
scaffold. This was done through docking studies of all the newly synthesized compounds. According
to our calculations (Table 3), only compounds 22 and 25 properly bind the exposed surface of the RSV
F protein—they are anchored in the hydrophobic pocket by π-π stacking and cation-π interactions with
F137, F140 and F488.

Table 3. Binding affinity values obtained by molecular docking studies of the compounds JNJ-53718678,
4, 19, 21, 22, 24 and 25.

Protein-Ligand
Complex (LeadIT)

Binding Affinity Energy
∆G (kJ/mol)

Protein-Ligand
Complex (LeadIT)

Binding Affinity Energy
∆G (kJ/mol)

5KWW- JNJ-53718678 −25.0 5KWW-22 −19.0
5KWW-4 −3.0 5KWW-24 −1.0
5KWW-19 −5.0 5KWW-25 −20.0
5KWW-21 −13.0

As shown in Figure 6, both the inhibitors moved the benzimidazole core in proximity of the
aforementioned aromatic residues (π-π interactions) while the hydrazone group of 25 and the protonated
amine chain of 22 were projected near F137, featuring cation-π stacking and H-bonds with the oxygen
atom of the F137 carbonyl group.Molecules 2020, 25, x FOR PEER REVIEW 10 of 21 
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Figure 6. X-ray crystallographic data of the RSV F protein (pdb code: 5KWW; C atom; purple). Docking
positioning of the inhibitors 22 and 25 (C atom; green and deep magenta, respectively) are shown
within the surface of the protein (left side). Superimposition of the docking poses of 22 and 25 are
shown on the right side. The most important residues are labelled and colored by atom type.

Notably, the replacement of the hydrazone group of 25 with the thiosemicarbazone moiety of
22 switched the positioning of the inhibitor 22, moving it the thiosemicarbazone moiety and the
amine chain near the amine group and the hydrazone function of the analogue 25; we detected
comparable contacts with E437 and F137, respectively. Changing the benzotriazol-2-yl ring of 25 with
the benzotriazol-1-yl one of 22 quite shifts the overall positioning of this portion of the molecule, even if
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it was oriented towards the same pocket. Interestingly, the benzotriazol-2-yl ring of 25 was H-bonded
to the T397 side-chain.

While maintaining the hydrazone moiety in tandem with the substitution of the benzotriazolyl
group with a decorated phenyl one led to the inactive compound 24, unable to be stabilized at the
surface of the protein, the replacement of the hydrazone group with the thiosemicarbazone one led
to the analogue 21. Interestingly, this featured H-bonds between the thiosemicarbazone function
and E487, while the benzotriazolyl group and the amine chain moved far from the corresponding
heteroaromatic group and hydrazone moiety of the analogue 25 (see Figure S1). On the other hand,
even if this kind of positioning was in agreement with that previously discussed for the effective
analogue 22, it was unable to detect the same contacts displayed by 22 probably because of the different
docking mode driven by the benzotriazol-1-yl skeleton in place of the benzotriazole-2-yl one of 25.
Accordingly, compound 19 exhibited a comparable docking mode with that of the analogue 21, lacking
the key contacts with F137 at the thiosemicarbazone moiety or amine chain group (Figure S2). Finally,
the introduction of the smaller phenyl ring instead of the benzotriazolyl core at position two of the
benzimidazole main ring (compound 4) moved the amine chain towards the protein’s deep crevice
delimited by T397 while the phenyl moiety detected π-π stacking with F137, missing any H-bonds
with this residue. Conversely, the thiosemicarbazone group was H-bonded to E487 (see Figure S3).
Accordingly, this compound was poorly effective if compared with the analogue 22.

In this work we also evaluated, by computational prediction, a number of descriptors related to
absorption, distribution, metabolism and excretion properties (ADME). This represents a useful in
silico strategy for accelerating the discovery of drug-like compounds [33]. For the most promising
antiviral compounds, 22 and 25, we calculated the number of H-bonding acceptor and donor groups
and rotable bonds, the logarithmic ratio of the octanol-water partitioning coefficient (cLogP), the human
intestinal absorption (HIA), the volume of distribution (Vd), the binding to plasmatic proteins (%PPB)
and albumin (LogKa HSA) and the oral bioavailability percentage (%F). As shown in Table 4, all the
compounds were characterized by a favorable profile in terms of lipophilicity—that being an LogP
below 5 (Lipinski rules)—and also displayed the ability to be fully adsorbed at the human intestinal
membrane. With respect to the reference compound, 22 and 25 featured higher oral bioavailability and
lower binding to plasmatic proteins.

Table 4. Absorption, distribution, metabolism and excretion (ADME) descriptors related to absorption
and distribution properties.

Comp. N. H-Bond
acceptor

N. H-Bond
donor

N. Rotable
Bonds cLogP HIA

(%) a
Vd

(l/kg) b %PPB c
d

LogKa
HSA

%F
(oral)

JNJ-53718678 7 0 8 3.36 100 2.4 99.0 5.42 21.0

22 9 3 9 2.81 100 4.1 93.0 3.81 97.0

25 8 2 8 3.53 100 7.0 93.0 4.34 99.1
a HIA represents the human intestinal absorption, expressed as percentage of the molecule able to pass through
the intestinal membrane; b prediction of volume of distribution (Vd) of the compound in the body, c percentage of
compound bound to plasmatic protein, d affinity for albumin.

Docking studies allowed us to rationalize the SAR observed in these anti-RSV benzimidazoles
and to recognize the compounds 25 and 22 as the best suited F protein inhibitors. The preliminary
information concerning their pharmacokinetic properties pointed to a favorable drug-like profile,
enabling these anti-RSV agents to undergo a further optimization process.
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3. Materials and Methods

3.1. Chemistry

3.1.1. General Information

Chemicals, solvents and reagents were used as obtained from commercial sources (Alfa Aesar
and Sigma-Aldrich) without further purification. Column chromatography (CC): silica gel (SiO2)
(Merck). Mps: Büchi apparatus, uncorrected. 1H NMR and 13C NMR spectra were recorded on Varian
Gemini-200 spectrometer using DMSO-d6 as a solvent. The chemical shifts (δ) in ppm were measured
relative to tetramethylsilane (TMS). J in Hz. Elemental analyses were performed on Flash 2000
CHNS (Thermo Scientific) instrument in the Microanalysis Laboratory of the Department of Pharmacy,
University of Genoa. Benz = benzimidazole ring; Bzt = benzotriazole ring; Arom = phenyl ring.

3.1.2. General Procedure for the Preparation of Thiosemicarbazones

To a solution of the proper 5-acetyl benzimidazole (0.80 mmol) in ethanol (2 mL), a solution of
thiosemicarbazide (0.85 mmol) in water (2.8 mL) and glacial acetic acid (0.22 mL) was added. The
mixture was refluxed for 3h under stirring. The reaction mixture was then evaporated under vacuum,
yielding an oily residue that was treated with warm water to get rid of the remaining thiosemicarbazide.
The crude was purified by CC (SiO2, CH2Cl2 + 5% DEA), affording the final product as a white solid.

2-(1-{1-[2-(N,N-Dimethylamino)ethyl]-2-(4-methoxybenzyl)-1H-benzo[d]imidazol-5-yl}-
ethylidene)hydrazine-1-carbothioamide (1): Yield: 36%; m.p. 183–84 ◦C. 1H NMR (200
MHz, DMSO-d6): 10.18 (s, 1H, NH), 8.24 (s, 1H, NH2), 8.16 (s, 1H, H(4)benz.), 8.00–7.83 (m, 1H,
H(7)benz.), 7.98 (s superimposed, 1H, NH2), 7.44 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.24 (d, J = 8.6 Hz, 2H,
H(3′,5′)arom.), 6.90 (d, J = 8.6 Hz, 2H, H(2′,6′)arom.), 4.32–4.08 (m, 4H, CH2-Ar and CH2CH2-N(CH3)2),
3.74 (s, 3H, -OCH3), 2.38 (pseudo s, 5H, 3H CH3C=N- and 2H, CH2CH2-N(CH3)2), 2.13 (s, 6H,
N(CH3)2). 13C-NMR (50 MHz, DMSO-d6): 178.13, 157.63, 154.48, 148.55, 141.98, 135.97, 131.00 (2C),
129.38 (2C), 128.22, 120.46, 116.96, 113.57 (2C), 109.37, 54.67, 45.00 (2C), 41.09, 31.88, 13.99. Analysis
calculated for C22H28N6OS: % C 62.24, H 6.65, N 19.79, S 7.55; found: % C 62.44, H 6.67, N 19.80, S 7.16.

2-{1-[2-(4-Chlorobenzyl)-1-[2-(N,N-dimethylamino)ethyl]-1H-benzo[d]imidazol-5-yl]-
ethylidene}hydrazine-1-carbothioamide (2): Yield: 42%; m.p. 199–200.5 ◦C. 1H NMR (200
MHz, DMSO-d6): 10.18 (s, 1H, NH), 8.24 (s, 1H, NH2), 8.12 (s, 1H, H(4)benz.), 7.97 (s superimposed,
1H, NH2), 7.93 (d superimposed, J = 9.2 Hz, 1H, H(7)benz.), 7.58–7.22 (m, 5H, H(6)benz.
and H(2′,3′,5′,6′)arom.), 4.34 (s superimposed, 2H, CH2-Ar), 4.40–4.18 (m superimposed, 2H,
CH2CH2-N(CH3)2), 2.37 (pseudo s, 5H, 3H CH3C=N- and 2H, CH2CH2-N(CH3)2), 2.13 (s, 6H,
N(CH3)2). 13C-NMR (50 MHz, DMSO-d6): 178.12, 153.82, 148.54, 142.00, 135.72, 135.61, 131.08, 130.87,
130.42 (2C), 128.01 (2C), 120.91, 117.77, 109.82, 57.71, 45.06 (2C), 41.39, 32.01, 14.00. Anal. calcd. for
C21H25ClN6S: % C 58.80, H 5.87, N 19.59, S 7.47; found: % C 58.68, H 5.57, N 19.82, S 7.11.

2-(1-{1-[2-(N,N-Dimethylamino)ethyl]-2-(4-ethoxybenzyl)-1H-benzo[d]imidazol-5-yl}-
ethylidene)hydrazine-1-carbothioamide (3): Yield: 47%; m.p. 177–180 ◦C. 1H NMR (200
MHz, DMSO-d6): 10.18 (s, 1H, NH), 8.23 (s, 1H, NH2), 8.11 (s, 1H, H(4)benz.), 7.96 (s superimposed,
1H, NH2), 7.92 (d superimposed, J = 8.6 Hz, 1H, H(7)benz.), 7.45 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.19
(d, J = 7.6 Hz, 2H, H(3′,5′)arom.), 6.87 (d, J = 8.0 Hz, 2H, H(2′,6′)arom.), 4.24 (pseudo s, 4H, CH2-Ar
and CH2CH2-N(CH3)2), 3.98 (d, J = 6.2 Hz, 2H, OCH2CH3), 2.37 (pseudo s, 5H, 3H CH3C=N- and
2H, CH2CH2-N(CH3)2), 2.12 (s, 6H, N(CH3)2), 1.41–1.18 (m, 3H, OCH2CH3). 13C-NMR (50 MHz,
DMSO-d6): 178.20, 156.87, 154.44, 148.58, 141.84, 135.79, 130.99 (2C), 129.36 (2C), 128.15, 120.42, 117.02,
114.04 (2C), 109.31, 62.54, 57.46, 45.03 (2C), 41.21, 31.91, 14.25, 14.00. Anal. calcd. for C23H30N6OS: % C
62.99, H 6.09, N 19.16, S 7.30; found: % C 63.12, H 6.48, N 19.16, S 7.07.
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2-{1-[2-(4-Chlorobenzyl)-1-[3-(N,N-dimethylamino)propyl]-1H-benzo[d]imidazol-5-yl]-
ethylidene}hydrazine-1-carbothioamide (4): Yield: 45%; m.p. 110–111 ◦C. 1H NMR (200
MHz, DMSO-d6): 10.18 (s, 1H, NH), 8.26 (s, 1H, NH2), 8.13 (s, 1H, H(4)benz.), 7.97 (s superimposed, 1H,
NH2), 8.10–7.87 (m superimposed, 1H, H(7)benz.), 7.47 (d superimposed, J = 8.6 Hz, 1H, H(6)benz.),
7.37 (pseudo s superimposed, 4H, H(2′,3′,5′,6′)arom.), 4.35 (s superimposed, 2H, CH2-Ar), 4.20
(pseudo s superimposed, 2H, CH2CH2CH2-N(CH3)2), 2.37 (pseudo s, 3H, CH3C=N-), 2.07 (pseudo s,
8H, N(CH3)2 and CH2CH2CH2-N(CH3)2), 1.69 (pseudo s, 2H, CH2CH2CH2-N(CH3)2). 13C-NMR (50
MHz, DMSO-d6): 178.22, 153.66, 148.54, 141.88, 135.64 (2C), 131.08, 130.90, 130.32 (2C), 128.06 (2C),
120.54, 117.11, 109.33, 55.17, 44.58 (2C), 40.74, 31.80, 26.59, 14.00. Anal. calcd. for C22H27ClN6S: % C
59,65, H 6.14, N 18.97, S 7.24; found: % C 59.51, H 6.18, N 19.24, S 7.18.

2-(1-{1-[2-(N,N-Diethylamino)ethyl]-2-(4-methoxybenzyl)-1H-benzo[d]imidazol-5-yl}-ethylidene)hydrazine-
1-carbothioamide (5): Yield: 35%; m.p. 165–168 ◦C. 1H NMR (200 MHz, DMSO-d6): 10.16 (s, 1H,
NH), 8.25 (s, 1H, NH2), 8.10 (s, 1H, H(4)benz.), 7.94 (s superimposed, 1H, NH2), 8.15-7.85 (m
superimposed, 1H, H(7)benz.), 7.43 (d superimposed, J = 8.6 Hz, 1H, H(6)benz.), 7.20 (d, J = 8.2 Hz,
2H, H(3′,5′)arom.), 6.89 (d, J = 7.8 Hz, 2H, H(2′,6′)arom.), 4.26 (s superimposed, 2H, CH2-Ar), 4.17
(pseudo s superimposed, 2H, CH2CH2-N(CH2CH3)2), 3.72 (s, 3H, OCH3), 2.58–2.24 (m superimposed
to DMSO, 6H, 2H CH2CH2-N(CH2CH3)2 and 4H CH2CH2-N(CH2CH3)2), 2.36 (s superimposed, 3H,
CH3C=N-), 0.78 (t, J = 6.6 Hz, 6H, N-(CH2CH3)2). 13C-NMR (50 MHz, DMSO-d6): 178.17, 157.61,
154.61, 148.61, 141.81, 135.75, 131.08, 130.87, 129.33 (2C), 128.31, 120.32, 117.01, 113.56 (2C), 109.31,
54.66, 51.33, 46.42 (2C), 41.03, 31.99, 13.95, 11.31 (2C). Anal. calcd. for C24H32N6OS: % C 63.69, H 7.13,
N 18.57, S 7.08; found: % C 63.51, H 6.77, N 18.84, S 7.16.

2-{1-[2-(4-Chlorobenzyl)-1-[2-(N,N-diethylamino)ethyl]-1H-benzo[d]imidazol-5-yl]-ethylidene}hydrazine-1-
carbothioamide (6): Yield: 37%; m.p. 190–192 ◦C. 1H NMR (200 MHz, DMSO-d6): 10.18 (s, 1H, NH), 8.25
(s, 1H, NH2), 8.11 (s, 1H, H(4)benz.), 7.96 (s superimposed, 1H, NH2), 8.10–7.85 (m superimposed, 1H,
H(7)benz.), 7.48–7.21 (m, 5H, H(6)benz. and H(2′,3′,5′,6′)arom.), 4.35 (s, 2H, CH2-Ar), 4.20 (pseudo s,
2H, CH2CH2-N(CH2CH3)2), 2.60-2.19 (m superimposed to DMSO, 6H, 2H CH2CH2-N(CH2CH3)2 and
4H CH2CH2-N(CH2CH3)2), 2.36 (s superimposed, 3H, CH3C=N-), 0.76 (t, J = 6.6 Hz, 6H, N(CH2CH3)2).
13C-NMR (50 MHz, DMSO-d6): 178.13, 153.94, 148.59, 141.92, 135.64 (2C), 131.12 (2C), 130.38 (2C),
128.03 (2C), 120.29, 117.09, 109.52, 51.93, 46.43 (2C), 41.08, 32.03, 14.01, 11.31 (2C). Anal. calcd. for
C23H29ClN6S: % C 60.44, H 6.40, N 18.39, S 7.01; found: % C 60.57, H 6.45, N 18.52, S 7.10.

2-(1-{1-[2-(N,N-Diethylamino)ethyl]-2-(4-ethoxybenzyl)-1H-benzo[d]imidazol-5-yl}-ethylidene)hydrazine-1-
carbothioamide (7): Yield: 47%; m.p. 189–192.5 ◦C. 1H NMR (200 MHz, DMSO-d6): 10.18 (s, 1H, NH),
8.24 (s, 1H, NH2), 8.10 (s, 1H, H(4)benz.), 7.94 (s superimposed, 1H, NH2), 8.05–7.85 (m superimposed,
1H, H(7)benz.), 7.42 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.19 (d, J = 8.4 Hz, 2H, H(3′,5′)arom.), 6.87 (d, J =

8.4 Hz, 2H, H(2′,6′)arom.), 4.27 (s superimposed, 2H, CH2-Ar), 4.18 (pseudo s superimposed, 2H,
CH2CH2-N(CH2CH3)2), 3.98 (q, J = 7 Hz, 2H, OCH2CH3), 2.60-2.23 (m superimposed to DMSO, 6H,
2H CH2CH2-N(CH2CH3)2 and 4H CH2CH2-N(CH2CH3)2), 2.37 (s superimposed, 3H, CH3C=N-), 1.30
(t, J = 6.8 Hz, 3H, OCH2CH3), 0.78 (t, J = 6.6 Hz, 6H, N(CH2CH3)2). 13C-NMR (50 MHz, DMSO-d6):
178.20, 156.87, 154.60, 148.60, 141.85, 135.75, 130.89, 129.32 (2C), 128.19, 120.32, 117.03, 114.06 (2C),
109.31, 62.55, 51.46, 46.41 (2C), 41.06, 32.01, 14.25, 13.97, 11.32 (2C). Anal. calcd. for C25H34N6OS: % C
64.35, H 7.34, N 18.01, S 6.87; found: % C 64.30, H 7.51, N 18.10, S 6.77.

2-(1-{2-Benzyl-1-[3-(N,N-diethylamino)propyl]-1H-benzo[d]imidazol-5-yl}ethylidene)-hydrazine-1-
carbothioamide (8): Yield: 38%; m.p. 168–169 ◦C. 1H NMR (200 MHz, DMSO-d6): 10.19 (s,
1H, NH), 8.27 (s, 1H, NH2), 8.14 (s, 1H, H(4)benz.), 7.97 (s superimposed, 1H, NH2), 8.03–7.87 (m
superimposed, 1H, H(7)benz.), 7.47 (d, J = 8.2 Hz, 1H, H(6)benz.), 7.31 (s, 5H, H(2′,3′,4′,5′,6′)arom.),
4.34 (s, 2H, CH2-Ar), 4.19 (pseudo s, 2H, CH2CH2CH2-N(CH2CH3)2), 2.37 (s, 3H, CH3C=N-), 2.45–2.19
(m, 9H, 4H N(CH2CH3)2, 2H CH2CH2CH2-N(CH2CH3)2 and 3H CH3C=N-), 1.63 (pseudo s, 2H,
CH2CH2CH2-N(CH2CH3)2), 0.90 (pseudo s, 6H, N(CH2CH3)2). 13C-NMR (50 MHz, DMSO-d6): 178.20,
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153.90, 148.58, 141.93, 136.59, 135.60, 131.02, 128.25 (2C), 128.16 (2C), 126.23, 120.45, 117.11, 109.31,
48.66, 45.56 (2C), 41.03, 32.65, 26.16, 14.01, 11.05 (2C). Anal. calcd. for C24H32N6S: % C 66.02, H 7.39, N
19.25, S 7.34; found % C 65.84, H 7.53, N 19.37, S 7.58.

2-(1-{1-[3-(N,N-Diethylamino)propyl]-2-(4-methoxybenzyl)-1H-benzo[d]imidazol-5-yl}ethylidene)hydrazine-1-
carbothioamide (9): Yield: 38%; m.p. 180.7–182.9 ◦C. 1H NMR (200 MHz, DMSO-d6): 10.18 (s, 1H, NH),
8.24 (s, 1H, NH2), 8.12 (s, 1H, H(4)benz.), 7.95 (s superimposed, 1H, NH2), 8.03-7.85 (m superimposed,
1H, H(7)benz.), 7.45 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.21 (d, J = 8.4 Hz, 2H, H(3′,5′)arom.), 6.88 (d,
J = 8.2 Hz, 2H, H(2′,6′)arom.), 4.26 (s superimposed, 2H, CH2-Ar), 4.16 (pseudo s superimposed,
2H, CH2CH2CH2-N(CH2CH3)2), 3.71 (s, 3H, OCH3), 2.37 (s, 3H, CH3C=N-), 2.42-2.17 (m, 6H, 4H
N(CH2CH3)2 and 2H CH2CH2CH2-N(CH2CH3)2), 1.61 (pseudo s, 2H, CH2CH2CH2-N(CH2CH3)2),
0.89 (t, J = 6.8 Hz, 6H, N(CH2CH3)2). 13C-NMR (50 MHz, DMSO-d6): 178.20, 157.62, 154.23, 148.60,
141.92, 135.63, 130.97, 129.23 (2C), 128.34, 120.40, 117.07, 113.55 (2C), 109.26, 54.62, 48.75, 45.56 (2C),
41.04, 31.84, 26.23, 14.00, 11.16 (2C). Anal. calcd. for C25H34N6OS: % C 64.35, H 7.34, N 18.01, S 6.87;
found % C 64.19, H 7.74, N 17.96, S 6.85.

2-(1-{2-[(2H-Benzo[d][1,2,3]triazol-2-yl)methyl]-1-[2-(N,N-dimethylamino)ethyl]-1H-benzo[d]imidazol-5-
yl}ethylidene)hydrazine-1-carbothioamide (18): Yield: 46%; m.p. 214–217 ◦C. 1H NMR (200 MHz,
DMSO-d6): 10.19 (s, 1H, NH), 8.26 (s, 1H, NH2), 8.14 (s, 1H, H(4)benz.), 8.07–7.85 (m, 4H, 1H
H(7)benz., 1H NH2 and 2H H(4′,7′)bzt.), 7.55 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.52–7.39 (m, 2H,
H(5′,6′)bzt.), 6.44 (s, 2H, CH2-Ar), 4.44 (pseudo s, 2H, CH2CH2-N(CH3)2), 2.43-2.29 (m superimposed,
2H, CH2CH2-N(CH3)2), 2.36 (s, 3H, CH3C=N-), 2.14 (s, 6H, N(CH3)2). 13C-NMR (50 MHz, DMSO-d6):
178.24, 148.60, 148.23, 143.58 (2C), 141.49, 135.68, 131.65, 126.43 (2C), 121.45, 117.74, 117.54 (2C), 109.91,
57.79, 52.31, 45.08 (2C), 41.84, 13.96. Anal. calcd. for C21H25N9S: % C 57.91, H 5.79, N 28.94, S 7.36;
found % C 57.90, H 5.90, N 28.64, S 7.22.

2-(1-{2-[(2H-Benzo[d][1,2,3]triazol-2-yl)methyl]-1-[3-(N,N-dimethylamino)propyl]-1H-benzo[d]imidazol-5-
yl}ethylidene)hydrazine-1-carbothioamide (19): Yield: 31%; m.p. 212–214 ◦C. 1H NMR (200 MHz,
DMSO-d6): 10.19 (s, 1H, NH), 8.26 (s, 1H, -NH2), 8.14 (s, 1H, H(4)benz.), 8.06–7.80 (m, 4H, 1H
H(7)benz., 1H NH2 and 2H H(4′,7′)bzt.), 7.68–7.50 (m, 1H, H(6)benz.), 7.47 (pseudo s superimposed,
2H, H(5′,6′)bzt.), 6.47 (s, 2H, CH2-Ar), 4.39 (pseudo s, 2H, CH2CH2CH2-N(CH3)2), 2.36 (s, 3H,
CH3C=N-), 2.21–1.90 (m superimposed, 2H, CH2CH2CH2-N(CH3)2), 2.05 (s superimposed, 6H,
N(CH3)2), 1.73 (pseudo s, 2H, CH2CH2CH2-N(CH3)2). 13C-NMR (50 MHz, DMSO-d6): 178.25, 148.38,
148.25, 143.56 (2C), 141.61, 135.48, 131.66, 126.40 (2C), 121.47, 117.77, 117.53 (2C), 109.94, 54.86, 52.01,
44.41 (2C), 41.11, 26.30, 13.96. Anal. calcd. for C22H27N9S: % C 58.77, H 6.05, N 28.04, S 7.13; found %
C 58.88, H 5.96, N 27.78, S 7.33.

2-(1-{2-[(2H-Benzo[d][1,2,3]triazol-2-yl)methyl]-1-[3-(N,N-diethylamino)propyl]-1H-benzo[d]imidazol-5-
yl}ethylidene)hydrazine-1-carbothioamide (21): Yield: 78%; m.p. 214–216 ◦C. 1H NMR (200 MHz,
DMSO-d6): 10.18 (s, 1H, NH), 8.27 (s, 1H, NH2), 8.13 (s, 1H, H(4)benz.), 8.09–7.86 (m, 4H, 1H H(7)benz.,
1H NH2 and 2H H(4′,7′)bzt.), 7.55 (d, J = 8.8 Hz, 1H, H(6)benz.), 7.53–7.39 (m, 2H, H(5′,6′)bzt.), 6.47
(s, 2H, CH2-Ar), 4.40 (pseudo s, 2H, CH2CH2-N(CH2CH3)2), 2.67–2.25 (m superimposed to DMSO,
6H, 2H CH2CH2-N(CH2CH3)2 and 4H N(CH2CH3)2), 2.36 (s, 3H, CH3C=N-), 0.77 (t, J = 6.8 Hz, 6H,
N(CH2CH3)2). 13C-NMR (50 MHz, DMSO-d6): 178.25, 148.82, 148.25, 143.59 (2C), 141.52, 135.58,
131.54, 126.40 (2C), 121.34, 117.74, 117.54 (2C), 109.88, 52.43, 51.68, 46.55 (2C), 42.29, 13.91, 11.26 (2C).
Anal. calcd. for C23H29N9S: % C 59.59, H 6.31, N 27.19, S 6.92; found % C 59.61, H 6.54, N 27.06, S 7.15.

2-(1-{2-[(2H-Benzo[d][1,2,3]triazol-1-yl)methyl]-1-[3-(N,N-dimethylamino)propyl]-1H-benzo[d]imidazol-
5-yl}ethylidene)hydrazine-1-carbothioamide (22): Yield: 34%; m.p. 201–203 ◦C. 1H NMR (200 MHz,
DMSO-d6): 10.17 (s, 1H, NH), 8.23 (s, 1H, NH2), 8.12 (s superimposed, 1H, H(4)benz.), 8.18–8.05 (m,
1H, H(7′)bzt.), (s, 1H, NH2), 8.02–7.93 (m, 2H, 1H H(4′)bzt. and 1H NH2), 7.89 (d, J = 8.6 Hz, 1H
H(7)benz.), 7.63-7.50 (m, 2H, H(5′,6′)bzt.), 7.45 (d, J = 8.4 Hz, 1H, H(6)benz.), 6.45 (s, 2H, CH2-Ar),
4.42 (pseudo s, 2H, CH2CH2CH2-N(CH3)2), 2.33 (s, 3H, CH3C=N-), 2.35–1.90 (m superimposed, 2H,
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CH2CH2CH2-N(CH3)2), 2.13 (s, 6H, N(CH3)2), 1.79 (pseudo s, 2H, CH2CH2CH2-N(CH3)2). 13C-NMR
(50 MHz, DMSO-d6): 178.21, 148.98, 148.25, 144.91, 141.50, 135.61, 132.87, 131.58, 127.23, 123.80, 121.39,
118.85, 117.62, 110.61, 109.89, 54.86, 44.43 (2C), 44.03, 41.02, 26.27, 13.90. Anal. calcd. for C22H27N9S: %
C 58.77, H 6.05, N 28.04, S 7.13; found % C 58.92, H 6.18, N 28.06, S 6.84.

3.1.3. General Procedure for the Preparation of Semicarbazones

To a solution of the proper 5-acetyl benzimidazole (0.80 mmol) in ethanol (2 mL), a solution of
semicarbazide hydrochloride (2.4 mmol) previously dissolved in 8 mL of a 1N solution of sodium
acetate was added. The mixture was refluxed for 4h under stirring. After evaporation of the solvent,
the oily residue was treated with warm water to get rid of the remaining semicarbazide. The crude
was purified by CC (SiO2, CH2Cl2+5% DEA), obtaining the title compound as a white solid.

2-(1-{1-[2-(N,N-Dimethylamino)ethyl]-2-(4-methoxybenzyl)-1H-benzo[d]imidazol-5-yl}-
ethylidene)hydrazine-1-carboxamide (10): Yield: 69%; m.p. 203–205 ◦C. 1H NMR (200 MHz,
DMSO-d6): 9.28 (s, 1H, NH), 7.98 (s, 1H, H(4)benz.), 7.83 (d, J = 8.8 Hz, 1H, H(7)benz.), 7.43 (d, J = 8.6
Hz, 1H, H(6)benz.), 7.21 (d, J = 8.6 Hz, 2H, H(3′,5′)arom.), 6.89 (d, J = 8.6 Hz, 2H, H(2′,6′)arom.), 6.50
(broad s, 2H, NH2), 4.24 (s superimposed, 2H, CH2-Ar), 4.39–4.17 (m, 2H, CH2CH2-N(CH3)2), 3.72 (s,
3H, OCH3), 2.41-2.20 (m superimposed, 2H, CH2CH2-N(CH3)2), 2.25 (s superimposed, 3H, CH3C=N-),
2.12 (s superimposed, 6H, N(CH3)2). 13C-NMR (50 MHz, DMSO-d6): 157.63, 157.09, 154.20, 144.64,
141.86, 135.23, 131.78, 129.37 (2C), 128.34, 119.88, 116.18, 113.56 (2C), 109.25, 57.45, 54.67, 45.04 (2C),
41.12, 31.91, 13.38. Anal. calcd. for C22H28N6O2: % C 64.68, H 6.91, N 20.57; found % C 64.70, H 6.67,
N 20.35.

2-{1-[2-(4-Chlorobenzyl)-1-[2-(N,N-dimethylamino)ethyl]-1H-benzo[d]imidazol-5-yl}-ethylidene)hydrazine-
1-carboxamide (11): Yield: 59%; m.p. 217–220 ◦C. 1H NMR (200 MHz, DMSO-d6): 9.29 (s, 1H,
NH), 7.99 (s, 1H, H(4)benz.), 7.83 (d, J = 8.2 Hz, 1H, H(7)benz.), 7.48–7.24 (m, 5H, H(7)benz. and
H(2′,3′,5′,6′)arom.), 6.52 (broad s, 2H, NH2), 4.33 (s superimposed, 2H, CH2-Ar), 4.41-4.17 (m
superimposed, 2H, CH2CH2-N(CH3)2), 3.72 (s, 3H, OCH3), 2.42-2.30 (m, 2H, CH2CH2-N(CH3)2), 2.26
(s, 3H, CH3C=N-), 2.13 (s, 6H, N(CH3)2). 13C-NMR (50 MHz, DMSO-d6): 157.11, 153.57, 144.64, 141.83,
135.66, 135.16, 131.88, 130.87, 130.39 (2C), 128.03 (2C), 120.01, 116.23, 109.34, 57.57, 45.05 (2C), 41.18,
31.92, 13.37. Anal. calcd. for C21H25ClN6O: % C 61.08, H 6.10, N 20.35; found % C 61.08, H 5.95,
N 20.65.

2-(1-{1-[2-(N,N-Dimethylamino)ethyl]-2-(4-ethoxybenzyl)-1H-benzo[d]imidazol-5-yl}-ethylidene)hydrazine-
1-carboxamide (12): Yield: 38%; m.p. 210–213 ◦C. 1H NMR (200 MHz, DMSO-d6): 9.28 (s, 1H, NH), 7.99
(s, 1H, H(4)benz.), 7.83 (d, J = 8.6 Hz, 1H, H(7)benz.), 7.43 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.19 (d, J = 7.4
Hz, 2H, H(3′,5′)arom.), 6.87 (d, J = 7.6 Hz, 2H, H(2′,6′)arom.), 6.50 (broad s, 2H, NH2), 4.24 (pseudo s,
4H, CH2-Ar and CH2CH2-N(CH3)2), 3.98 (q, J = 6.8 Hz, 2H, OCH2CH3), 2.41-2.18 (m superimposed,
2H, CH2CH2-N(CH3)2), 2.25 (s superimposed, 3H, CH3C=N-), 2.12 (s, 6H, N(CH3)2), 1.30 (t, J = 6.8 Hz,
3H, OCH2CH3). 13C-NMR (50 MHz, DMSO-d6): 157.09, 156.87, 154.20, 144.64, 141.87, 135.23, 131.79,
129.34 (2C), 128.21, 119.88, 116.19, 114.06 (2C), 109.25, 62.56, 57.44, 45.03 (2C), 41.13, 31.92, 14.25, 13.38.
Anal. calcd. for C23H30N6O2: % C 65.38, H 7.16, N 19.89; found % C 65.56, H 7.48, N 19.70.

2-{1-[2-(4-Chlorobenzyl)-1-[3-(N,N-dimethylamino)propyl]-1H-benzo[d]imidazol-5-yl}-ethylidene)hydrazine-
1-carboxamide (13): Yield: 67%; m.p. 211–212.5 ◦C. 1H NMR (200 MHz, DMSO-d6): 9.29 (s, 1H,
NH), 8.00 (s, 1H, H(4)benz.), 7.83 (d, J = 8.2 Hz, 1H, H(7)benz.), 7.47–7.20 (m, 5H, H(6)benz.
and H(2′,3′,5′,6′)arom.), 6.51 (broad s, 2H, NH2), 4.34 (s, 2H, CH2-Ar), 4.26–4.13 (m, 2H,
CH2CH2CH2-N(CH3)2), 2.26 (s, 3H, CH3C=N-), 2.20–1.98 (m, 8H, 2H CH2CH2CH2-N(CH3)2 and 6H
N(CH3)2), 1.81–1.58 (m, 2H, CH2CH2CH2-N(CH3)2. 13C-NMR (50 MHz, DMSO-d6): 157.08, 153.40,
144.58, 141.90, 135.69, 135.07, 131.87, 130.89, 130.29 (2C), 128.06 (2C), 119.98, 116.27, 109.28, 55.17, 44.58
(2C), 40.71, 31.80, 26.59, 13.37. Anal. calcd. for C22H27ClN6O: % C 61.89, H 6.37, N 19.68; found % C
62.09, H 6.63, N 19.89.
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2-(1-{1-[2-(N,N-Diethylamino)ethyl]-2-(4-methoxybenzyl)-1H-benzo[d]imidazol-5-yl}-ethylidene)hydrazine-
1-carboxamide (14): Yield: 72%; m.p. 207–209 ◦C. 1H NMR (200 MHz, DMSO-d6): 9.26 (s, 1H, NH), 7.98
(s, 1H, H(4)benz.), 7.84 (d, J = 8.6 Hz, 1H, H(7)benz.), 7.41 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.20 (d, J = 8.8
Hz, 2H, H(3′,5′)arom.), 6.89 (d, J = 8.8 Hz, 2H, H(2′,6′)arom.), 6.49 (broad s, 2H, NH2), 4.27 (s, 2H,
CH2-Ar), 4.22–4.09 (m, 2H, CH2CH2-N(CH2CH3)2), 3.72 (s, 3H, OCH3), 2.50–2.36 (m superimposed to
DMSO, 6H, 2H CH2CH2-N(CH2CH3)2 and 4H CH2CH2-N(CH2CH3)2), 2.26 (s, 3H, CH3C=N-), 0.78 (t,
J = 7.0 Hz, 6H, N(CH2CH3)2). 13C-NMR (50 MHz, DMSO-d6): 157.63, 157.09, 154.36, 144.67, 141.88,
135.20, 131.68, 129.30 (2C), 128.40, 119.76, 116.19, 113.57 (2C), 109.21, 54.66, 51.39, 46.45 (2C), 41.13,
32.02, 13.34, 11.39 (2C). Anal. calcd. for C24H32N6O2: % C 66.03, H 7.39, N 19.25; found % C 65.98, H
7.42, N 19.56.

2-{1-[2-(4-Chlorobenzyl)-1-[2-(N,N-diethylamino)ethyl]-1H-benzo[d]imidazol-5-yl}-ethylidene)hydrazine-
1-carboxamide (15): Yield: 56%; m.p. 196.5–198.5 ◦C. 1H NMR (200 MHz, DMSO-d6): 9.27 (s,
1H, NH), 7.97 (s, 1H, H(4)benz.), 7.85 (d, J = 8.6 Hz, 1H, H(7)benz.), 7.51–7.24 (m, 5H, H(6)benz.
and H(2′,3′,5′,6′)arom.), 6.50 (broad s, 1H, NH2), 4.34 (s, 2H, CH2-Ar), 4.19 (pseudo s, 2H,
CH2CH2-N(CH2CH3)2), 2.58-2.33 (m superimposed to DMSO, 6H, 2H CH2CH2-N(CH2CH3)2 and 4H
CH2CH2-N(CH2CH3)2), 2.25 (s superimposed, 3H, CH3C=N-), 0.76 (t, J = 6.4 Hz, 6H, N(CH2CH3)2).
13C-NMR (50 MHz, DMSO-d6): 157.09, 153.73, 144.62, 141.81, 135.68, 135.12, 131.74, 130.87, 130.34 (2C),
128.03 (2C), 119.88, 116.23, 109.32, 51.41, 46.43 (2C), 42.10, 32.04, 13.32, 11.23 (2C). Anal. calcd. for
C23H29ClN6O: % C 62.65, H 6.63, N 19.06; found: % C 62.58, H 6.50, N 19.26.

2-(1-{1-[3-(N,N-Diethylamino)propyl]-2-benzyl-1H-benzo[d]imidazol-5-yl}ethylidene)-hydrazine-
1-carboxamide (16): Yield: 32%; m.p. 185–189 ◦C. 1H NMR (200 MHz, DMSO-d6): 9.28 (s,
1H, NH), 8.01 (s, 1H, H(4)benz.), 7.82 (d, J = 8.6 Hz, 1H, H(7)benz.), 7.45 (d, J = 8.6 Hz, 1H, H(6)benz.),
7.30 (pseudo s, 5H, H(2′,3′,5′,6′)arom.), 6.50 (broad s, 1H, NH2), 4.33 (s, 2H, CH2-Ar), 4.17 (pseudo
s, 2H, CH2CH2CH2-N(CH2CH3)2), 2.47–2.27 (m superimposed, 6H, 2H CH2CH2CH2-N(CH2CH3)2

and 4H CH2CH2-N(CH2CH3)2), 2.26 (s superimposed, 3H, CH3C=N-), 1.62 (pseudo s, 2H,
CH2CH2CH2-N(CH2CH3)2), 0.90 (pseudo s, 6H, N(CH2CH3)2). 13C-NMR (50 MHz, DMSO-d6): 157.07,
153.64, 144.62, 141.95, 136.65, 135.04, 131.80, 128.22 (2C), 128.15 (2C), 126.20, 119.89, 116.26, 109.25,
48.69, 45.56 (2C), 41.10, 32.65, 26.17, 13.36, 11.06 (2C). Anal. calcd. for C24H32N6O: % C 68.54, H 7.67, N
19.98; found: % C 68.35, H 7.84, N 20.30.

2-(1-{1-[3-(N,N-Diethylamino)propyl]-2-(4-methoxybenzyl)-1H-benzo[d]imidazol-5-yl}-ethylidene)hydrazine-
1-carboxamide (17): Yield: 32%; m.p. 190–192 ◦C. 1H NMR (200 MHz, DMSO-d6): 9.28 (s, 1H, NH), 7.99
(s, 1H, H(4)benz.), 7.83 (d, J = 8.6 Hz, 1H, H(7)benz.), 7.44 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.21 (d, J = 7.0
Hz, 2H, H(3′,5′)arom.), 6.88 (d, J = 7.2 Hz, 2H, H(2′,6′)arom.), 6.51 (broad s, 2H, NH2), 4.25 (s, 2H,
CH2-Ar), 4.22-4.07 (m superimposed, 2H, CH2CH2CH2-N(CH2CH3)2), 3.71 (s, 3H, OCH3), 2.46–2.20
(m superimposed, 6H, 2H CH2CH2CH2-N(CH2CH3)2 and 4H N(CH2CH3)2), 2.26 (s, 3H, CH3C=N-),
1.60 (pseudo s, 2H, CH2CH2CH2-N(CH2CH3)2), 0.89 (pseudo s, 6H, N(CH2CH3)2). 13C-NMR (50
MHz, DMSO-d6): 157.61, 157.07, 153.98, 144.62, 141.95, 135.07, 131.75, 129.22 (2C), 128.40, 119.84,
116.23, 113.55 (2C), 109.20, 54.61, 48.76, 45.56 (2C), 41.29, 31.85, 26.24, 13.37, 11.15 (2C). Anal. calcd. for
C25H34N6O2: % C 66.64, H 7.61, N 18.65; found % C 66.38, H 7.56, N 18.31.

2-(1-{2-[(2H-Benzo[d][1,2,3]triazol-2-yl)methyl]-1-[2-(N,N-dimethylamino)ethyl]-1H-benzo[d]imidazol-
5-yl}ethylidene)hydrazine-1-carboxamide (20): Yield: 48%; m.p. 209–212 ◦C. 1H NMR (200 MHz,
DMSO-d6): 9.31 (s, 1H, NH), 8.03 (s, 1H, H(4)benz.), 8.00–7.85 (m, 3H, 1H H(7)benz., and 2H
H(4′,7′)bzt.), 7.59–7.41 (m, 3H, 1H H(6)benz. and 2H H(5′,6′)bzt.), 6.53 (broad s, 2H, NH2), 6.43 (s,
2H, CH2-Ar), 4.53-4.34 (m, 2H, CH2CH2-N(CH3)2), 2.46-2.34 (m, 2H, CH2CH2-N(CH3)2), 2.24 (s, 3H,
CH3C=N-), 2.14 (s, 6H, N(CH3)2). 13C-NMR (50 MHz, DMSO-d6): 157.03, 148.32, 144.29, 143.57 (2C),
141.52, 135.14, 132.42, 126.42 (2C), 120.95, 117.74, 117.54 (2C), 116.85, 109.85, 57.77, 52.30, 45.08 (2C),
41.56, 13.31. Anal. calcd. for C21H25N9O: % C 60.13, H 6.01, N 30.05; found % C 60.39, H 6.35, N 30.80.
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3.1.4. General Procedure for the Preparation of Hydrazones

A solution of NH2NH2 · H2O (2.5 mmol) in 3 mL of water was refluxed for 5 h with a solution of
the proper 5-acetyl benzimidazole (0.50 mmol) in 2.5 mL of ethanol with stirring. At room temperature,
5 mL of water were added and the solution was kept at 0–5 ◦C overnight. The expected product was
directly separated from the solution as an amorphous solid that was filtered and crystallized as a white
solid from anhydrous Et2O.

1-[2-(N,N-Dimethylamino)ethyl]-2-(4-methoxybenzyl)-5-(1-hydrazineylideneethyl)-1H-benzo[d]imidazole (23):
Yield: 53%; m.p. 175.5–176.5 ◦C. 1H NMR (200 MHz, DMSO-d6): 8.11 (s, 1H, H(4)benz.), 7.92 (pseudo
s, 1H, H(7)benz.), 7.55 (pseudo s, 1H, H(6)benz.), 7.22 (pseudo s, 2H, H(3′,5′)arom.), 6.91 (pseudo s, 2H,
H(2′,6′)arom.), 6.27 (broad s, 2H, NH2), 4.39–4.10 (m, 4H, CH2-Ar and CH2CH2-N(CH3)2), 3.73 (s, 3H,
OCH3), 2.61-2.28 (m superimposed to DMSO, 5H, 2H CH2CH2-N(CH3)2 and 3H CH3C=N-), 2.14 (s,
6H, N(CH3)2). 13C-NMR (50 MHz, DMSO-d6): 158.17, 157.66, 154.57, 141.84, 136.09, 131.58, 129.36 (2C),
128.28, 120.17, 116.89, 113.60 (2C), 109.53, 57.42, 54.67, 45.05 (2C), 41.13, 31.93, 14.53. Anal. calcd. for
C21H27N5O: % C 69.01, H 7.45, N 19.16; found % C 69.20, H 7.35, N 19.16.

1-[2-(N,N-diethylamino)ethyl]-2-(4-ethoxybenzyl)-5-(1-hydrazineylideneethyl)-1H-benzo[d]imidazole (24):
Yield: 44%; m.p. 80–82 ◦C. 1H NMR (200 MHz, DMSO-d6): 8.11 (s, 1H, H(4)benz.), 7.87 (d, J
= 8.6 Hz, 1H, H(7)benz.), 7.47 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.21 (pseudo s, 2H, H(3′,5′)arom.),
6.89 (pseudo s, 2H, H(2′,6′)arom.), 6.32 (broad s, 2H, NH2), 4.41–4.13 (m, 4H, 2H CH2-Ar and 2H
CH2CH2-N(CH2CH3)2), 3.97 (pseudo s, 2H, OCH2CH3), 2.58–2.27 (m superimposed to DMSO, 6H,
2H CH2CH2-N(CH2CH3)2 and 4H N(CH2CH3)2), 2.29 (s superimposed, 3H, CH3C=N-), 1.31 (t, J =

6.8 Hz, 3H, OCH2CH3), 0.78 (t, J = 6.8 Hz, 6H, N(CH2CH3)2). 13C-NMR (50 MHz, DMSO-d6): 158.18,
157.64, 154.24, 141.87, 135.89, 131.67, 129.23 (2C), 128.34, 120.04, 116.89, 113.78 (2C), 109.57, 62.67, 57.43,
45.09 (2C), 41.12, 31.91, 14.44, 13.98, 11.23 (2C). Anal. calcd. for C24H33N5O: % C 70.73, H 8.16, N 17.18;
found % C 70.67, H 8.47, N 17.43.

2-[(Benzotriazol-2-yl)methyl]-1-[2-(N,N-diethylamino)ethyl]-5-(1-hydrazineylideneethyl)-1H-benzo[d]imidazole
(25): Yield: 35%; m.p. 128–130 ◦C. 1H NMR (200 MHz, DMSO-d6): 8.01–7.87 (m, 2H, H(4′,7′)bzt.), 7.76 (s,
1H, H(4)benz.), 7.70 (d, J = 8.8 Hz, 1H, H(7)benz.), 7.60–7.38 (m, 3H, 1H H(6)benz. and 2H H(5′,6′)bzt.),
6.43 (s, 2H, CH2-Ar), 6.26 (broad s, 2H, NH2), 4.43-4.21 (m, 2H, CH2CH2-N(CH2CH3)2), 2.64–2.48 (m
superimposed to DMSO, 2H, CH2CH2-N(CH2CH3)2), 2.42 (q, J = 6.8 Hz, 4H, N(CH2CH3)2), 2.08 (s,
3H, CH3C=N-), 1.31 (t, J = 6.8 Hz, 3H, OCH2CH3), 0.76 (t, J = 6.8 Hz, 6H, N(CH2CH3)2). 13C-NMR (50
MHz, DMSO-d6): 158.04, 148.86, 147.97, 143.57, 141.42, 135.84, 134.07, 132.11, 126.49 (2C), 121.15, 117.51
(2C), 110.16, 52.31, 51.61, 46.49 (2C), 42.59, 14.52, 11.15 (2C). Anal. calcd. for C22H28N8: % C 65.32, H
6.98, N 27.70; found % C 65.57, H 6.69, N 27.58.

3.2. Biology

Antiviral Assays

The detailed antiviral procedures can be found elsewhere [24–27]. Briefly, human influenza viruses
A/HK/7/87 (A/H3N2), A/Ned/378/05 (A/H1N1) and B/Ned/537/05 (all from R. Fouchier, Rotterdam,
the Netherlands) were tested in Madin–Darby canine kidney (MDCK) cells, a kind gift from M.
Matrosovich (Marburg, Germany). Respiratory syncytial virus (RSV; strain Long) was evaluated on
human epithelial type 2 cells (Hep-2), and human coronavirus 229E was assessed on human embryonic
lung (HEL) fibroblast cells (all from ATCC). For the other viruses, we refer to our previous report [25].
Semiconfluent cultures of MDCK, Hep-2, Vero or HEL cells in 96-well plates were infected with viruses
at a multiplicity of infection of 100 CCID50 (50% cell culture infective dose). At the same time, serial
compound dilutions were added. The plates were incubated (at 35 ◦C for influenza and coronavirus,
and at 37 ◦C for the other viruses) for 4 to 6 days, until full-blown cytopathic effect (CPE) was visible.
At that time, microscopy was performed to score the viral CPE and compound cytotoxicity (assessed
in mock-infected plates). Next, the MTS cell viability reagent (CellTiter 96® AQueous One Solution
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Cell Proliferation Assay from Promega) was added, and after 3 h of incubation at 37 ◦C, the OD490nm

values were measured in a plate reader. The compounds’ EC50 (50% antivirally effective concentration)
values were calculated by interpolation using semi-log dose response curves. For the MTS data, the
percentage of protection against virus was defined as: ((ODCpd)virus− (ODContr)virus))/((ODContr)mock
− (ODContr)virus) × 100, where (ODCpd)virus is the OD for a given concentration of the compound in
virus-infected cells; (ODContr)virus is the OD for the untreated virus control; and (ODContr)mock is the
OD for the untreated mock-infected control. The values for CC50 (50% cytotoxic concentration) were
also calculated by interpolation using semi-log dose response curves. The percentage of cytotoxicity
was defined as: (1 − (ODCpd)mock/((ODContr)mock) × 100, where (ODCpd)mock is the OD for a given
concentration of the compound in mock-infected wells.

3.3. Molecular Modelling Studies

3.3.1. Docking Calculations

All the compounds were built, parameterized (Gasteiger-Huckel method) and energy minimized
within MOE using MMFF94 forcefield [34]. All ligands were used in their protonated state. Docking
calculations within the X-ray structure of RSV F protein (pdb code = 5KWW) were done using the
LeadIT 2.1.8 software suite (www.biosolveit.com) including the FlexX scoring algorithm, which is based
on binding free energy calculations by means of Gibbs–Helmholtz equation [35–37]. The software
detects the binding site defining a radius of 10 Å far from the co-crystallized ligand, in order to set up a
spherical search space for the docking approach. The standard settings for the docking strategy were
followed, choosing the so-called hybrid approach (enthalpy and entropy criteria); the related scoring
function evaluation is described in the literature [38]. The derived docking poses were prioritized
by the score values of the lowest energy pose of the compounds docked to the protein structure. All
ligands were refined and rescored by assessment with the algorithm HYDE, included in the LeadIT
2.1.8 software. The HYDE module considers dehydration enthalpy and hydrogen bonding [39,40].
Finally, the reliability of the selected docking poses was assessed using a short ~1 ps run of molecular
dynamics (MD) at constant temperature, followed by an all-atom energy minimization (LowModeMD
implemented in MOE software). This represents a conformational search method that uses implicit
vibrational analysis to focus a MD trajectory along the low-mode vibrations [41–43]. This has the
effect of searching for minima along the valleys and troughs on the potential energy surface, thereby
performing an exhaustive conformational analysis of the ligand–receptor binding site complex, as we
previously discussed about other case studies [44–46].

3.3.2. In Silico Evaluation of Pharmacokinetic Properties

ADME properties have been predicted by means of Advanced Chemistry Development (ACD)
Percepta platform (www.acdlabs.com) named ACD/Labs Percepta software (version 2.0). All of the
calculated parameters were derived and evaluated by Percepta on the basis of training libraries,
implemented in the software, which include a consistent number of molecules, whose pharmacokinetic
and toxicity profiles are known.

4. Conclusions

In summary, this study reports the synthesis of a series of (thio)semicarbazone- and
hydrazone-containing benzimidazoles for the development of novel antiviral agents which have
shown the ability to inhibit the replication of three human respiratory viruses. Acute viral respiratory
illnesses are usually the result of infections with a heterogeneous group of respiratory viruses, including
some of the most notable RNA viruses, such as influenza virus, coronavirus and RSV. The relative
infections continue to cause frequent morbidity, and sometimes cause severe outcomes, including
about 3.9 million deaths worldwide each year, particularly among children under five years, the elderly
and immunocompromised individuals [47,48]. This scenario enlightens the serious and important

www.biosolveit.com
www.acdlabs.com
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need for identifying new scaffolds that are useful in discovering innovative, highly potent and safe
antiviral agents [7].

Interestingly, our antiviral data suggest compounds 6, 8, 16 and 17 work as dual virus inhibitors
of influenza and coronavirus strains. In these series the (thio)semicarbazone and hydrazone
moieties have proven to mediate the observed antiviral activity of 2-benzylbenzimidazoles and
2-[(benzotriazol-1/2-yl)methyl]benzimidazole scaffolds, since the respective chemical precursor
5-acetylbenzimidazoles were found to be less effective or ineffective antiviral agents. It is worth noting
that, although the efficacy against human coronavirus (229E) is moderate, these compounds are the first
benzimidazole derivatives to be found as active against this virus. Their chemical optimization might
acquire greater importance in light of the current outbreak of the novel coronavirus (2019-nCoV); WHO
is calling for the urgent setting up of a complex network of strategies, which also look for accelerating
the development of diagnostics, vaccines and therapeutics to contain the pandemic proportion of
2019-nCoV infections [49].

Moreover, compounds 25 and 22 proved to be the most potent and safe antivirals among these
series, being able to inhibit RSV replication with the same degree of potency of ribavirin, w is the
only drug available to treat RSV infections, but its limited efficacy and low margin of safety restrict
its use to children at high risk [50]. Docking studies also performed on the best performing RSV F
protein inhibitors reported in the literature supported the SAR observed in these series of compounds,
and enlightened the efficient binding modes of 25 and 22 at the exposed surface of the RSV F protein,
establishing π-π stacking and cation-π interactions with the hydrophobic pocket formed by F137, F140
and F488 residues.

Therefore, the above adequately substituted (thio)semicarbazone- and hydrazone-based
benzimidazoles, inhibiting the replication of the aforementioned viruses, may be considered as
promising new hits, worthy of further structural optimization for an improved antiviral profile, as a
result of the chemical variation of the benzimidazole core: (a) by exploring different side chains in
position 1 and/or (b) replacing the benzyl or (benzotriazolyl)methyl moieties with different aromatic or
heteroaromatic rings. In particular, with the aim of obtaining more effective and drug-like anti-RSV
agents, the design process will be driven by the previously built CoMFA and CoMSIA models, filtering
tools predicting the safety trend of any new analogue prior to synthesis [19]. Meanwhile, as some
compounds are able to target both influenza virus and coronavirus, their underlying possible common
mechanisms of viral inhibition are worth investigation.

Supplementary Materials: The following are available online, Figure S1, Docking positioning of the RSV F
protein inhibitor 25 and of the inactive analogue 21, Figure S2, Docking positioning of the RSV F protein of the
inactive analogues 19 and 21, Figure S3, Docking positioning of the RSV F protein inhibitor 22 and of the inactive
analogue 4.
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