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Abstract
Geographically structured phenotypic selection can lead to adaptive divergence. However,

in flowering plants, such divergent selection has rarely been shown, and selection on floral

signals is generally little understood. In this study, we measured phenotypic selection on

display size, floral color, and floral scent in four lowland and four mountain populations of

the nectar-rewarding terrestrial orchidGymnadenia odoratissima in two years. We also

quantified population differences in these traits and pollinator community composition. Our

results show positive selection on display size and positive, negative, or absence of selec-

tion on different scent compounds and floral color. Selection on the main scent compounds

was consistently stronger in the lowlands than in the mountains, and lowland plants emitted

higher amounts of most of these compounds. Pollinator community composition also dif-

fered between regions, suggesting different pollinators select for differences in floral vola-

tiles. Overall, our study is the first to document consistent regional differences in selection

on floral scent, suggesting this pattern of selection is one of the evolutionary forces contrib-

uting to regional divergence in floral chemical signaling.

Introduction
One of the most intriguing characteristics of angiosperms is their striking floral diversity. Floral
traits like size, shape, color, and scent act as visual or olfactory signals attracting pollinators [1,
2], but also impact on plant-herbivore interactions [3]. Adaptation to specific pollinators plays
an important role in the evolution of flower diversity in angiosperms [4–6]. Pollinators show
preferences towards different floral signals [7–10]. Therefore, pollinators can select for floral
signal divergence [11–13] and facilitate diversification in floral signals within and between
plant species [2].

At the intraspecific level, geographically structured divergence in floral traits is common
[14]. Also, differences in pollinator communities in widely distributed plant species, particu-
larly along altitudinal gradients, are commonly found [15–19]. Regional differences in pollina-
tor communities, can impose divergent selection, resulting in complex geographical selection
mosaics [20–23]. In several plant species, studies suggest that divergence in floral morphology
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such as spur length or the extent of herkogamy, as well as in floral color results from regional
differences in pollinator communities (e.g., [9, 24–27]. However, in most studies, evidence for
divergent natural selection as the cause for floral-trait divergence is not compelling, and trait
divergence could also result from phenotypic plasticity or genetic drift [14]. In particular, the
causes for regional divergence in floral signals, particularly floral scent, are not well understood
[28–32].

Floral scent as well as floral color are key traits for plant-insect interactions [2]. Through
several functional studies we know that floral scent, which is usually a complex bouquet of vol-
atile organic compounds (VOCs), can have different functions ranging from attraction of polli-
nators to deterring antagonists [33, 34]. Floral scent often shows considerable variation both
regionally and between plant species [1]. Despite the undisputed importance of floral scent for
plant reproductive success, few studies on floral trait evolution have incorporated this trait. As
a consequence, we know little about the relative importance of scent in mediating plant-polli-
nator interactions and its role in adaptive plant diversification. Floral color, on the other hand,
is a relatively well investigated sensory modality and plays a role in many aspects of plant-polli-
nator interactions [35–37]. Thus, selection on color mediated by the pollinator’s preferences
can be expected and was detected in some [25, 38] but not in all past studies focusing on this
floral signal [39, 40].

In the present study, we measured phenotypic selection on floral signals in several lowland
and mountain populations in the orchid Gymnadenia odoratissima; most of these populations
were investigated in two consecutive flowering seasons. In total, 1028 plants were analyzed.
Gymnadenia odoratissima grows over a wide altitudinal range, from lowlands to the alpine
zone [41]. It produces nectar in a short floral spur and has a functionally specialized pollination
system (sensu [42], with a range of primarily lepidopteran pollinators [33, 43, 44]. In Switzer-
land, where we conducted the study, G. odoratissima forms locally abundant populations,
making it a viable system to investigate geographically structured differences in phenotypic
selection in relationship to differences in pollinator community composition. Floral signals dif-
fer considerably between lowland and mountain G. odoratissima plants [44]. In our study we
investigated phenotypic selection on floral signals, and in particular patterns of divergent
selection by addressing the following questions: (i) Which floral signals are under phenotypic
selection in lowland and mountain populations? (ii) Does selection on floral signals differ con-
sistently between altitudinal regions and within regions among populations? (iii) Does spatial
and/or temporal variation in selection differ between different visual and olfactory floral sig-
nals? (iv) How do pollinator communities and floral signals differ between regions and/or
between populations within regions? Does herbivory contribute to selection?

Materials and Methods

Study species and populations
The terrestrial orchid Gymnadenia odoratissima (L.) L.C.M. Rich. (common name: Short-
Spurred Fragrant Orchid) has a geographic distribution restricted to the temperate zone of
Europe [45, 46] and grows almost exclusively on calcareous soil from the lowlands to the alpine
zone [41]. In Switzerland, where we conducted the study, G. odoratissima occurs within an alti-
tudinal range from 300 to 2400 m a.s.l. and grows in locally abundant populations. Like many
orchids, G. odoratissima is perennial but does not flower every year. In flowering plants, a sin-
gle inflorescence consisting of approximately 10–140 flowers is produced. Floral color ranges
from dark purple to pale pink in the lowlands and from pink to white in the mountains. The
species is self-compatible but largely outcrossing and the strong, sweet floral scent is important
to attract pollinators [33]. Six scent compounds (mostly aromatics) were shown to elicit
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electrophysiological (EAD) responses in olfactory neurons of pollinator insects, and one of
these compounds (phenylacetaldehyde) was also found to attract pollinators in the field [33].
We conducted the present study in eight natural populations–four lowland populations in
north-eastern Switzerland (Döttingen, Remigen, Linn, and Rossweid; 500–650 m a.s.l.) and
four mountain populations in south-eastern Switzerland (Schatzalp, Münstertal, Albulapass,
and Corviglia; 1800–2250 m a.s.l.)–and between 2010 and 2012 (S1 Table). The ‘Departement
Bau, Verkehr und Umwelt; Abteilung Landschaft und Gewässer; Sektion Natur und Land-
schaft’ from Kanton Aargau, Switzerland, the ‘Amt für Landschaft und Natur; Fachstelle Nat-
urschutz’ from Kanton Zurich, Switzerland, and the ‘Amt für Natur und Umwelt; Abteilung
Natur und Landschaft’ from the Kanton Grisons, Switzerland provided collection permits.

Measurement of floral signals
Our study was conducted in three lowland and three mountain populations in 2010, and in
four lowland and three mountain populations in 2011; in three of these populations in the low-
lands and in two in the mountains, we investigated plants in both years (S1 Table). When most
plants were in full flower in a population (lowland: end of June to mid-July, mountain: mid-
July to mid-August), we marked individual plants along a transect. In each population and
year, 100 plants were marked, except in the lowland population Remigen (60 plants) and the
mountain population Schatzalp (99 plants) in 2011 (S1 Table). Two to four days were needed
to measure the floral signals of all marked plants in a population.

We measured plant height (ground to uppermost flower) and inflorescence length (calcu-
lated as the difference between plant height and stem length [ground to lowermost flower]) to
the nearest centimeter using a measuring tape. In addition, we counted the total number of
flowers. Plant height, inflorescence length, and the total number of flowers were used as three
measures of display size in further analyses.

We collected floral scent for 30 min at some time between 9:00 a.m. and 7:00 p.m. on days
without rain using headspace sorption, a non-invasive method that does not damage the plant
from which scent is collected. Due to the large number of plants (n> 1000 plants), and the
length of time required for scent collection, it was not possible to collect scent at the same time
for all plants; changes in scent emission during the day are, however, negligible in G. odoratis-
sima (unpublished data). We enclosed the inflorescence of each individual in an oven bag
(Nalophan1) tied closed with short pieces of florist wire. A small glass tube, filled with
approximately 20 mg 80/100 mesh Tenax1 absorbent powder (Supelco, Bellefonte, PA, USA;
called “filter” hereafter), was inserted into each bag. The filter was connected to a battery-oper-
ated vacuum pump (PAS-500 Micro Air Sampler, Spectrex, Redwood City, CA, USA) using
a silicone tube. Air was vacuum pumped out of the bag through the filter at a rate of 150 ml
min-1, trapping the floral volatiles on the Tenax1 adsorbent. We collected air from one to two
empty bags per population to control for contaminants from the surrounding air. After scent
collection, we wrapped the filters’ ends with PTFE (Teflon1) thread seal tape and packed each
individual filter in aluminum foil or in a small glass vial. Filters were stored in a -30°C freezer
until analysis. Samples were analyzed by gas chromatography with mass selective detection
(GC-MSD). A thermal desorption system (TDS3, Gerstel, Mühlheim an der Ruhr, Germany;
solvent vent mode (splitless) with a cold injection system (CIS4, Gerstel, Mühlheim an der
Ruhr, Germany) was used to inject samples into an Agilent GC 6890N gas chromatograph
(Agilent Technologies, Palo Alto, CA, USA), which was equipped with an HP-5 column
(0.25 mm diameter, 0.32 μm film thickness, 30 m length), and helium was used as carrier gas at
a flow rate of 1.9 ml min-1. The TDS temperature was programmed to rise from 30°C (0.5 min
hold) to 240°C (1 min hold) at 60°C min-1 for thermal desorption; the CIS temperature was
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-150°C during thermal desorption and was programmed to rise from -150°C (0.5 min hold) to
150°C at 16°C s-1 and from 150°C to 250°C (0.5 min hold) at 12°C s-1 for injection. The GC
oven temperature was programmed to rise from 50°C to 230°C at 8°C min-1. The GC was con-
nected to an Agilent MSD 5975 mass selective detector (Agilent Technologies, Palo Alto, CA,
USA). Compounds were identified by comparing obtained mass spectra with those from the
NIST spectral reference database (NIST 05) implemented in the ChemStation Enhanced Data
Analysis program (G1701EA E.02.02 MSD Productivity ChemStation Software, Agilent Tech-
nologies, Germany). Compound identification was verified by comparing obtained mass spec-
tra with those of synthetic standards of all compounds. One or two concentrations of these
synthetic standard compounds were analyzed to obtain calibration curves using the peak area
of a compound-specific qualifier ion. The calibration curves were employed to convert the
peak areas of the compound-specific qualifier ions in the G. odoratissima samples into nano-
grams using the ChemStation program. We manually double-checked all samples and com-
pounds and, if necessary, manually integrated the peak area. For analysis, we calculated
compound amounts in nanograms per liter sampled air per inflorescence. We included a com-
pound as floral scent compound when it met the following criteria: (i) its median concentration
for air controls was lower than 80% of its mean concentration for plant samples in the corre-
sponding population for at least one year, and (ii) its mean concentration for plant samples
was higher than 0.5 ng l-1 per inflorescence in both years. Applying these criteria resulted in a
list of 22 floral scent compounds.

Floral color was only measured in 2011. Due to time constraints during field work, floral
color was quantified as categorical intensity rather than by spectrophotometry. We cut off two
open flowers per individual (one from the bottom and another from the top of the inflores-
cence), placed them on a white paper, and photographed them. We determined five flower
photographs as standards according to 1 “white”, 2 “pinkish white”, 3 “light pink”, 4 “pink”,
and 5 “purple”. The color of all other photographed flowers was classified on a computer screen
using these standards. This simplified color assessment is justifiable in G. odoratissima as spec-
tral reflectance of its flowers is restricted to the wavelength range visible for the human eye,
and floral color differences primarily result from differences in the relative spectral reflectance
in the wavelength range between 488 nm and 636 nm [44].

Female reproductive success
Upon maturation, number of fruits generated by the plants of which floral signals were mea-
sured was counted. Some plants or labels were missing due to browsing herbivores and mow-
ing. Fitness was estimated by calculating relative female reproductive success (fRS) as the
number of fruits produced by an individual divided by the mean number of fruits produced by
all the marked plants in the same population and year. In addition, the proportional fRS was
calculated as the number of fruits divided by the total number of flowers for each individual
plant. Female reproductive success generally differed between populations both in the lowland
and the mountain region, but it generally did not differ between altitudinal regions (S1 Text; S2
Table). In our study, it was not feasible to assess male reproductive success, as this would have
required multiple scoring of pollinia removal rates during the flowering season.

Pollinator (pollen) limitation
A prerequisite for pollinator-mediated selection through the female fitness component (pro-
duction of seeds) is the limitation of a plant’s reproductive success by incoming pollen through
pollinators (here called “pollinator limitation”) rather than by resources. To quantify pollinator
limitation, we conducted a pollination experiment in the field with three treatments: hand
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cross pollination, pollinator exclusion, and open pollination as a control. For the hand-pollina-
tion treatment, we supplementally hand-pollinated all the flowers of 4–10 plants per popula-
tion in the lowland population Döttingen and the mountain populations Schatzalp and
Albulapass in 2010 and in the lowland populations Döttingen, Remigen, Linn, and Rossweid
and the mountain populations Schatzalp, Münstertal, and Corviglia in 2011 (S1 Table). We
pollinated flowers with pollinaria collected from conspecific plants at least five meters away,
using wooden toothpicks or tweezers. The hand-pollinated plants were marked and bagged
with fine-meshed wire insect nets (tesa1 AG, Hamburg, Germany) to prevent further pollina-
tor visitations. For the pollinator-exclusion treatment, we bagged four plants in the lowland
population Döttingen and in the mountain population Albulapass in 2010 to prevent pollinator
visitations. Plants used for floral signal quantification (see above) served as the untreated open-
pollination control plants. When fruits were mature, we counted the total number of flowers
and fruits produced per inflorescence to calculate the proportional fRS. For each population
and year, we calculated the extent of pollen limitation as 1 –(mean proportional fRS of open-
pollinated control plants/mean proportional fRS of hand-pollinated plants) [47].

Pollinator community composition and floral herbivory
We assessed pollinator community composition in all populations where we quantified floral sig-
nals. Pollinators were observed and caught between 7:00 a.m. and 11:00 p.m. between 29 June
and 09 August in 2010, 2011, and 2012 by slowly walking through the populations. Insects were
considered pollinators if they probed G. odoratissima flowers and either removed pollinaria or, in
case pollinaria were already removed, exhibited behavior likely leading to pollinaria removal.
Additionally, insects that rested on G. odoratissima inflorescences and carried pollinaria of the
size ofG. odoratissima pollinaria were considered pollinators. For later identification, pollinators
were caught using hand nets, transferred to individual plastic tubes and stored at -30°C until
preparation; alternatively, we photographed the pollinators in the field. When at least one indi-
vidual of a pollinator species had previously been caught or photographed, we only recorded the
observation. For each observed pollinator, we documented the population, date, and observation
time and noted whether the pollinator carried pollinaria on its proboscis. Specimens could not
always be identified to the species or genus level; thus, for statistical analysis, we used the family
level for Lepidoptera and order level for other insects. We only considered populations where we
caught and/or observed pollinators on at least two different days; these were the lowland popula-
tions Döttingen (5 d), Remigen (5 d), Linn (3 d), and Rossweid (2 d) and the mountain popula-
tions Schatzalp (12 d), Albulapass (2 d), and Corviglia (2 d). Median total observation time per
population did not differ between the lowland (18.00 h) and mountain (19.25 h) region (Krus-
kal-Wallis test: d.f. = 1, test statistics = 0.000, P = 1), but differed considerably between popula-
tions within regions (lowland region: 27.00 h in Döttingen, 19.75 h in Remigen, 14.50 h in Linn,
16.25 h in Rossweid; mountain region: 37.50 h in Schatzalp, 2.00 h in Albulapass, 19.25 h in Cor-
viglia). These differences were accounted for by calculating the total number of pollinators and
number of pollinator families/orders caught and observed per hour. The number of pollinators
per hour served as a measure of visitation rate and the number of different pollinator families/
orders per hour as a conservative measure of pollinator richness. The similarity of pollinator
communities between populations and altitudinal regions was quantified by computing the
Bray-Curtis dissimilarity as (S (|yi1 –yi2|)) / (S (yi1 + yi2) [48] between all days and populations
when pollinators were caught and observed using the package ecodist (version 1.2.7 [49]) in the
statistical software program R (version 3.0.1 [50]).

As we observed some floral herbivory in the form of eaten flowers and aphid infestation, we
quantified the magnitude of floral herbivory for all marked plants on the day we measured
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floral signals as described in the S1 Text. Floral herbivory was generally low in our study popu-
lations (S1 Fig). It generally differed between populations in both altitudinal regions, but was
not different between the lowland and the mountain region (S1 Fig).

Statistical analyses
For most statistical analyses, we used SPSS 20.0.0.0 for Windows (IBM SPSS Statistics, IBM
Corp., Released 2011, Armonk, NY, USA). R [50] was used for the remaining statistical analy-
ses (as stated in the text) due to its suitability for specific analyses.

Phenotypic selection analyses. Display size and floral scent were measured in 2010 and
2011, and floral color was measured only in 2011. Therefore, phenotypic selection analyses
were conducted in two ways (i) in a two-year data set (2010 and 2011), containing display size
and floral scent, and (ii) in a one-year data set (2011), which included display size, floral scent,
and floral color. Results from the two analyses did not differ for display size and floral scent;
therefore we describe the statistical analyses and report results for the two-year data set and
provide the results for the analyses on the 2011 data set in S2 and S3 Figs.

A principal component analysis (PCA) was performed on all floral display and floral scent
traits as well as all populations and both study years to reduce the number of variables and con-
vert the potentially correlated variables into linearly uncorrelated principal components (PCs).
The PCA was conducted with traits standardized to a mean of 0 and a standard deviation (SD)
of 1 for each population. We extracted principal components (PCs) with an eigenvalue> 1
using varimax rotation (an orthogonal rotation minimizing the number of variables with high
loadings on each PC, which simplifies the interpretation of the PCs). This procedure resulted
in seven PCs: one “display size PC” (PC3) and six “floral scent PCs” (PC1, PC2, PC4, PC5,
PC6, PC7) explaining 71.8% of the total variance (S3 Table). Trait-value distributions of the
PCs are shown in S4 Fig. These PCs were used as explanatory variables in the phenotypic selec-
tion analyses. Preliminary analyses did not indicate quadratic selection; therefore we assessed
only linear selection in the final analysis. To determine which floral signals were under selec-
tion, we estimated selection gradients β on each PC, using linear multiple regression analyses
in R [50, 51]. Relative fRS was used as response variable and PCs as explanatory variables. To
assess whether selection on PCs differed between altitudinal regions and/or years, we used a
linear mixed model using the package lme4 [52] in R [50]. The model included relative fRS as
the response variable, PCs as covariates, altitudinal region, year, interactions between each PC
and altitudinal region, and interactions between each PC and year as fixed factors, and popula-
tion nested within altitudinal region as random factor. In addition, we conducted linear models
in R [50] to test for differences in selection among populations within altitudinal regions and
between years. In these models, we included relative fRS as the response variable, PCs as covar-
iates, and population, year, interactions between each PC and population, and interactions
between each PC and year as fixed factors.

Pollinator limitation. Pollinator limitation in fruit production was tested by comparing
the proportional fRS between the hand-pollination and the open-pollination treatment using a
Mann-Whitney U test for each year and population. Similarly, we compared the proportional
fRS between the pollinator-exclusion and the open-pollination treatment to test for pollinator
dependency.

Pollinator community composition. Differences in pollinator community composition
were tested by conducting PERMANOVAs (Permutational Multivariate Analysis of Variance,
an ANOVA using Bray-Curtis dissimilarity data and permutation tests with pseudo-F ratios)
using the package vegan (version 2.0–9 [53]) in R [50]. To test for differences between the low-
land and the mountain region, populations were used as replicates and region was used as fixed
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factor; to test for differences between populations within regions, days were used as replicates
and population was used as fixed factor. We generated a non-metric multidimensional scaling
(NMDS) plot based on Bray-Curtis dissimilarities employing the PROXSCAL procedure with
ordinal proximity transformation and Torgerson as initial configuration to visualize differ-
ences. We conducted SIMPER (Similarity Percentages) analyses based on Bray-Curtis dissimi-
larities to determine which pollinators characterized the differences between altitudinal regions
and between populations within altitudinal regions using the package vegan (version 2.0–9
[53]) in R [50]. Differences in pollinator visitation rates and pollinator richness were analyzed
with Kruskal-Wallis tests. To test for differences between the altitudinal regions, populations
were used as replicates; to test for differences between populations within regions, days were
used as replicates.

Differences in floral signals. To assess geographic differences in floral signals, we con-
ducted general linear models with altitudinal region, year, and population nested within region
as explanatory variables. For this analyses, all trait values were ln(x + 1) transformed.

Results

Phenotypic selection
Phenotypic selection at the regional (altitudinal) level. In our phenotypic selection anal-

ysis we found several traits under directional selection, and consistent differences in selection
between the regions in some traits. The strongest selection was found on display size (principal
component [PC] 3), which was under positive selection in both regions and in both years, with
selection being stronger in 2010 than in 2011 (Fig 1, Table 1). Three out of six floral scent PCs
(PC1, PC2, PC4) were under positive selection and two out of six floral scent PCs (PC4, PC5)
were under negative selection in at least one region and year, with selection on floral scent PC5
differing between 2010 and 2011. Floral color and two aromatic compounds (PC7A, named
“floral color and scent PC” hereafter; assessed in a separate analysis that only contained the
2011 data set; see S4 Table), were under negative selection in both altitudinal regions (S2 Fig).

Consistent differences in selection between the regions (divergent selection) were only
found for floral scent (Fig 1; Table 1). Selection on floral scent PC1 and PC2 was stronger in
the lowland compared to the mountain region in both years (Fig 1; Table 1). In contrast, selec-
tion on display size (PC3; Table 1) and the floral color and scent PC (PC7A; S2 Fig) did not dif-
fer between the regions.

Phenotypic selection at the population level. At the population level we found significant
directional selection on several traits, but no temporally consistent differences in selection
between populations (Fig 2). The most pronounced selection was again found on display size
(PC3), which was under positive selection in all populations and in both years. Selection on flo-
ral scent varied greatly among populations and between years. In the lowlands, only floral
scent PC1 was under positive selection in some populations for both years. In the mountains,
three out of six floral scent PCs (PC1, PC4, and PC7) were under positive or negative selection
in at least one population and year. Floral color (PC7A) was under negative selection in only
one mountain population (S3 Fig).

Selection on none of the PCs differed consistently between populations (Fig 2; Table 2).
Selection on display size (PC3) differed between mountain populations, but also differed tem-
porally in the lowland populations, in being stronger in 2010 than in 2011. Floral scent PC7 dif-
fered between populations as well as between years in the mountain region. Selection on the
floral color and scent PC (PC7A) did not differ between populations (S3 Fig).
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Fig 1. Linear selection gradients β ± SE for principal components (PCs) in the lowland andmountain regions inGymnadenia odoratissima. Two
floral scent PCs (PC1 and PC2, marked with red dotted quadrangles) show consistent spatial differences in selection indicated by significant differences
between regions but not between years (see Table 1 for details). The x-axis legend gives a short summary of the floral signals loading primarily on each PC
(for details, see S3 Table). Significances of linear selection gradients are indicated above the bars: ***P < 0.001, **P < 0.01, *P < 0.05. Sample sizes are
2010: nlowland = 253 (three populations), nmountain = 212 (three populations); 2011: nlowland = 312 (four populations), nmountain = 251 (three populations).

doi:10.1371/journal.pone.0147975.g001
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Table 1. Principal components (PCs, with the floral signals with highest loadings on them) and differences in selection gradients between regions
and years. This table shows statistics of a linear mixed model testing for differences in directional selection on PCs between altitudinal regions and years.
For PC1 and PC2, significant interactions between PC and region, but not between PC and year were found, indicating consistent differences in selection
between regions. For PC3 and PC5, selection differed between years rather than between regions (see also Fig 1).

PC x Region PC x Year

Principle components (traits with highest loadings) χ21 P χ21 P

PC1 (7 aromatics: benzaldehyde, phenylacetaldehyde, benzyl acetate, 1-phenyl-1,2-propanedione,
phenylethylacetate, 1-phenyl-2,3-butanedione, eugenol)

13.757 < 0.001 3.816 0.051

PC2 (4 terpenoids: α-pinene, sabinene, β-pinene, limonene) 5.450 0.019 3.615 0.057

PC3 (plant height, inflorescence length, number of flowers) 1.744 0.187 14.764 < 0.001

PC4 (2 aromatics: benzyl alcohol, phenylethyl alcohol) 2.930 0.087 2.867 0.090

PC5 (1 aromatic: styrene; 2 terpenoids: 6-methyl-5-hepten-2-one, geranyl acetone; 1 fatty acid derivative:
heptanal)

1.927 0.165 5.117 0.024

PC6 (3 fatty acid derivatives: (Z)-3-hexen-1-ol, (Z)-3-hexenyl acetate, hexyl acetate) 0.462 0.497 0.293 0.589

PC7 (2 aromatics: methyl eugenol, benzyl benzoate) 1.683 0.195 0.030 0.863

Note: Floral signals exhibiting highest loadings on each PC are listed in brackets. For more details, see S3 Table.

doi:10.1371/journal.pone.0147975.t001

Fig 2. Linear selection gradients β ± SE for principal components (PCs) in lowland (left) andmountain (right) populations inGymnadenia
odoratissima. Significances of the linear selection gradients β are indicated above the bars: ***P < 0.001, **P < 0.01, *P < 0.05. For details of PC loadings,
see S3 Table. 2010: nDöttingen = 73, nRemigen = 88, nLinn = 92, nSchatzalp = 47, nMünstertal = 96, nAlbulapass = 69; 2011: nDöttingen = 92, nRemigen = 56, nLinn = 92,
nRossweid = 72, nSchatzalp = 75, nMünstertal = 94, nCorviglia = 82.

doi:10.1371/journal.pone.0147975.g002
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Pollinator limitation
Pollinator limitation was strong in most populations and ranged from 0.38 to 0.63
(median = 0.51) in 2010 and from 0.10 to 0.76 (median = 0.42) in 2011. The proportional fRS
was significantly higher in hand-pollinated compared with open-pollinated plants in two of
three populations in 2010 and in six of seven populations in 2011 (S5 Table). Moreover, we
found low figures of spontaneous self-pollination; in plants from which pollinators were
excluded the proportional fRS was very low (Döttingen: 0.00–1.59%; Albulapass: 0.00–3.85%),
and significantly lower than in open-pollinated plants (Döttingen: nopen = 75, nbagged = 4,
z = 2.886, P = 0.004; Albulapass nopen = 85, nbagged = 4, z = 2.615, P = 0.009). Thus, G. odoratis-
sima plants largely depend on pollinators to set fruits.

Differences in pollinator community composition
We found a relatively diverse community of pollinators, which differed between the regions. We
identified a total of 196 pollinators from three insect orders: primarily Lepidoptera (13 families),
some Diptera (all identified as Empididae), and few Coleoptera (S6 Table). Pollinator community
composition differed significantly between altitudinal regions (Fig 3; pseudo-F1,5 = 3.289,
P = 0.030). Lycaenidae, Zygaenidae, Crambidae, Nymphalidae, and Empididae (Diptera) contrib-
uted most to the differences between lowland and mountain pollinator communities and were
more common in the mountain region, with Zygaenidae and Diptera being exclusively found in
the mountain populations (Fig 3A; S7 Table). At the population level, pollinator community com-
position differed significantly between mountain populations (pseudo-F2,14 = 2.147, P = 0.008)
and, though still significant, to a lesser extent between lowland populations (pseudo-F3,11 = 1.851,
P = 0.028; Fig 3A). Noctuidae, Hesperiidae, Nymphalidae, Pyralidae, Pterophoridae, Pyralidae,
and Coleoptera were the primary contributors to differences between lowland pollinator commu-
nities, and Zygaenidae, Lycaenidae, Crambidae, and Nymphalidae primarily contributed to differ-
ences between mountain pollinator communities (S7 Table). Moreover, pollinator visitation rate
and pollinator richness were significantly higher in the mountains compared to the lowlands and
significantly differed between mountain but not between lowland populations (Fig 3B and 3C).

Trait differences
Most traits differed between regions, but also between populations and years (S8 Table). Low-
land plants exhibited larger displays and darker flowers compared to mountain plants. For

Table 2. Differences in selection gradients between populations and years. The table shows statistics of a linear model testing for differences in direc-
tional selection on principal components (PCs) between populations and years in the lowland and the mountain regions.

Lowland Mountain

PC x Population PC x Year PC x Population PC x Year

PC F3 P F1 P F3 P F1 P

PC1 0.037 0.772 1.383 0.240 2.164 0.092 0.398 0.528

PC2 1.819 0.143 1.271 0.260 0.390 0.761 0.352 0.554

PC3 0.225 0.879 5.547 0.019 3.024 0.029 1.821 0.178

PC4 0.492 0.688 0.190 0.664 0.735 0.531 3.133 0.077

PC5 0.361 0.782 3.583 0.059 2.329 0.074 0.040 0.841

PC6 1.157 0.326 0.001 0.978 0.425 0.735 1.588 0.208

PC7 0.278 0.841 0.027 0.868 6.690 < 0.001 7.389 0.007

Note: For a list of floral signals exhibiting highest loadings on each PC, see Table 1. For details, see S3 Table.

doi:10.1371/journal.pone.0147975.t002

Region-Specific Selection on Floral Scent

PLOS ONE | DOI:10.1371/journal.pone.0147975 February 17, 2016 10 / 18



floral scent, the amount of most compounds differed between lowland and mountain plants;
the total amount of scent, however, was not different between regions.

Discussion
In flowering plants, regional divergence in floral traits is widespread. A possible explanation is
consistent region-specific (divergent) selection. Our large-scale phenotypic selection study in a
terrestrial orchid supports this scenario by documenting consistent divergent selection in
mountain and lowland regions. This pattern of divergent selection was, however, only found

Fig 3. Differences in pollinator community composition in lowland andmountain populations ofGymnadenia odoratissima. (A) Non-metric
multidimensional scaling (NMDS) of pollinator community composition in four lowland and three mountain populations. Pollinators shown to the left of the plot
represent the five taxa (“1” Lycaenidae, “2” Zygaenidae, “3” Crambidae, “4” Nymphalidae, “5” Diptera), that contributed most to the community differences
between the lowland and mountain region and were all more common in the mountain region. Boxplots show (B) visitation rate and (C) pollinator richness
(number of pollinator families/orders per hour) compared between regions (left) and populations (right). Mountain populations were significantly more rich in
pollinators and showed higher pollinator abundances (*P < 0.05).

doi:10.1371/journal.pone.0147975.g003
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for floral olfactory signals. Our study is the first that documents region-specific selection on
floral scent.

Geographically structured selection on floral signals can thus result from consistent spatial
differences in preferences of (the most efficient) pollinators towards floral signals [7–10]. Addi-
tionally, antagonists, such as florivores, or abiotic selection agents, can counteract or reinforce
pollinator-mediated selection [3, 5, 54, 55]. Although our study was not specifically designed to
test for the agent of locally variable selection, our results suggest that phenotypic selection in G.
odoratissima was primarily pollinator-mediated. First, fruit set was strongly pollen limited in
most populations, a prerequisite for pollinator-mediated selection through female fitness. Sec-
ond, the pollinator community composition differed between altitudinal regions and between
populations. Third, the extent of herbivory also differed among populations, but was generally
low (S1 Fig).

Pollinator-mediated selection is expected on both floral signals and flower morphology [1,
2]. Among floral signals, selection on visual signals is better documented. For example, selec-
tion for larger displays has commonly been found [47, 56–59]. Our findings are consistent with
these studies, suggesting that pollinators often prefer large displays, either because larger dis-
plays contain more reward or are better visible [60]. While some studies report selection on flo-
ral color [38, 61], others found no evidence for it [40]. In our study, weak selection for lighter-
colored flowers in G. odoratissima was detected and might be imposed by nocturnal pollina-
tors, which are known to visit G. odoratissima [33, 44]. Only few selection studies up to now
have also included floral scent; nevertheless, three recent studies reported significant but com-
pound-specific selection on floral scent [40, 55, 58]. This result is congruent with our results
and suggests floral scent is often under selection mediated by biotic interactions.

Regional divergence in floral traits is common and has been documented in morphology
and floral signals [9, 24, 25, 28, 30, 62, 63]. In principle, such divergence can result from pheno-
typic plasticity, genetic drift, or natural selection [14]. Consistent spatial variation in selection
is expected to result in adaptive population divergence, if the variation in traits under selection
has a heritable component [64, 65]. In our study, consistent region-specific differences in selec-
tion were evident on two floral scent PCs, which represent the major floral scent compounds.
As floral scent has recently been shown to have considerable heritability [66], we can predict
adaptive divergence in these scent compounds. Indeed, the stronger directional selection on
PC1 in the lowlands was matched by a higher emission of five of these compounds in the low-
lands (S8 Table). Six of the seven PC1-compounds (benzaldehyde, phenylacetaldehyde, 1-phe-
nyl-2,3-butanedione, benzyl acetate, phenylethyl acetate, and eugenol) were shown earlier to
elicit electrophysiological responses in pollinators of G. odoratissima, and phenylacetaldehyde
attracted pollinators in the field [33]. Thus, the higher production of these volatiles may repre-
sent an adaptation to lowland pollinators. Local adaptation to pollinators was, however, only
detected in mountain plants of G. odoratissima [44]. This seemingly contradictory finding may
be explained by the higher pollinator richness in mountain populations. Lowland plants trans-
ferred to mountain populations may thus well attract alternative pollinators with “lowland
scent”, whereas mountain plants being less attractive to lowland pollinators may suffer more
under the lack of mountain-specific pollinators such as empidid flies. Nevertheless, phenotypic
selection is most likely not the only evolutionary force shaping regional differences in plant
traits, because many other traits including inflorescence size and floral color, for which no sig-
nificant divergent selection was detected, showed significant differences between regions (S8
Table). The significant differences in plant trait between years can be explained by the fact that
likely not the same plants were measured every year in the investigated populations.

In conclusion, our study suggests that spatial variation in average selection was consistent
enough to create geographically structured selection, leading to regional divergence in floral
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traits. Our data emphasize the importance of measuring phenotypic selection in multiple popu-
lations and in different flowering seasons to capture the actual selection dynamics acting within
a species. Furthermore, our results provide indication that geographically structured differ-
ences in selection do not act equally on all traits, suggesting different evolutionary forces acting
on different traits and possibly different evolutionary rates in different traits. Future studies
should quantify phenotypic selection on floral-morphology traits affecting pollinator effi-
ciency, such as floral spur length, to reach a more conclusive understanding of the evolution of
flowers as a whole.

Supporting Information
S1 Fig. Percentage of plants experiencing floral herbivory (upper graphs) and differences
in the mean (± SE) floral herbivory (lower graphs) in lowland and mountain populations of
Gymnadenia odoratissima. Floral herbivory was quantified as (A) number of eaten flowers
per inflorescence and (B) aphid load (scale from 1 [no aphids] to 6 [many aphids]). Sample
sizes are indicated inside the top of the percentage bars. Whereas populations within regions
differed in floral herbivory, no consistent differences in floral herbivory was found between
lowland and mountain regions (���P< 0.001, ��P< 0.01, �P< 0.05, ns P> 0.05).
(PDF)

S2 Fig. Linear selection gradients β ± SE for principal components (PCs) in the lowland
and mountain region in Gymnadenia odoratissima for the 2011 data set, which included
floral color.Whereas several PCs showed significant selection gradients (marked with asterisks
above bars), only PC1 showed significant differences between the regions (���P< 0.001,
��P< 0.01, �P< 0.05). A short description of the floral signals loading primarily on each PC is
given; for details, see S4 Table. According to variables loading primarily on PCs, PC1A corre-
sponds to PC1 in Fig 1, PC2A to PC2, PC3A to PC5, PC4A to PC3, PC5A to PC6, PC6A
to PC7, and PC7A to PC4 except that floral color additionally loaded primarily on PC7A.
nlowland = 312 (four populations), nmountain = 251 (three populations).
(PDF)

S3 Fig. Linear selection gradients β ± SE for principal components (PCs) in lowland (left)
and mountain (right) populations in Gymnadenia odoratissima for the 2011 data set,
which included floral color. Several PCs showed significant selection gradients and PC6A was
significantly different among mountain populations (���P< 0.001, ��P< 0.01, �P< 0.05). A
short description of the floral signals loading primarily on each PC is given; for details, see S4
Table. According to variables loading primarily on PCs, PC1A corresponds to PC1 in Fig 2,
PC2A to PC2, PC3A to PC5, PC4A to PC3, PC5A to PC6, PC6A to PC7, and PC7A to PC4
except that floral color additionally loaded primarily on PC7A. nDöttingen = 92, nRemigen = 56,
nLinn = 92, nRossweid = 72, nSchatzalp = 75, nMünstertal = 94, nCorviglia = 82.
(PDF)

S4 Fig. Comparison of the trait-value distribution of the principle components (PCs) used
for selection analysis in lowland (grey bars) and mountain (white bars) regions. The distri-
butions of the PC scores are compared with superimposed normal distributions.
(PDF)

S5 Fig. Correlogram of among-population Euclidean distance in floral signals and among-
population Euclidean distance in selection gradients on these PCs. For the Euclidian dis-
tances in the signals, only the variables were used that exhibited the highest loadings on the
principal components (PCs) used in the selection analysis. For scent PC4 and PC5, a significant
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association between trait differences and selection differences was found (Mantel test statistics
with 1000 permutations in all tests). n = 5 populations (three lowland and two mountain popu-
lations). For details on PCs, see Table 1 and S3 Table.
(PDF)

S1 Table. Geographic locations of the four lowland and the four mountain study-popula-
tions of Gymnadenia odoratissima and year(s), in which selection and floral signals was
measured and hand pollinations were conducted.
(PDF)

S2 Table. Female reproductive success (mean ± SE) of Gymnadenia odoratissima plants in
the four lowland and the four mountain populations and the statistical tests between low-
land populations, between mountain populations, and between the two altitudinal regions.
(PDF)

S3 Table. Factor loadings of display size and floral scent compounds of Gymnadenia odora-
tissima plants on principal components (PCs) using the two-year data set.
(PDF)

S4 Table. Factor loadings of floral signals of Gymnadenia odoratissima on principal com-
ponents (PCs) using the 2011 data set, which included also floral color.
(PDF)

S5 Table. Pollinator limitation in lowland and mountain populations of Gymnadenia odor-
atissima in 2010 and 2011 assessed in a pollination experiment.
(PDF)

S6 Table. Pollinators caught and/or observed on Gymnadenia odoratissima inflorescences
in the four lowland populations (Döttingen, Remigen, Linn, and Rossweid) and the three
mountain populations (Schatzalp, Albulapass, and Corviglia).
(PDF)

S7 Table. Contribution of pollinator taxa to the differences in the pollinator communities
between the lowland and the mountain region as well as between populations within altitu-
dinal regions of Gymnadenia odoratissima using SIMPER (Similarity Percentages) analy-
ses.
(PDF)

S8 Table. Differences in floral traits between lowland and mountain plants.
(PDF)

S9 Table. Median (minimum-maximum) coefficient of variation for the three floral-signal
groups of Gymnadenia odoratissima plants.
(PDF)

S1 Text.
(PDF)
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