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Hydrogen peroxide and sodium
hypochlorite disinfectants are more
effective against Staphylococcus aureus and
Pseudomonas aeruginosa biofilms than
quaternary ammonium compounds
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Abstract

Background: Antimicrobial disinfectants are used as primary treatment options against pathogens on surfaces in
healthcare facilities to help prevent healthcare associated infections (HAIs). On many surfaces, pathogenic
microorganisms exist as biofilms and form an extracellular matrix that protects them from the antimicrobial effects
of disinfectants. Disinfectants are used as all-purpose antimicrobials though very few specifically make biofilm
efficacy claims. The objective of this study was to evaluate the efficacy of eight registered disinfectants (six
registered by the Environmental Protection Agency and two products registered in by the European Chemical
Agency) with general bactericidal claims, but currently no biofilm efficacy claims, against Staphylococcus aureus
ATTC-6538 and Pseudomonas aeruginosa ATCC-15442 biofilms. We hypothesized that hydrogen peroxide and
sodium hypochlorite disinfectant products would be more effective than quaternary ammonium chlorides.

Methods: This study tested the bactericidal efficacy of eight registered disinfectant products against S. aureus
ATCC-6538 and P. aeruginosa ATCC-15442 grown on glass coupons using a Center for Disease Control (CDC)
biofilm reactor and EPA MLB SOP MB-19. Bactericidal efficacy was determined after treating coupons with
disinfectants following standard EPA MLB SOP MB-20.

Results: Overall, sodium hypochlorite and hydrogen peroxide disinfectants had significantly higher bactericidal efficacies
than quaternary ammonium chloride disinfectants. We also found that all tested disinfectants except for quaternary
ammonium chloride disinfectants met and exceeded the EPA standard for bactericidal efficacy against biofilms.

Conclusion: In general, bactericidal efficacy against biofilms differed by active ingredient. The efficacies of sodium
hypochlorite and hydrogen peroxide disinfectants did not vary between strains, but there were significant differences
between strains treated with quaternary ammonium chloride disinfectants.
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Background
Healthcare associated infections (HAIs) are reported to
occur in one out of 25 patients daily on average in the
US [1] with over 2 million patients contracting HAIs an-
nually [2]. In the USA, the overall incidence of HAIs is
estimated to have increased by 36% in the last two
decades [3]. Bacterial biofilms account for 65 and 80% of
microbial and chronic infections, respectively [4]. A
2012 study suggested that biofilms may serve as a source
of infections by periodically releasing planktonic bacterial
cells into the environment [5]. The use of disinfectants is
critical to preventing transmission of infectious pathogens
from contaminated surfaces and medical equipment to
patients [6, 7]. Despite emphasis on surface disinfection,
pathogenic microorganisms are routinely isolated from
the hospital environment [5, 7].
Within healthcare facilities, Staphylococcus aureus and

Pseudomonas aeruginosa are amongst the most prob-
lematic pathogens [8] with S. aureus being the second
most common pathogen that caused HAIs [9]. These
pathogens grow on hard non-porous surfaces such as
metal pipes and floor drains [10] and develop an extra-
cellular polymeric matrix that protects the cells from
adverse conditions [4, 11]. It has also been shown that
the biofilm matrix enhances tolerance to disinfectants by
encasing the underlying cells [12, 13] and by limiting
diffusion of disinfectants into the biofilm matrix [14]. In
fact, the bactericidal efficacy of disinfectants on biofilms
is much lower compared to the efficacy of the same
disinfectants against planktonic cells [8, 15–17]. The
tolerance of biofilms to disinfectants is dependent on

disinfectant active, temperature, and the type of surface
[13]. Surface roughness, surface humidity, and the avail-
ability of nutrients influence the establishment of bio-
films on surfaces [18]. Moist surfaces have been shown
to be more favorable for biofilm growth even though
biofilms have also been reported to grow on dry surfaces
[4, 14].
Disinfectants are primary intervention options against

pathogenic organisms on surfaces in healthcare facilities
[7, 14] and are used as broad-spectrum antimicrobials
[19]. Common antimicrobials used for disinfecting sur-
faces in healthcare facilities include quaternary ammo-
nium compounds, hydrogen peroxide, and chlorine-based
products [6, 17]. There are few published studies that
investigate the efficacy of disinfectants on bacterial bio-
films at label use concentrations. The objective of this
study was to evaluate the efficacy of eight registered
disinfectants with general bactericidal claims, but no
current biofilm efficacy claims, against S. aureus
ATTC-6538 and P. aeruginosa ATCC-15442 biofilms.
We hypothesized that accelerated hydrogen peroxide
disinfectant products would be more effective than
quaternary ammonium compounds and that sodium
hypochlorite disinfectants would be the most effective
at eliminating biofilms.

Methods
Disinfectants and bacteria strains used in this study
This study tested the bactericidal efficacy of eight regis-
tered disinfectant products (Table 1) against S. aureus
ATCC-6538 and P.s aeruginosa ATCC-15442. These

Table 1 Active ingredients and contact times for disinfectant products tested in this study

Disinfectant Product “Name”
(used in the manuscript or figures)a

Disinfectant Active
Ingredient(s)c

Dilution Active Level at Usee Label Contact Time
(mins)f

HP1 0.5% hydrogen peroxide RTUd 0.5% 1

HP2 0.5% Hydrogen Peroxide RTU 0.5% 1

HP3b 7.0% hydrogen peroxide RTU 7.0% 1

HP4b 7.2% hydrogen peroxide 1:20 0.36% 5

HP5 4.25% hydrogen peroxide 1:16 0.27% 5

Q1 6.67% octyl decyl ammonium chloride; 2.67%
docctyl dimethyl ammonium chloride; 4.00%
didecyl dimethyl ammonium chloride; 8.90% alkyl
(C14, 50%; C12, 40%; C16, 10%) dimethyl
benzyl ammonium chloride

1:256 0.087% 3

Q2 8.704% didecyl dimethyl ammonium chloride;
8.190% n-alkyl (C14, 50%; C12, 40%; C16, 10%)
dimethyl benzyl ammonium chloride

1:256 0.066% 10

SH1 1.312% sodium hypochlorite RTU 1.312% 4
a Naming scheme abbreviates the active ingredients of the products used in this study and differentiates products with the same class of active ingredients
by numbers
b ECHA registered products
c Active ingredient concentration
d Ready to Use
e Active ingredient concentration after dilution
f Defined EPA label contact time in minutes
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strains are EPA-defined strains required for biofilm dis-
infectant efficacy registration claims [20]. Disinfectants
were tested at label contact times and concentrations.
Phosphate buffered saline (PBS) was used as a control.

Biofilm development on borosilicate glass coupons
Biofilms were grown using EPA Standard Operation Pro-
cedure (SOP) MB-19 for biofilms using a Center for
Disease Control (CDC) biofilm reactor (Biosurfaces
Technologies, Inc., Bozeman, MT). Borosilicate glass
coupons (1.27 ± 0.013 cm; Biosurface Tech, Inc.) were
used as carriers in the CDC biofilm reactor. The boro-
silicate glass coupons were placed in rods each contain-
ing three coupons. The biofilm reactor was positioned
on a hotplate stirrer (Talbays, Thorofare, NJ) and filled
with 500mL of first phase growth media (Table 2). The
media was inoculated with 1 mL of bacterial culture
greater than or equal to 107 CFU/mL (Table 2). This
formed the batch phase. Each of the test microbes began
to adhere to the coupons for 24 h under the conditions
defined in Table 2. The cells were subsequently grown in
a continuous stirred tank reactor (CSTR) growth phase; 20
L of growth media (detailed in Table 2; TSB; Becton, Dick-
inson and Company, Sparks, MD) was pumped (Cole-par-
mer, Barrington, IL) through the reactor at a rate of 30 ± 2
min residence time for both S. aureus and P. aeruginosa.

Disinfectant efficacy testing
The efficacy of disinfectants against single strain biofilms
was determined using EPA MLB SOP MB-20 [20]. Each
rod contained three coupons and was rinsed by dipping in
dilution water (1.25mL KH2PO4 + 5.0mL MgCl2·6H2O).
The target density for each coupon was 7.5–9.0 CFU/cou-
pon for S. aureus and 8.0–9.5 CFU/coupon for P. aerugi-
nosa per EPA MLB SOP MB-20. Coupons were placed in
a 50mL sterile conical tube (Corning Science, Mexico) for
treatment and enumeration; coupons were individually
evaluated. Five biological replicates were conducted for
quaternary ammonium compounds due to known high
variability [21]. Three biological replicates were conducted
for sodium hypochlorite and hydrogen peroxide testing
based on previous work conducted by our group [22].
Each biological replicate for all test products was com-
posed of five technical replicates. Three control coupons
were used for each test. Disinfectant product (four mL)

was added to each sterile conical tube containing a
coupon. Coupons were dipped in dilution water prior to
transferred into the tube to remove planktonic cells. Dis-
infectants were left in contact with the coupons for the
label contact times at room temperature (Table 1). Four
mL of PBS was added to control coupons. Disinfectant
products were neutralized at the label-defined contact
time with 36mL neutralizing buffer solution (1 L H2O +
5.2 g Difco neutralizing buffer; Becton, Dickinson and
Company Sparks, MD). The treated coupons underwent a
rotational series of vortexing (30 s) and sonication using
an ultra-sonic water bath (Cole-Parmer Instrument Com-
pany, Chicago, IL) at 45 Khz for 30 s three times to release
the biofilms from the coupons and suspend the bacteria in
solution [20].
The control samples were quantified by serial dilution

and spread plating on Tryptic Soy Agar (TSA; BD Bio-
sciences, San Jose, CA) for S. aureus and Reasoner’s 2a
Agar (R2a; Becton, Dickinson and Company Sparks,
MD) for P. aeruginosa following EPA MLB SOP MB-20
[20]. Coupons treated with quaternary ammonium
chloride disinfectants were serially diluted and plated
due to high cell recovery; coupons treated with hydrogen
peroxide and sodium hypochlorite-based disinfectants
were not serially diluted. Ten mL aliquots from each
diluted sample were vacuum-filtered onto a membrane
filter (0.2 μm pore; Pall Corporation, Port Washington,
NY). Membrane filters were plated onto TSA and R2a
agar for S. aureus and P. aeruginosa, respectively, and
incubated at 37 °C for 48 ± 4 h prior to estimation.

Statistical analyses
All statistical analyses were performed using SAS 9.4 (SAS
Institute, Cary, NC). CFU log10 reductions were calculated
and normalized relative to the number of CFUs on control
coupons. Disinfectant products were grouped based on
the main active ingredients: sodium hypochlorite (1 prod-
uct), hydrogen peroxide (5 products), and quaternary
ammonium compounds (2 products). The data were fitted
in a generalized linear mixed model with Proc Glimmix
procedure to determine if there were significant differ-
ences in log10 reductions among disinfectants both by
active category and product (n = 56; α = 0.05). Least
Squares Means with Tukey’s adjustment were used to elu-
cidate the trend of the identified significant differences.

Table 2 Growth conditions for S. aureus and P. aeruginosa biofilms

Bacteria Strain Hotplate Stirrer
Settings

Test Culture preparation Batch phase growth
medium 24 h

CSTRa growth
medium 24 h

S. aureus ATCC-6538 60 ± 5 rpm at 36 ± 1 °C Frozen stock with 10 ml TSB (30 g TSB/L)
overnight at 36 ± 1 °C

3 g/L TSB 1 g/L TSB

P. aeruginosa ATCC-15442 125 ± 5 rpm at 21 ± 2 °C Frozen stock with 10 mL TSB (300 mg TSB/L)
overnight at 36 ± 1 °C

300mg/L TSB 100mg/L TSB

a Continuously stirred tank reactor (CSTR) phase
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Results
Hydrogen peroxide- and sodium hypochlorite-based
disinfectant products had similar bactericidal effects
against both S. aureus and P. aeruginosa biofilms
Regardless of bacterial strain, hydrogen peroxide and
sodium hypochlorite disinfectants achieved a greater
overall bactericidal efficacy than quaternary ammonium
disinfectants, both by active ingredient category (P <
0.0001) (Fig. 1) and by individual product (P < 0.0001)
(Fig. 2). Overall, S. aureus biofilms had a greater overall
log reduction than P. aeruginosa biofilms after disinfection
regardless of active ingredient category (P < 0.0001; Fig. 1)
or the specific product applied (P = 0.0002; Fig. 2). A com-
parison of disinfectants by active ingredient category
showed a significantly higher log reduction of S. aureus
biofilms (4.37 log reduction) than P. aeruginosa biofilms
(0.82 log reduction) by quaternary ammonium products
(P < 0.0001; Fig. 1). Coupons disinfected with quaternary
ammonium chloride products had on average 4.75 ± 1.69
S. aureus CFU/coupon (4.37 log reduction) and 8.02 ±
0.60 P. aeruginosa CFU/coupon (0.82 log reduction)
post-treatment. There were no significant differences in
bactericidal efficacy against S. aureus and P. aeruginosa
biofilms after disinfection by hydrogen peroxide or so-
dium hypochlorite products. S. aureus and P. aeruginosa
biofilms had an average log density of 0.33 ± 0.06 CFU/
coupon (8.73 log reduction) and 0.30 CFU/coupon (8.51
log reduction) after disinfection with hydrogen peroxide
disinfectants, respectively (Fig. 1) per EPA MLB SOP
MB-20, 0.30 CFU/coupon is the reported detection limit
when no cells are recovered thus there is no calculable
standard deviation. S. aureus and P. aeruginosa coupons
disinfected with the sodium hypochlorite product had
mean log densities of 0.30 CFU/coupon (8.73 log reduc-
tion) and 0.33 ± 0.08 CFU/coupon (8.75 log reduction),
respectively (Fig. 1).
When evaluating each disinfectant individually, both

quaternary ammonium products exhibited significant

differences in bactericidal efficacy against S. aureus and
P. aeruginosa biofilms (Fig. 2). Specifically, S. aureus
biofilms were significantly more reduced than the P. aer-
uginosa biofilms when treated with Q1 (P < 0.0001) and
Q2 (P = 0.0001) (Fig. 2). No other significant differences
were observed between S. aureus and P. aeruginosa
biofilms disinfected by hydrogen peroxide or sodium
hypochlorite products.

Hydrogen peroxide and sodium hypochlorite
disinfectants had significantly higher bactericidal efficacy
against S. aureus biofilms than quaternary ammonium
products
There were significant differences in bactericidal efficacy
among tested disinfectants against S. aureus both by
active ingredient category (P < 0.0001; Fig. 1) and by in-
dividual product (P < 0.0001; Fig. 2). Products with
hydrogen peroxide and sodium hypochlorite as active
ingredients achieved significantly higher S. aureus log
reduction than quaternary ammonium-based products
(P < 0.0001; (Fig. 1). Specifically, sodium hypochlorite
disinfectant SH1 and all hydrogen peroxide disinfectants
(HP1, HP2, HP3, HP4, and HP5) individually by product
were more effective against S. aureus biofilms than ei-
ther of the two tested quaternary ammonium products
(P < 0.0001; Fig. 2). There was no significant difference
in bactericidal efficacy against S. aureus biofilms treated
with Q1 compared to Q2 (P > 0.05; Fig. 2). There were
no significant differences in disinfection performance
among the aforementioned hydrogen peroxide and so-
dium hypochlorite products collectively (P > 0.05; Fig. 2).

Hydrogen peroxide and sodium hypochlorite
disinfectants were more bactericidal against P. aeruginosa
biofilms compared to quaternary ammonium compounds
Bactericidal efficacy was significantly different among
disinfectants applied to P. aeruginosa biofilms both by
active ingredient category (P < 0.0001; Fig. 1) and by
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specific product (P < 0.0001; Fig. 2). Hydrogen peroxide
and sodium hypochlorite-based disinfectants were more
effective against P. aeruginosa biofilms than quaternary
ammonium products (P < 0.0001; Fig. 1). Specifically, so-
dium hypochlorite disinfectant (SH1) and all hydrogen
peroxide disinfectants (HP1, HP2, HP3, HP4, and HP5)
by product individually achieved significantly higher
bactericidal efficacy against P. aeruginosa than either of
the quaternary ammonium chloride products Q1 and
Q2 (P < 0.0001; Fig. 2). There were no significant differ-
ences among hydrogen peroxide products or between
sodium hypochlorite disinfectant and hydrogen peroxide
products (P > 0.05). There was no statistically significant
difference in efficacy between the two quaternary ammo-
nium products (P > 0.05).

Discussion
In this study, we tested eight registered disinfectants
under label use conditions against S. aureus and P. aeru-
ginosa biofilms using EPA methods MB-19 and MB-20.
We found statistically significant quantitative differences
among disinfectant active ingredients and products
against S. aureus and P. aeruginosa. Specifically, we
found (i) statistically significant differences in disinfect-
ant efficacy among disinfectants, (ii) similar performance
of hydrogen peroxide and sodium hypochlorite-based
products against S. aureus and P. aeruginosa biofilms,
and iii) significantly higher bactericidal efficacy of qua-
ternary ammonium-based products against S. aureus
than P. aeruginosa. Bacterial biofilms are common on a
wide range of surfaces made of different materials and
have been reported to be present in drains, metal pipes
[10], sanitizing bottles, trolleys and clipboards [23] thus
are potential sources of HAIs.

Disinfectant efficacy varies by active ingredient
We found significant differences among quaternary
ammonium compound disinfectants compared to hydro-
gen peroxide and sodium hypochlorite disinfectants. The

quaternary ammonium compounds did not achieve the
current EPA regulation minimum stating that the disin-
fectant must decrease the bacterial load by 106 CFU
[24]. The findings in this study underscoring low quater-
nary ammonium compound efficacy against laboratory-
grown biofilms. This raises concerns for healthcare
facilities as quaternary ammonium disinfectants are
reported to be among the most commonly used disinfec-
tants in healthcare facilities [25, 26]. Quaternary ammo-
nium compounds are cationic in nature [27, 28] and their
interaction with a negatively charged biofilm matrix could
inhibit their bactericidal efficacy [29]. Tseng et al. found
that the efficacy of tobramycin, a positively charged anti-
biotic, was decreased as it was sequestered at the surface
of the negatively charged biofilm matrix thus did not
penetrate the matrix to contact underlying viable P. aeru-
ginosa cells [29]. In addition, the bactericidal efficacy of
quartenary ammonium compounds may fluctuate because
they have been shown to be biogradeble under aerobic
condictions [30].
Hydrogen peroxide and sodium hypochlorite disinfec-

tants were effective against P. aeruginosa and S. aureus
biofilms at the EPA required reduction levels. Hydrogen
peroxide and sodium hypochlorite disinfectants have
been reported to destroy both the biofilm matrix and
the bacteria cells within, making them better anti-biofilm
agents [31, 32]. Specifically, sodium hypochlorite disin-
fectant products irreversibly kill bacterial cells in bio-
films by denaturing proteins in the biofilm matrix and
inhibiting major enzymatic functions in bacterial cells.
Although sodium hypochlorite disinfectants at concen-
trations as low as 0.0219% are effective against the for-
mation of S. aureus biofilms [33], the use of sub-lethal
concentrations of some sodium containing disinfectants
could actually promote the formation of biofilms on en-
vironmental surfaces [34]. In a study conducted by West
et al. [22], hydrogen peroxide products and sodium
hypochlorite products were more effective against both
S. aureus and P. aeruginosa planktonic cells compared
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to quaternary ammonium. On another note, surfaces
disinfected with hydrogen peroxide based antimicrobials
have demonstrated significantly lower chances of bacter-
ial regrowth than those disinfected with quaternary am-
monium compounds [35]. To this effect, the study by
Boyce et al. [35] concluded that the risk of the incidence
of HAIs was lower with hydrogen peroxide disinfectants
than with the use of quaternary ammonium compounds.
Our data suggest that hydrogen peroxide or sodium
hypochlorite products should be used in healthcare facil-
ities for routine use, particularly on surfaces prone to
biofilm development. However, hydrogen peroxide disin-
fectants have also been reported to be corrosive on med-
ical equipment such as flexible endoscopes [36] and can
discolor metal finishes [37]. Despite these limitations,
Alfa et al. [38] also demonstratated that a 0.5% hydrogen
peroxide antimicrobial is highly efficient at disinfecting
medical devices. Moreover, hydrogen peroxide disinfec-
tants are neither irritating or malodorous [37].
The ability of biofilm matrices to prevent contact

between disinfectant products and bacterial cells is com-
plex [39]. Biofilms are characterized by high cell popula-
tion densities that supply large amounts of polymeric
substances, which consequently enables the formation of
well-structured, functional matrices [39]. Moreover, bio-
film cells are genetically primed to better tolerate disin-
fectant products compared to plaktonic cells [39, 40].
These features prevent the diffusion of disinfectants and
limit bactericidal efficacy [41]. While our study empha-
sized the efficacy of disinfectants at label concentration
and contact time, it did not investigate the efficacy of
disinfectants at off label use or with varying environ-
mental effects. Monoculture biofilms will be rare in
healthcare environments and soil levels and surface type
will vary. Further, this work was conducted on glass
coupons per the EPA protocol, which does not necessar-
ily represent how cells will grow on other surfaces (e.g.
hard plastics, stainless steel). Recognizing these limita-
tions, more work is needed to investigate other variables
that can impact disinfectant efficacy (e.g. dry biofilms) as
well as applications in healthcare settings.

Conclusion
We found that hydrogen peroxide and sodium hypo-
chlorite products are effective against S. aureus and P.
aeruginosa biofilms, which can be common in healthcare
facilities. However, quaternary ammonium chloride com-
pounds are not as effective against S. aureus and P. aeru-
ginosa biofilms grow on hard non-porous surfaces and
did not achieve a minimum 6 log10 CFU reduction.
While further research is warranted to evaluate more
complex biofilms in hospital environements, test the
efficacy of disinfectants against dry biofilms, and to
optimize the bactericidal effects of a combination of

different ready to use antimicrobials, infection preven-
tionists should consider the use of hydrogen peroxide
and sodium hypochlorite products on surfaces at risk of
biofilm development to prevent HAIs.
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