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Abstract

Background: Several expression datasets of miRNA transfection experiments are available to analyze the regulatory
mechanisms downstream of miRNA effects. The miRNA induced regulatory effects can be propagated via transcription
factors (TFs). We propose the method MIRTFnet to identify miRNA controlled TFs as active regulators if their downstream
target genes are differentially expressed.

Methodology/Principal Findings: MIRTFnet enables the determination of active transcription factors (TFs) and is sensitive
enough to exploit the small expression changes induced by the activity of miRNAs. For this purpose, different statistical
tests were evaluated and compared. Based on the identified TFs, databases, computational predictions and the literature we
construct regulatory models downstream of miRNA actions. Transfecting miRNAs are connected to active regulators via a
network of miRNA-TF, miRNA-kinase-TF as well as TF-TF relationships. Based on 43 transfection experiments involving 17
cancer relevant miRNAs we show that MIRTFnet detects active regulators reliably.

Conclusions/Significance: The consensus of the individual regulatory models shows that the examined miRNAs induce
activity changes in a common core of transcription factors involved in cancer related processes such as proliferation or
apoptosis.
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Introduction

Transcription factors (TFs) and microRNAs (miRNAs) are

prominent gene regulatory factors [1]. TFs are proteins that bind

to promoter of genes to regulation their expression and miRNAs are

small (,22-nucleotides) noncoding RNAs that regulate the mRNA

stability and translation through the action of the RNA-induced

silencing complex (RISC) [1–3]. miRNAs play an important role in

several biological processes such as cell development, differentiation

and various diseases including cancer [4–5].

Several databases have been developed to improve the research

of miRNAs based on their target genes [6–8]. TarBase [9] and

miRecords [10] collect target genes of the miRNAs in different

organisms. miRSel [11] provides putative miRNA-gene associa-

tions extracted from biomedical abstracts by text mining. Several

computational algorithms have been developed to computationally

predict target genes/sites of miRNAs, such as PITA [12], PicTar

[13], TargetScan [14] and miRanda [15].

Patterns of gene silencing induced by miRNA are achieved by

mRNA degradation or translational inhibition [16]. Several

transcription profiling studies of miRNA transfection experiments

have been conducted to investigate the influence of miRNAs on

transcript levels [17–19]. These experiments show that miRNAs

exert a widespread impact on the regulation of their target genes

and (potentially mediated via TFs) on non-target genes. TFs have

been found enriched among miRNA targets in plants [20] and

insects [21].

This paper aims at the determination of the TFs active in a

miRNA induced expression measurements. This can be difficult

as they are frequently regulated on the protein level (e.g. by

phosphorylation) that is not immediately detectable by transcrip-

tional profiling. On the other hand, transcriptional effects of

miRNAs are in general expected to be small and could easily be

obscured by noise in the measurements. The detection of active

TFs thus requires very sensitive approaches that rely on indirect

evidence rather than the expression of the regulators themselves.

Sohler et al. [22], Essaghir et al. [23] and Liu et al. [24]

independently proposed the hypergeometric test to detect active

TFs. According to our analyses, the hypergeometric (HG) test is

not sensitive enough to pick up the small expression changes

caused by miRNAs. Analogously, statistical tests such as the HG

test were applied to detect expression changes of miRNAs based

on the expression of their target genes [25–31].

In contrast, Tu et al. [25] suggested linear models to detect

miRNA regulated TFs based on the differential expression of their

target genes. From miRNA transfection experiments, they extracted

two layered networks where TFs mediate miRNA initiated

regulatory effects to explain observed expression changes in miRNA
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and TF target genes. The time complexity of their approach

substantially limited the set of detected TFs. On average, only two

active TFs were identified per transfection experiment [25].

We propose a simple method called MIRTFnet targeted at the

determination of regulated TFs. Similar to work presented in

[22–25], our method analyzes the expression patterns of the

known TF targets to distinguish active from inactive TFs. In

contrast to [25] our approach is targeted at the comprehensive

determination of the involved TFs. In contrast to [22–24],

MIRTFnet is more sensitive and, thus, also suited for detecting

the relatively minor effects induced by miRNA activity. After we

determine a set of active regulators, we construct network models

by connecting regulators and their targets by known miRNA-

target, TF-target and kinase-TF relationships. We analyzed 43

individual transfection experiments and discuss differences and

overlaps between the resulting regulatory models.

Materials and Methods

Datasets
Gene expression datasets. We obtained 43 gene expression

profiles of 18 different miRNA transfection studies in different

human cell lines. Selbach et al. [17] measured gene expression data

in HeLa cells at 8 h and 32 h after miRNA overexpression of

miR-155, miR-16 and let-7b. Expression profiles by He et al.

[32] include gene expression changes at 24 h after miRNA

overexpression of miR-34 family (i.e., miR-34a and miR-34b), in

six different cell lines (e.g., HeLa, A549 H1-term and TOV21G

H1-term). Georges et al. [33] measured p53-inducible miRNAs,

miR-192 and miR-215, at 10 h and 24 h after miRNA

transfection in a human cell line (i.e., HCT116 Dicer -/- #2).

Baek et al. [34] measured the gene expression data in HeLa cells at

24 h after miR-124, miR-1 and miR-181a transfection. We also

use the dataset by Grimson et al. [35] that measured gene

expression data in HeLa cells at 12 h and 24 h after miRNA

overexpression of miR-7, miR-9, miR-122, miR-128, miR-132,

miR-133, miR-142 and miR-181a.

For brevity, results and discussion will focus on 25 experiments

[17,33–34] unless noted otherwise. See the supplement for results

on the full set of experiments and for additional analyses. All

analyses are based on comparing mRNA levels between trans-

fection and control via log2 fold-changes (l2fc).

miRNA-gene associations. Human miRNA-gene associations

were obtained from the text mining derived database miRSel [11]

and the curated databases TarBase [9], miRecords [10] and

miR2Disease [5]. We also obtained putative human miRNA-target

pairs predicted by PITA [12], PICTAR [13] and TargetScan [14]

(Table 1). The PITA miRNA target predictions were compiled using

a more stringent threshold (from –6 to –20) to reduce the number of

false positive predictions.

TF-gene associations. Human TF-gene regulatory relationships

were predicted as described in [36] using the position specific weight

matrices (PWM) from the JASPAR database. We used relationships

from the human genome browser at UCSC (http://genome.ucsc.

edu/) [25]. Additionally, we collected TF-gene associations from

TRANSFAC [37] (ver. 2005), see Table 1. We refer to these TF-gene

relations as JASPAR, UCSC, and TRANSFAC, respectively.

Protein-protein interactions. Human protein-protein inter-

actions (PPIs) have been downloaded from the Human Protein

Reference Database (http://www.hprd.org/) [38]. Using PPIs,

miRNA-gene associations and TF gene relations, we compile the

miRNA-kinase associations and kinase-TF including miRNA-

kinase-TF physical interaction relationships, see Table 1. We

compile all types of interactions into a gene network.

MIRTFnet: Determining active miRNAs and TFs
TFs might be activated or inhibited by modifications (e.g.

phosphorylation) that cannot directly be detected by microarray

measurements. Activity changes of miRNAs and TFs can still be

determined by analyzing whether the expression levels of their

putative downstream targets (according to Table 1) could be a

sample from the background distribution of the remaining (i.e.

non-target) genes. The probability of this null hypothesis (p-value)

can be derived by a number of statistical tests described below.

Resulting p-values are multiple testing corrected using the Ben-

jamini and Hochberg method [39]. For corrected p-values of less

than 0.05 the null hypothesis is rejected for the respective miRNAs

and TFs. We refer to such regulators as active regulators in the

tested experiment. Both miRNAs and TFs can be tested given lists

of experimentally validated or computationally predicted targets.

TFs are also assumed to be active if they exhibit a fold change of

at least two or less than 0.5 in a given expression experiment.

Active miRNAs cannot be identified this way as they have not

been measured on the arrays.

Wilcoxon test. We apply the Wilcoxon nonparametric rank-

sum (WR) method [27–28,40] to test the null hypothesis that

the regulator targets exhibit no significant rank differences in

comparison to other genes (non-targets). Ranks were derived by

sorting the genes based on their log fold changes between transfected

and wild type measurements. If the rank distributions of targets and

non-targets are significantly different the null hypothesis will be

rejected. Then, targets of the tested regulators exhibit greater log fold

changes than non-targets according to the test.

Kolmogorov-Smirnov test. Whether or not the distributions

of (miRNAs and TFs) target and non-target genes are shifted with

respect to each other can also be tested by another non-parametric

test, the Kolmogorov-Smirnov (KS) test. Both WR and KS tests do

not require the selection of thresholds. Both tests have not yet

been applied to TF activity detection, only to predict transfecting

miRNAs [25,27–29]. While the KS test should only test for

distribution shifts, the WR test is also sensitive to shape differences

in the two distributions [41–43]. Nevertheless, both tests usually

yield consistent results as found by e.g. Gsponer et al. [40].

MIRTFnet therefore reports TF activity changes only if they are

identified by both tests.

Hypergeometric test. We also apply the hypergeometric test

to detect active transcription factors as proposed by Sohler et al.

[22], Essaghir et al. [23] and Liu et al. [25]. The HG test is used to

Table 1. Associations between regulators and their targets.

Databases Regulators Kind Target genes Pairs

MiRSel 486 miRNA 1969 7604

TarBase 110 miRNA 837 1023

MiRecords 93 miRNA 614 772

miR2Disease 176 miRNA 364 596

PITA 640 miRNA 14065 307465

PICTAR 163 miRNA 5975 44403

TargetScan 249 miRNA 9446 110172

UCSC 106 TF 3997 16688

JASPAR 66 TF 12261 73878

TRANSFAC 219 TF 304 794

HPRD 462 Kinase 1800 proteins 4182

doi:10.1371/journal.pone.0022519.t001

MIRTFnet: miRNA Regulated Transcription Factors
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calculate the significance of the TFs including the transfecting

miRNA in a given experiment as p-value of the observed over-

representation of TF/transfecting miRNA targets among the

differentially expressed genes. The WR, KS and HG test will be

applied to the same set of miRNA and TF target genes (Table 1)

and used the same procedure for multiple testing correction

(Benjamini-Hochberg). To enable the comparison to Essaghir

et al., we follow their approach to regard genes as regulated if they

exhibit a fold change of more than 2 or less than 0.5. Both WR

and KS tests do not require such a threshold but exploits the ranks

of all genes that have been measured. Note that we apply both

tests on the set of TF targets as obtained from databases and

predictions (Table 1). In contrast, Essaghir et al. augmented

curated databases by their own manual literature searches.

Model of miRNA actions
We construct network models of miRNA downstream actions.

Here, we aim to connect the transfecting miRNA to TFs via

miRNA-TF, TF-TF and kinase-TF interactions derived from

databases and computational predictions (Table 1). Thus, TFs are

included if they were active according to WR and KS test

as described in the last section and are reachable from the

transfecting miRNA by a path of known or predicted interactions.

Note that kinases are included as connectors between miRNAs

and TFs in the models although the activity of kinases has not been

determined in the examined studies. Thereby, we aim to give

explanations for expression changes observed after miRNA

transfection. Based on these models we evaluate to what extent

expression changes could potentially be explained based on the

current knowledge of causal interactions.

Thus, we propose a cascade of TF activation steps (Figure 1)

including the transfecting miRNA, kinases and TFs. Genes that

are directly and exclusively affected by miRNAs will most likely be

inhibited. This is not necessarily true for indirectly affected TFs or

TF target genes.

Results

Evaluation of the transfecting miRNAs
We first evaluate how well the miRNAs used for transfection

(called primary miRNAs) are detected by MIRTFnet. Only for

these miRNAs we can be certain that they should be recognized as

active. By using miRNA targets from predictions and databases,

transfecting miRNAs were recognized in 42 out of 43 miRNA

transfection experiments. In most experiments, p-values for

transfecting miRNAs were well below the alpha value of 0.05

(Table 2). This suggests that active regulators can be detected

reliably by miRTFnet. Here we find that the WR test identifies

98% of the transfecting miRNAs. Only 79% and 42% of the

transfecting miRNA were identified by the KS and HG tests,

respectively (see Table 2 and File S1). The re-detection of the

transfecting miRNA from differential expression of the miRNA

targets has also been described in [25–31], where similar recall

rates have been reported.

In addition to recall, we propose to also analyze the specificity of

detection. Therefore, we also analysed how many other miRNAs

(called secondary miRNAs) are statistically shown to be active in

response to miRNA transfection experiments. We assessed the

performance of each method by the area under the receiver

operating characteristic (AUROC) curve, a measure combining

specificity and recall. Here, we considered primary miRNAs as

positive examples and secondary miRNAs as negative examples.

This assessment might underestimate the true performance,

for instance if miRNA transfection causes activity changes in

secondary miRNAs that we count as false positives. Using

miRNA-gene target associations from databases and prediction

tools, the WR test achieves an AUROC of 0.90, KS AUROC of

0.86 and hypergeometric test AUROC of 0.65. The AUROC is

further increased to 0.91 if only those primary miRNAs were

considered that are found statistically active by both the WR and

KS test.

Detection of active transcription factors
Wilcoxon test. Active TFs (Table 3) were detected: 1) if they

exhibit a fold change of at least two in a given miRNA transfection

experiment or 2) via the differential expression of their direct

downstream targets (obtained from JASPAR, UCSC and

TRANSFAC) using statistical tests as described in method section.

In the Selbach et al. [17] miRNA-transfection datasets for instance,

we identified more than 20 active TFs (e.g., ELK4, CREB1, E2F1

and MAFB) and 10 TF based on fold change (e.g., TP53, ZEB1,

Figure 1. Modelling miRNA actions from expression measure-
ments. Active regulators such as miRNAs and TFs are detected by their
effect on the expression of downstream targets, here exemplified by
the Wilcoxon test. In step 1 just the direct miRNA targets (kinases and
significant TFs) are added to the model. Additional significant TFs are
included if they can be connected to the model by interactions from
Table 1, i.e. by repeating steps 2 and 3. The model of miR-155
transfection (8 hr), for instance, includes 14 kinases and 24 out of 27 TFs
detected as active by MIRTFnet. The remaining 3 TFs could not be
connected by known interactions. Using these models we consider
gene expression changes observed after miRNA transfection as
explained if they satisfy two constrains: (1) such a gene must be
targeted by an active TF, and (2) such a TF must be connectable to the
transfecting miRNA by a path of known or predicted miRNA-TF, TF-TF
and kinase-TF interactions.
doi:10.1371/journal.pone.0022519.g001

MIRTFnet: miRNA Regulated Transcription Factors
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ZNF423, FOSB and FOX03) applying the Wilcoxon (WR) test. We

have also found five TFs (FOS, CREB1, ID1, ZNF423 and MYB)

that are both statistically significant and differentially expressed in

the miR-155 (32 hr), let-7b (32 hr), miR-34a and miR-34 b (24 hr)

miRNA transfection experiments. Overall, 86 TFs have been

detected applying the WR test.

Kolmogorov-Smirnov test. In addition to the WR test

we also applied the Kolmogorov-Smirnov (KS) test and the

hypergeometric test. The KS test identified in total 71 active TFs

(Table 3). 69 out of 71 KS active TFs have also been identified by

the WR test. In most of the cases, the TFs identified by the KS

test are a subset of those identified by the WR test.

Hypergeometric test. As proposed by Sohler et al. [22],

Essaghir et al. [23] and Liu et al. [24], we also applied the

hypergeometric (HG) test (equivalent to Fisher’s test). The HG test

identified only very few active TFs (11, see Table 3). The HG p-

values were consistently higher (less significant) than the p-values

derived from the WR and KS test.

Rank distribution of active TFs
We detect regulators such as miRNAs and TFs as active via

the expression of their putative target genes. If the mean

expression of the target genes is significantly different to the

mean expression of the remaining genes we identify the

corresponding regulator as active according to the applied

tests. As an example for an active transcription factor we depict

ELK4 in the transfection experiment of has-miR-155 at 32 h

(Figure 2). JASPAR predicts 1826 putative targets of ELK4.

Compared to the 16101 remaining genes, ELK4 targets exhibit

larger fold changes and thus higher ranks than expected by

chance. Interestingly, the enrichment of differentially expressed

ELK4 target genes is already noticeable at moderate fold-

changes (.1.3, or ,0.75). Similar distributions are observed for

other TFs as well (not shown). Note that Figure 2 serves only as

visualization whereas active TFs are only determined by the

statistical tests described above. To summarize the analysis of

all TFs across all miRNA transfection profiles, we show the p-

value distributions as derived from WR and KS tests in

Figure 3.

Randomized Testing
We also evaluate if TF are detected as active by chance.

Here, we randomize the association of gene names and

expression levels in each experiment and apply the WR and

KS test as described in the methods section. We shuffle gene

labels and expression levels randomly 100 times. The test did

Table 2. Prediction of active miRNAs based on miRNA targets derived from databases and predictions.

Datasets Transfecting miRNA Cell line Time point Primary miRNA detected

WR Test KS Test Hyper. Test

Selbach et al., 2008 miR-155 Hela 8 ! ! -

miR-155 Hela 32 ! - !

miR-16 Hela 8 ! ! -

miR-16 Hela 32 ! ! !

let-7b Hela 8 - - -

let-7b Hela 32 ! ! -

Georges et al., 2008 miR-192 HCT116 24 ! - !

miR-192 HCT116 10 ! - !

miR-215 HCT116 10 ! - -

miR-215 HCT116 24 ! - !

Baek et al., 2008 miR-124 Hela 24 ! ! -

miR-1 Hela 24 ! ! -

miR-181a Hela 24 ! ! -

He et al., 2005 miR-34a A549 24 ! ! -

miR-34b A549 24 ! ! -

miR-34a HCT116 24 ! ! !

miR-34b HCT116 24 ! ! -

miR-34a TOV21G 24 ! ! -

miR-34b TOV21G 24 ! ! -

miR-34a DLD 24 ! ! !

miR-34b DLD 24 ! ! -

miR-34a HeLa 24 ! ! !

miR-34b HeLa 24 ! ! -

miR-34a A549 p53 24 ! ! -

miR-34b A549 p53 24 ! ! -

The transfecting miRNAs have been detected as active in 24 out of 25 miRNA transfection experiments based on the Wilcoxon (WR) test. 8 out of 10 transfecting miRNAs
in 19 out of 25 miRNA transfection experiments have been identified as active applying the Kolmogorov-Smirnov (KS) test. While 6 out of 10 transfecting miRNAs in 9
out of 25 miRNA transfection experiments have been detected applying the hypergeometric test.
doi:10.1371/journal.pone.0022519.t002

MIRTFnet: miRNA Regulated Transcription Factors
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not find a single regulator as active (neither miRNA nor TF) at

a corrected p-value of less than 0.05 after applying multiple

testing correction using the method of Benjamini and Hochberg

[39]. This was true regardless of which sub-selections of

miRNA-target or TF-target data sources were used. For

instance, in case of miRNA-targets we tested curated databases,

databases plus low recall prediction tools (e.g., PICTAR and

TargetScan) and databases plus high recall prediction tools

(e.g., PICTAR, TargetScan and PITA).

Global expression pattern explained by active TFs
Based on protein-protein interactions, miRNA-targets and

TF-targets, we constructed transfection experiment specific

models that connect the transfecting miRNA via causal

relationships to the TFs that were detected as active using the

proposed statistical tests.

In each transfection profile, 196 TFs were tested. On

average, 23 TFs were detected as active by both WR and KS

test. Here, 21 out of 23 TFs could be connected to the

transfecting miRNA based on causal relationships (compare

File S4).

We used miRNA-targets and TF-targets from curated

databases as well as computational predictions (Figure 1).

We analyzed to what extent regulators (e.g., miRNAs and TFs) and

their known/predicted target genes can explain the overall expression

changes observed on the microarrays. File S1 shows the gene

regulation that can be explained by MIRTFnet via miRNA-TF

relations. The identified TFs and their target genes thus provide a

Table 3. Prediction of active TFs based on the expression of their target genes.

Dataset
Transfec.
miRNA Cell line

Time point
(hr) Total Fold chng.

FC+ stat.
sig. Statistically (stat.) sig. TFs

WR
test

KS
test

Shared
KS+ WR

HG
test

Shared
HG+ WR

Selbach et al.,
2008

miR-155 Hela 8 27 7 0 20 6 6 0 0

miR-155 Hela 32 30 11 3 16 13 13 6 3

miR-16 Hela 8 20 9 0 11 2 2 1 0

miR-16 Hela 32 34 10 0 24 17 17 0 0

let-7b Hela 8 27 5 1 21 9 9 5 3

let-7b Hela 32 25 8 1 16 9 9 5 4

Georges et al.,
2008

miR-192 HCT116 24 19 2 0 17 12 12 1 0

miR-192 HCT116 10 25 0 0 25 12 12 0 0

miR-215 HCT116 10 20 0 0 20 10 10 0 0

miR-215 HCT116 24 20 1 0 19 10 10 1 0

Baek et al.,
2008

miR-124 Hela 24 33 4 0 29 31 28 0 0

miR-1 Hela 24 40 2 0 38 34 34 0 0

miR-181a Hela 24 22 5 0 17 24 17 0 0

He et al.,
2005

miR-34a A549 24 64 0 0 64 62 61 0 0

miR-34b A549 24 57 0 0 57 56 52 0 0

miR-34a HCT116 24 65 4 1 60 58 55 0 0

miR-34b HCT116 24 66 3 0 63 59 58 0 0

miR-34a TOV21G 24 71 0 0 71 59 59 0 0

miR-34b TOV21G 24 64 0 0 64 62 62 0 0

miR-34a DLD 24 65 1 1 63 60 59 0 0

miR-34b DLD 24 59 3 1 55 53 51 0 0

miR-34a HeLa 24 64 0 0 64 62 60 0 0

miR-34b HeLa 24 63 0 0 63 57 56 0 0

miR-34a A549 p53 24 61 0 0 61 60 58 0 0

miR-34b A549 p53 24 59 0 0 59 60 56 0 0

Total 111 38 5 86 71 69 11 7

Overall, 86 TFs have been identified by MIRTFnet (applying the Wilcoxon test (WR)) with the used datasets. 71 TFs have been detected applying the Kolmogorov-
Smirnov (KS) test and 11 TFs have been detected using the hypergeometric test. The hypergeometric test does not find any significant TF in 19 out of 25 miRNA
transfection profiles.
doi:10.1371/journal.pone.0022519.t003

MIRTFnet: miRNA Regulated Transcription Factors
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potential explanation for the majority (on average 67%, File S1 shows

the exact numbers for each measurement) of the observed differential

expression in the examined miRNA transfection experiments.

miRNA-target TF associations in databases and
prediction programs

Whether a connection between the transfecting miRNA and

active TFs can be established depends on the current databases

and sequence based prediction programs of miRNA target genes

(Figure 4).

Based on these associations we aim to construct models of

miRNA actions (see methods). However, these would be very small

if only databases as well as PICTAR and TargetScan are used for

model construction. Here, only four TFs on average would

be connected to the transfecting miRNA. To improve this recall,

PITA miRNA-gene associations are used as well. The combined

miRNA-gene associations suggest connections to about 16 active

TFs for all of the examined miRNA transfection experiments.

Detected TFs and their reported roles in cancer –
literature mining

miRNAs play potential roles in the pathogenesis of different

diseases including cancer [44–45]. Some miRNAs may be directly

involved in cancer development by controlling cell differentiation

and apoptosis or by targeting cancer oncogenes and/or tumor sup-

pressors [46–48]. All of the transfection experiments analyzed in

the present paper have been described in the literature as cancer

relevant.

The miR-192, miR-215 and miR-34 experiments were conceived

because these miRNAs are reportedly regulated by p53 and are thus

potentially involved in cancer related processes [32–33]. We also

analyzed the miR-155, let-7 and miR-16 transfection experiments

[17] for which interactions with p53 have been reported as well

[49–50]. We thus expect to predominantly identify cancer related

TFs which we will evaluate below as a proof of concept of

MIRTFnet. The cancer specific involvement of many of the TFs

MIRTFnet determined as active is indeed discussed in the

literature.

In case of the miR-155 transfection, we detected a range of

oncogenic TFs (e.g., SPI1, MYCN, MAFB, FOS and REL) and

the tumor suppressor TP53, which may suggest a tumor-induction

effect. Previous reports have experimentally confirmed that SPI1

(Pu.1) reduces the transcriptional activity of p53 tumor suppressor

family [51]. The deregulation of MYCN leads to undergo cell

cycle exit and terminal differentiation [52–53].

Figure 2. Rank distributions of the 1826 putative ELK4 targets
(red) vs. the 16101 remaining genes (green). The ranks are
derived from the list of target genes sorted according to their fold
changes (blue) in the miR-155 transfection experiment at 32 h. The
distributions are normalized to show the relative overrepresentation of
ELK4 targets in histogram bins of |log2(fold change)| .0.4 (correspond-
ing to fold changes .1.3, or ,0.75) ELK4 targets are enriched by about
50% compared to |log2(fold change)| ,0.4. ELK4 is thus identified as an
active regulator with a p–value of 2.87E-11 according to the Benjamini-
Hochberg corrected the Wilcoxon test.
doi:10.1371/journal.pone.0022519.g002

Figure 3. P-value distribution of TFs in miRNA transfection experiments. To detect active TFs, the statistical tests have been applied to 196
TFs across 43 transfection profiles. If a test assigns a p-value of less than 0.05 after multiple testing correction a given TF is identified as active for the
given measurement. Depicted are the p-value distributions of the WR and KS tests, i.e. the number of TF that fall in a given p-value range according
to the respective test.
doi:10.1371/journal.pone.0022519.g003

MIRTFnet: miRNA Regulated Transcription Factors
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In the miR-16 transfection, we found the target genes of

oncogenic TFs (e.g., MAFB, MYB) including Cyclin D1/CCND1

and CDK6 to be differentially expressed as well. Both CCND1

and CDK6 are experimentally validated targets of miR-16 that

induce cell cycle arrest [54–55].

In case of let-7b transfection, the tumor suppressor TP53 and

oncogenes such as E2F1, FOS and FOSB have been found active,

which might hint to tumor-suppressing effects of let-7b. Recently,

the let-7 family miRNAs were found to inhibit E2F family

oncogenes [25]. The TFs (e.g., TP53, FOS and FOSB) are

predicted targets of let-7b [12]. The let-7 family is described to be

in many human cancers [56–57].

Recent studies confirm that TP53 regulates apoptosis by

targeting miRNAs, such as miR-34, miR-192 and miR-215

[46,58–60]. The miR-34, miR-192 and miR-215 halt cell cycle

progression by co-ordinately targeting transcripts that play critical

roles in mediating cell cycle control [33,61–62]. Our results

showed that miR-34 alters the activity of the MYCN, MYB,

MAFB and E2FI oncogenes, all being involved in apoptosis and

cell proliferation [62–63]. The predicted target of miR-34, YY1

has been shown to down-regulate TP53 [64]. miR-192 and miR-

215 were found to inhibit HOXA10 and several oncogenes (e.g.,

MYCN and MAFB). Furthermore, miR-192 and miR-215 were

found to down-regulate CDC7, which might provide an additional

explanation for the involvement on miRNAs in the p53 pathway

to mediate cell cycle and apoptosis [65].

Also in case of miR-9 transfection, tumor suppressor p53 and

oncogene transcription factors such as Runx1, E2F1, MYCN

and MYB have been found active. Both MYC and MYCN

oncoproteins act on the mir-9-3 locus and cause activation of miR-

9 expression in tumor cells [66]. Runx1 is an experimentally

validated target of miR-9 and has been reported to act as tumor

suppressor, dominant oncogene or mediator of metastasis [67-68].

In case of miR-122, TFs such as MAFB and SRF have been found

active. SRF is an experimentally validated target of miR-122 and

it regulates cell proliferation, differentiation, and cytoskeletal

reorganization [69].

miRNA-TF regulatory model upstream and downstream
of TP53

The literature discussed in the previous section implies the

involvement of the examined miRNAs and the identified TFs in

cancer related processes. For a proof of concept of MIRTFnet, we

analyze whether this common background is also reflected by a

common set of TFs active across several of these experiments.

Therefore, we compiled individual regulatory models (Figure 1)

from all examined miRNA transfection experiments. The detailed

models (provided upon request) characterize the miRNA down-

stream actions in terms of kinases as well as active TFs that are

mutually connected by interactions from databases or computa-

tional predictions. Interestingly, these models show substantial

overlaps. In the following, we discuss the two intersection models

constructed from the TFs and/or kinases contained in the

regulatory networks (1) upstream and (2) downstream of TP53

that are contained in at least 7 of 19 individual models. By

analyzing transfection experiments of sets of functionally related

miRNAs we found that each set addresses a common core of

transcription factors specific for that set.

The upstream miRNAs such as miR-155, miR-16 and let-7b

are found to regulate TP53 [49-50]. The miRNAs miR-34, miR-

192 and miR-215 are found to be regulated by the p53 tran-

scription factor [32–33,46]. The upstream intersection model

including miR-155, miR-16 and let-7b miRNA transfection, shows

that these miRNAs regulate the tumor suppressor TP53 and

oncogene TFs (e.g., FOS, E2F1) (Figure 5). In comparison to the

upstream model, in the downstream intersection model miR-34

a/b, miR-192 miRNA transfection were found to regulate

Figure 4. Significant TFs predicted by databases and/or sequence prediction programs of miRNA-target genes. TFs are detected as
active by analyzing the expression levels of their downstream targets (the Wilcoxon test). Active TFs can be predicted from databases in 18 out of 25
miRNA transfection experiments (on average 3 TFs per miRNA transfection experiment). PICTAR and TargetScan prediction programs can predict on
average 3 and 4 active TFs in 19 and 16 out of 25 miRNA transfection experiments, respectively. PITA can predict TFs in all 25 miRNA transfection
experiments (on average 15 active TFs per transfection profiles). To improve recall, the miRNA-gene associations of databases and prediction
programs are combined (on average 16 active TFs per transfection).
doi:10.1371/journal.pone.0022519.g004
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oncogeneic TFs (e.g., MAFB, ELK4, GATA3) (Figure 6). A

minority of TFs is part of the upstream and downstream miRNA-

TF models. These TFs regulate common oncogene TFs (e.g.,

CREB1, SPI1, etc). Thus, although the detected active TFs are all

involved in cancer (further substantiated in the following section),

the two regulatory models are quite distinct demonstrating that

specific results are obtained from analyzing different sets of

miRNAs.

Pathway and Gene Ontology analyses of the regulatory
model

Here, we disregarded 6 examined datasets to avoid a bias

towards miR-34. The intersection model contains 21 TFs and 34

kinases. We first analyzed the contained kinases. Kinases were

included because of miRNA-kinase-active TF links, i.e. they

usually do not receive direct support from the expression

measurements. According to a pathway analysis using DAVID

[70], these kinases are associated with several KEGG signalling

pathways including the MAPK, cancer, cell cycle and apoptosis

pathways. 17 out of 34 kinases are part of the KEGG MAPK

signalling pathway (e.g. MAPK9, MAPK8, CHUK, NLK and

MAPK14). The MAPK signalling pathway is immediately

connected to the p53 signaling pathway. 12 kinases are also part

of the KEGG cancer signaling pathway (e.g. PTK2, MAPK3 and

SKP2).

Notably, most of the active TFs detected by our approach are

well known for their involvement in cancer. According to the

DAVID analyses in pathway databases such as KEGG or

BioCarta, only cancer related pathways were detected with

statistical significance. These included the KEGG pathways

‘prostate cancer’, ‘pancreatic cancer’, ‘apoptosis’ and ‘pathways

in cancer’, which account for 10 of the TFs identified as active (i.e.,

ELK4, NFKB1, TP53, FOS, SPI1, CREB1, RELA, REL, E2F1

and ARNT). According to enrichment analysis of GO terms

(DAVID), the TFs in the intersection model are associated with

101 GO categories including cell differentiation.

For instance, CREB1 as well as the NFkB TF complex

(NFKB1, RELA, REL) trigger cell survival and cell proliferation

processes. Four additional TFs are oncogenes (REL, ELK4, MYB

and MAFB). Another two TFs (PAX5 and SP1) are involved in cell

differentiation, which also is a cancer-associated process. For the

remaining TF YY1 associations with cancer through p53

regulation have been reported in the literature [64]. The

relationships between 19 of the 21 TFs as derived from the

STRING database [71] are depicted in the supplement (File S1).

We provide details on the examined miRNAs, kinases and TFs

as well as their interactions (Files S1, S2, S3, S4, S5). In addition to

the above definition of a core model, the supplementary material

thus enables analyses on arbitrary combinations of the individual

models.

Discussion

Transcription factors (TFs) are important factors regulating

gene expression. Based on miRNA transfection experiments,

methods have been suggested previously [in 22–25] detecting TFs

that mediate at least some of the observed expression changes

of genes not directly targeted by the transfecting miRNA. As

an alternative, we proposed the method MIRTFnet for the

determination of TFs regulated in response to the miRNA

transfection. In comparison to the approach presented in [25],

our method is more sensitive as all TFs with known targets can be

tested with little computational effort. MIRTFnet can detect the

small expression changes in the TF target genes caused by the

transfection with miRNAs. In contrast to previous methods based

on the hypergeometric (HG) test [22–24], MIRTFnet does not

require the manual filtering of TF targets to enable the detection

of regulated TFs.

MIRTFnet identifies active TFs by analyzing the differential

expression in the TF target genes. Despite the dependency of our

method on TF target gene predictions, the detection of active

regulators is very reliable. In the examined experiments,

Wilcoxons rank-sum test (WR) detected the transfecting miRNAs

Figure 5. Upstream of TP53: intersection of miR-155, miR-16 and let-7b models. Individual regulatory models of the miR-155, miR-16 and
let-7b transfection experiments are compiled by MIRTFnet and intersected. These models show substantial overlaps, regulating directly or indirectly
oncogene TFs (such as TP53, FOS, CREB1). The interaction of these miRNAs with p53 have also been reported in the literature [49–50].
doi:10.1371/journal.pone.0022519.g005
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more reliably than the Kolmogorov-Smirnov (KS) and hypergeo-

metric (HG) tests (recall: WR = 42/43 = 98%, KS = 34/43 =

79%, HG = 18/43 = 42% and AUC: WR = 90%, KS = 86%,

HG = 65%). The AUC improves to 91% if only those TFs

are considered active that are detected by both WR and KS.

Therefore, MIRTFnet reports TFs as active regulators if they are

identified by both tests.

A transfecting (primary) miRNA might also lead to activity

changes in secondary miRNAs, which we will analyze and discuss

in a forthcoming paper.

The miRNAs used in the transfections examined in this paper

were predominantly selected by the authors of the corresponding

studies because of their reported involvement in cancer. In case of

the detection of active TFs, we thus expected MIRTFnet to

predominantly propose cancer related TFs. We could clearly

confirm this expectation, and thereby ensure the reliability of our

active TF predictions, as the involvement in cancer is indeed

known for almost all of our detected TFs.

Starting from the transfecting miRNA, we constructed putative

models based on known or predicted regulator (i.e. miRNA, TF

and kinase) target relationships. For each examined transfection

experiment, most of the detected TFs could be connected directly

or indirectly to the transfecting miRNA. Indirect connections in

our models included miRNA-kinase-TF and miRNA-TF-TF

relationships. Our models provide potential explanations for the

majority of the observed expression changes as all known TFs

were tested by MIRTFnet. These models also contained

relationships to unregulated genes. This is not surprising as

many genes might be regulated in a synergistic fashion, i.e.

require different regulators being active at the same time.

Relationships to unregulated genes might also be caused by

incorrect target predictions.

An additional unexpected result stems from intersecting the

proposed regulatory models constructed for the individual

miRNAs. We detected several active TFs across many different

transfection studies. This could potentially suggest common

regulatory mechanisms downstream of cancer relevant miR-

NAs. At the same time, the responses of TFs to different subsets

of miRNAs can be quite distinct depending on whether these

miRNA act either upstream or downstream of p53 (Figures 5

and 6).

Our results further reinforce the growing awareness that these

small non-coding RNAs have an intrinsic function in gene

regulatory networks including TFs related to key cellular contexts

such as cell proliferation and apoptosis.

Supporting Information

File S1 Additional Data information. The File S1 describes

the information contained in additional data files including figures,

Figure 6. Downstream of TP53: intersection of miR-34a, miR-34b and miR-192 models. As in Figure 5, individual models of miR-192/215
and miR-34 microRNAs have been intersected. The shown microRNAs are reportedly regulated by TP53 and are thus potentially involved in cancer
related processes [46,58–60].
doi:10.1371/journal.pone.0022519.g006
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tables and results extracted from the miRNA transfection

experiments analyzed in the present paper using MIRTFnet.

(DOC)

File S2 miRNA-target associations. The File S2 contains the

transfecting miRNA target genes including TFs, kinases and other

differentially regulated miRNA target genes. For more details see File

S1.

(CSV)

File S3 Kinase-TF relationships. The File S3 lists the kinase-TF

associations necessary to link active TF to the transfecting miRNA in each

miRNA-transfection experiment. For more details see File S1.

(CSV)

File S4 Significant TFs. The File S4 contains the TFs identified as

active (either based on the Wilcoxon test or based on the fold change

criterion) in each miRNA transfection experiment. For more details see

File S1.

(CSV)

File S5 TF-target relationships. The identified active TFs

and their target genes (in addition to the direct miRNA target

genes) provide a potential explanation for the majority of the

observed differential expression in the 25 examined miRNA

transfection experiments. The File S5 contains the active TF

regulated target genes information. For more details see File S1.

(CSV)
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