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A large dataset of white blood cells 
containing cell locations and types, 
along with segmented nuclei 
and cytoplasm
Zahra Mousavi Kouzehkanan1,2,11, Sepehr Saghari2,3,11, Sajad Tavakoli2,4, Peyman Rostami2,5, 
Mohammadjavad Abaszadeh1, Farzaneh Mirzadeh2,6, Esmaeil Shahabi Satlsar2,7, 
Maryam Gheidishahran8, Fatemeh Gorgi9, Saeed Mohammadi10 & Reshad Hosseini1*

Accurate and early detection of anomalies in peripheral white blood cells plays a crucial role in the 
evaluation of well-being in individuals and the diagnosis and prognosis of hematologic diseases. 
For example, some blood disorders and immune system-related diseases are diagnosed by the 
differential count of white blood cells, which is one of the common laboratory tests. Data is one of 
the most important ingredients in the development and testing of many commercial and successful 
automatic or semi-automatic systems. To this end, this study introduces a free access dataset of 
normal peripheral white blood cells called Raabin-WBC containing about 40,000 images of white blood 
cells and color spots. For ensuring the validity of the data, a significant number of cells were labeled 
by two experts. Also, the ground truths of the nuclei and cytoplasm are extracted for 1145 selected 
cells. To provide the necessary diversity, various smears have been imaged, and two different cameras 
and two different microscopes were used. We did some preliminary deep learning experiments on 
Raabin-WBC to demonstrate how the generalization power of machine learning methods, especially 
deep neural networks, can be affected by the mentioned diversity. Raabin-WBC as a public data in the 
field of health can be used for the model development and testing in different machine learning tasks 
including classification, detection, segmentation, and localization.

The issue of precise and early diagnosis is the most vital step in the medical treatment process. According to the 
World Health Organization, about 2 billion people currently do not have access to primary medical and phar-
maceutical services1. In the meantime, laboratory tests play an essential role in the diagnosis and treatment of 
diseases. It is estimated that about 70% of the decisions related to the diagnosis and treatment of disease, as well 
as the discharge and admission of a patient, rely on the results of laboratory tests2. In this regard, the differential 
count of white blood cells is one of the common laboratory tests necessary to be considered in the diagnosis of 
various diseases such as blood disorders (such as leukemia, anemia, polycythemia, etc.) and immune system-
related diseases (such as autoimmune anemias, allergy, etc.)3.

White blood cells called leukocytes include two groups of phagocytes and lymphocytes. While phagocytes 
comprise cells of the innate immune system and function rapidly after infection, lymphocytes mediate the 
acquired immune response. Phagocytes, themselves, can be divided into granulocytes (neutrophils, basophils, 
and eosinophils) and monocytes. In Table 1 and Fig. 1, you can see the characteristics and images of the five 
categories of white blood cells. Table 2 shows some examples of the diseases that occur with an increase or 
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decrease in the number of white blood cells. For example, in allergic diseases, the number of basophils increases, 
or in blood malignancies, we can see an increase in the number of precursors of blood cells and changes in their 
shape and size. Therefore, determining the correct type and number of white blood cells is very important for 
diagnosing various diseases.

At present, manual (microscopic evaluation) and automated methods (using automatic hematology devices) 
are used to evaluate blood cells. Automated methods include devices which evaluate blood cells based on light 
scattering or electrical impedance such as Sysmex XP-300, Nihon Kohden Blood Cell Counter, and DH36 3-Part 
Auto Hematology Analyzer.

In electro-optical analyzers, a light-sensing detector measures the optical scattering. The size of the detected 
pulses corresponds to the size of the blood cells. Furthermore, in electrical impedance or Coulter principle 
cell counter, the passage of cells through an aperture in which an electric current is applied causes change in 
the electrical resistance. Pulses the height of which corresponds to the volume of the cell are counted, and this 
is considered as the basis of Coulter’s principle working4. Besides these methods, microscopic hyperspectral 
imaging technology, as an emerging imaging modality, is currently being used. This method is a combination 
of spectroscopy and 2D imaging6–8.

One of the serious drawbacks of these devices apart from their high cost is the simple act of counting cells 
without them being evaluated qualitatively from a structural and morphological point of view. As a result, after 
evaluating the blood sample by the mentioned cell counters, it is necessary to prepare a smear and evaluate it 
microscopically by the laboratory staff to achieve an accurate and correct diagnosis.

On the other hand, issues such as the lack of specialists and laboratory equipment, heavy workload, inexperi-
ence, and incorrect diagnosis affect the test results. Misdiagnosis affects the treatment regime, and consequently, 
can result in the malpractice and an increase of associated costs. However, the use of new technologies such as 
artificial intelligence and image processing allows quantitative and qualitative evaluations to improve the quality 
of diagnosis9.

Over the past 20 years, the techniques for automated imaging of the blood-stained slides have been intro-
duced by computer-connected microscopes capable of assessing blood cell morphology. With the development 

Table 1.   Characteristics of white blood cells4.

WBCs % In blood Nucleus Cytoplasm Size (μm)

Neutrophils 60% It is divided into 2 to 5 segments and stains dark purple (multi-
lobed) It is pale pink to tan with pink-purple granules 12–16

Eosinophils 3% It is blue and is divided into 2 segments It is full of pale pink tan with large orange and red granules 14–16

Basophils 1% It has 2 lobes that each stains purple, and is difficult to be seen It is pale pink-tan but contains large purple/blue-black granules 
which obscure the cell nucleus 14–16

Monocytes 6% It is singular and is kidney shaped (convoluted shape), bean shaped 
or horseshoe shaped with deep indentation

It stains a blue-gray color and is "ground glass" with tiny granules, 
Vacuoles are sometimes present in it 14–20

Lymphocytes 30% It is large, round or oval, and is dark staining It is not present or very small, and is pale blue in color, and occa-
sionally has purple-reddish granules 8–15

Figure 1.   Five types of white blood cells in the normal peripheral blood.

Table 2.   White blood cells alterations and related different diseases5.

White blood cell Increase Decrease

Lymphocyte Acute and chronic leukemia, hypersensitivity reaction, 
viral infection AIDS, influenza, sepsis, aplastic anemia

Monocyte Autoimmune disease, fungal and protozoan infection Aplastic anemia, hairy cell leukemia, acute infections

Neutrophil Chronic inflammation, Infection Chediak-Higashi syndrome, Kostmman syndrome, Auto-
immune neutropenia

Eosinophil Allergic reaction, parasitic infection, malignancy Cushing syndrome, shock or trauma driven stress

Basophil Leukemias Hyperthyroidism and acute infections
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of technology, companies such as Cellavision, Westmedica, Siemens, etc. have made it possible to differentiate 
the count of normal from abnormal blood cells10. In fact, today, deep neural networks are one of the most widely 
used machine learning methods for the classification and segmentation of medical images. Shahin, A et al.11 used 
DNNs to classify white blood cells. In addition, these networks are used for the classification of red blood cells 
to detect a sickle cell anemia12. Deep neural networks are also used for the segmentation of the pancreas in the 
CT scan images13,14 and the segmentation of the MRI images10.

Data have the most important role in the development of machine learning models. In order to train deep 
neural networks and increase their generalizability, we need a lot of diverse precise data and confident labels. The 
process of labeling medical data should be carried out by professionals and is, therefore, a time-consuming and 
challenging procedure. As a result, medical databases are of high significance in smartening medical diagnoses. 
Unfortunately, researchers, today, have limited access to a variety of medical data for various reasons. Examples 
of available medical image databases are15 and16. The database15 contains 82 3D CT scans in which the Grand 
Truths of the pancreas for all slices were manually extracted by medical students and finalized by a specialist 
radiologist. Camelyon16 is another dataset with 1399 whole-slide images of the lymph node smear samples with 
and without metastases, for which the labels were checked twice.

The morphological diversity of white blood cells is very high and in some cases, it is very challenging, even 
for an expert, to distinguish some classes from each other. On the other hand, many artificial intelligence articles 
have adopted two approaches to evaluate their proposed method regarding segmentation and classification of 
white blood cells: They have either collected small databases to the best of their ability17–20 or used the small 
databases available21–23. Therefore, a database with a large amount of diverse data and reliable labelling is truly 
necessary to evaluate and compare different methods with each other. Such a reference database will allow more 
artificial intelligence scientists to enter the field and will help the advancement of intelligence differentiation 
of white blood cells. The most important characteristics of the Raabin-WBC dataset that distinguishes it from 
similar datasets are as follows:

•	 Large number of data: We tried to collect as much data as possible for each class in order for them to be 
appropriate for all machine learning techniques, especially deep learning. (Approximately 40,000 white blood 
cell images)

•	 Precise labels: We considered more detailed labels than five types of white blood cells. In fact, labels contain 
the most important subgroup of each type. For example, we considered the meta and band which are sub-
groups of neutrophils and are valuable in diagnosis. In the next section, more information about the labels 
will be presented.

•	 Double labeling: For more insurance, most of the cells are labeled by two experts.
•	 Free public access: Since we aim at helping the development of artificial intelligence in hematology, the 

Raabin-WBC dataset is freely available for all.
•	 Data cleaning: In the process of data collection, the existence of duplicate cell images is not inevitable. The 

first problem is that the duplicate cell images are not exactly the same. For example, there is a possibility of 
the cell being somewhat moved. The second issue is that having more than two versions of one cell image is 
also possible. Hence, we developed a fast graph-based image processing method that can accurately remove 
as many duplicate cells as possible. Despite this, it is still probable for some duplicate images to exist, albeit 
being significantly different.

•	 The ground truths of nuclei and cytoplasm: The ground truths of the nuclei and cytoplasm are extracted 
for 1145 selected cells. In order to extract the ground truth of nuclei, we developed a toolkit that by using 
image processing techniques makes the ground truth extraction process much easier.

•	 Diversity of the microscope and camera: Although most of the data were collected by a fixed type of 
microscope and camera, we collected some data with another type of camera and microscope, as well. In 
the section of experiments, you will see how new test data help to evaluate the generalization power of our 
trained models. In other words, the diversity of the dataset assists us in selecting a model that has correctly 
learned the manifold of cell images.

The rest of the paper is as follows: In “The characteristics of Raabin-WBC” section, we will elaborate more 
on the details regarding the dataset. In “Data collection” section, the data collection process will be explained 
completely. In “Experiments” section, we will do some machine learning experiments and discuss the generali-
zation power of the models.

The characteristics of Raabin‑WBC
In this section, more information is provided about the Raabin-WBC dataset. About 73 peripheral blood films 
were used for collecting this dataset. After imaging stained blood films, we tried to mine the most possible use-
ful information from the raw data. For instance, the bounding box of all white blood cells and artifacts were 
extracted, cropped and labeled, successively. It is worth noting that a significant number of WBCs and artifacts 
were labeled by two experts. Furthermore, we provided the ground truth of the nucleus and cytoplasm for some 
of the cropped cells. The full details of the data collection steps are explained in Sect. 3. In Table 3, some general 
and useful information of the Raabin-WBC dataset is provided. Note that these numbers have been computed 
after the cleaning phase.

Labels.  In the Raabin-WBC dataset, more detailed labels are considered than just five general types of white 
blood cells. For example, besides the mature neutrophil, we have evaluated two other ancestors of this white 
blood cell: Metamyelocytes and Band. An increase in the number of band forms and metamyelocytes is one of 
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the features of reactive neutrophilia (an increase in the number of circulating neutrophils to levels greater than 
7.5 × 109/L)5. In addition, lymphocytes are divided into small (the main agents of the acquired immune system 
including B and T cells) and/or activated lymphocytes (activated small lymphocytes referred to as large lym-
phocytes or lymphoblasts). Bursts refer to smudge cells that are leukocyte remnants formed during blood smear 
preparation. Beside the leukocytes we considered drying artifacts as new labels, because artifacts are commonly 
seen after staining the samples. In Fig. 2, the diagram of the labels is presented.

In Table 4, the number of labels associated with two experts is shown. The rows and columns of the table 
belong to the first and second experts, respectively, noting that 9015 cells have not been labeled yet. We asked 
our experts to label the cells as unrecognizable if they had any doubts. Indeed, we have 1099 cells labeled as not 
recognized by the two experts. In Table 4, you can see the amount of disagreement for each pair of different 
labels (Non-diagonal elements of the matrix). For example, large and small lymphocytes are confused a lot. Also, 
seem bands have often been mistaken with mature neutrophils. Other examples of confusing pairs are artifact 
and burst, large lymphocyte and monocyte, and small lymphocyte and burst. The high numbers in the rows and 
columns labeled as not recognized indicate that it is very challenging to identify the type of white blood cell.

Data structure.  The Raabin-WBC dataset consists of images that were taken from blood films (similar 
to Fig. 5). Corresponding to each microscopic image, a dictionary (.json format) file containing the following 
information about that image was provided:

•	 Information about the blood elements in the image including their coordinates and labels. Most of the ele-
ments are labeled by two experts.

•	 Information about the blood smears including staining method and the type of the disease. Note that all 
blood smears have been prepared from normal samples. Only a Chronic Myeloid Leukemia (CML) sample 
has been used to extract basophils.

•	 Information about the microscope includes the type of microscope and its magnification size.
•	 The type of camera used.

There is also a subset of the database called double-labeled Raabin-WBC which includes cropped images of 
the five main types of WBCs and were labeled the same by both of the experts. We will explain more about this 
sub-dataset in the experiment section.

Table 3.   Raabin-WBC information table.

Number of all films (smear) 73

Number of CML films 1

Number of normal-anemia films 2

Number of normal-eosinophilia films 2

Number of normal films 68

Number of microscopic large images 20,936

Number of bounding boxes (including WBCs and artifacts) 40,763

Number of 0 labeled WBCs 10,385

Number of 1 labeled WBCs 4971

Number of 2 labeled WBCs 25,408

Number of ground truths for lymphocytes (including nucleus and cytoplasm) 242

Number of ground truths for monocytes (including nucleus and cytoplasm) 242

Number of ground truths for neutrophils (including nucleus and cytoplasm) 242

Number of ground truths for eosinophils (including nucleus and cytoplasm) 201

Number of ground truths for basophils (whole cell) 218

Figure 2.   Diagram of labels in the Raabin-WBC dataset.
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Data collection
The data were collected from patients and the ethical approval was gotten from the ethical committee of Hema-
tology, Oncology, and SCT Research center of Shariati hospital. We confirm that all methods were performed in 
accordance with the relevant guidelines and regulations. The steps of data collection (Fig. 3) include preparing 
blood smears and photographing them, extracting the bounding box of white blood cells, data cleaning, and 
finally labeling the data and extracting ground truths. More details are explained in the rest of this section.

Preparation of blood smears and imaging.  72 normal peripheral blood films (male and female sam-
ples from ages 12 to 70) have been used to collect neutrophils, eosinophil, monocyte, and lymphocyte images. 
On the other hand, due to the very low presence of basophils in normal specimens (< 1–2%)9, basophils of one 
CML-positive sample have been imaged. Owing to the widespread use of Giemsa in medical labs9, all samples 
were stained by Giemsa. It should be noticed that all samples were taken from collaborator medical laborato-
ries (Razi Hospital in Rasht, Gholhak Laboratory, Shahr-e-Qods Laboratory, and Takht-e Tavous Laboratory in 
Tehran, Iran) and we did not deal directly with patients. It is worth noting that in Iran, it is necessary to get the 
approval of patients only in clinical trials. But in retrospective studies, this is not necessary in Iran. The process 
of imaging the slides was performed by the help of two types of microscopes, namely Olympus CX18 and Zeiss 
at a magnification of 100×. Since determining the Diff area to evaluate and count different types of white blood 
cells is of utmost importance, an expert lab staff had supervised the cell imaging process.

With smart phones being widely used in society, a rapidly growing trend has emerged to adapt them to 
medical diagnostics24,25. The availability, ease of use and low cost of high-pixel density cameras available in 
smart phones make them widely used in various science fields26–32. Therefore, in compiling this database, the 
cameras available on smart phones have been used, the details of which are given in Table 5. Smartphones can 
be adapted for microscopic imaging using some accessory equipment33–35. To facilitate the use of smart phones 
in microscopic imaging in this dataset, an adapter was designed and made by 3D printing to mount the smart 
phone on the microscope ocular lens (Fig. 4). The designed adapter has somewhat managed to minimize the 
drawbacks of the commercial models available in the market such as restrictions on the size of the phone and 
ocular lenses, as well as the difficulty of the adjustment.

Extraction of white blood cells from images.  In total, about 23,000 images were taken from blood 
films. There exist many red blood cells in each blood smear image. It is also probable that one or more other 
blood elements such as white blood cells and sometimes color spots exist in the image. The bounding box of 
these blood elements should be somehow identified. For this purpose, two approaches have been considered. 
Due to the distinct color of the nucleus in white blood cells, in the first approach, several white blood cells were 

Table 4.   The number of labels associated with two experts. The rows and columns belong to the first and 
second experts, respectively.

Artifact Band Basophil Burst Eosinophil Large lymph Meta Monocyte Neutrophil Small lymph Not recognized Not labeled

Artifact 3489 0 0 14 2 1 0 0 6 4 96 225

Band 0 311 0 2 0 0 2 0 32 0 16 71

Basophil 0 0 308 0 0 0 0 0 0 0 2 0

Burst 29 0 0 2673 1 11 0 4 1 32 96 525

Eosinophil 0 0 0 9 1466 0 0 0 1 1 13 607

Large lymph 0 0 0 1 0 2153 0 4 1 172 23 163

Meta 0 0 0 1 0 0 11 1 2 0 6 12

Monocyte 0 0 0 2 0 24 0 874 1 0 36 104

Neutrophil 0 134 0 29 3 1 0 2 11,726 1 109 1078

Small lymph 1 0 0 1 0 31 0 0 0 1833 20 370

Not recognized 65 5 0 9 5 744 10 81 127 332 1099 268

Not labeled 5 0 0 0 0 1 0 0 9 4 3 9015

Figure 3.   Main steps of the Raabin-WBC dataset collection.
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extracted manually as Grand Truth data, and a color filter was trained to separate the white blood cells from the 
background. The aforementioned color filter was applied to the main images, and the approximate position of 
the white blood cells was marked. Finally, a 512 by 512 square with the center of the cell is considered as a bound-
ing box. In the second approach, extracted bounding boxes with the help of the first approach were used, and a 
Faster RCNN network36, which can determine the exact location of the white blood cells in the original image, 
was trained. Eventually, about 43,000 blood elements were obtained.

Data cleaning.  In the process of imaging from the blood smears, a white blood cell may be placed in more 
than one image (Fig. 5). Therefore, duplicate cell images exist among cropped images. The major problem is that 
the two images of one cell are not necessarily very similar. Consequently, a simple mean square error on the 
value of the pixels is not enough to detect duplicate cell images. Indeed, a cell can be repeated more than twice. 
In Fig. 6, an example of three images of one cell is represented. As you can see, the qualities of the three images 
are different.

Manual comparison of these images in pairs is practically impossible. Hence, an artificial intelligence algo-
rithm, fast and accurate, has been developed to remove duplicate cell images. We used the Python ImageHash 
library, in this regard. First, for all pairs of cropped images, the Average Hash (AHash) and Perceptual Hash 
(PHash) values are calculated very quickly. Paired images, the AHash and PHash distances of which are less 
than those of the specific thresholds, are the same, and one of them should be removed. The thresholds of the 
Average Hash and Perceptual Hash are set manually through trial and error (See appendix 1 for more details).

Since an image may exist more than twice, a two-by-two comparison is not sufficient. For this purpose, a 
solution to the problem is presented from the Graph’s point of view. In fact, we have a graph with N nodes (N is 
the number of cropped cell images from blood film). There exist edges between the nodes that satisfy the same-
ness condition. In this case, the connected components of the graph form equal images. Connected components 
of a graph can be calculated with the help of the breadth-first search algorithm very swiftly (See appendix 2 
for more details). If a connected component has n > 1 images, n − 1 of them must be removed. To enhance the 
quality of the database, the image with the highest resolution remains out of n images, and the rest are deleted. 
The OpenCV37 library is used to compare the resolution of images. In this regard, Sobel horizontal and vertical 
filters38 are applied to the images and the gradient magnitude is calculated for each pixel. Finally, the image with 
the highest average gradient magnitude is selected, because it is the sharpest one.

As described in Sect. 2, to offer full information, we provide our data in the format of large and not cropped 
images (like Fig. 5). For each large image, the coordinates and the labels of the containing cells are provided. We 
tried to remove as many duplicates as possible from large images. Indeed, we remove a large image in which all 
containing cells are inside another image. For example, in Fig. 5, image b is removed.

Table 5.   Smartphone camera specifications used for data collecting.

Smartphone Release date Sensor model Sensor type No. of pixels Aperture Sensor size Pixel size

Samsung Galaxy S5 2014 Samsung S5K2P2XX 
ISOCELL CMOS 16 MP f/2.2

31 mm 1/2.6" 1.12 µm

LG G3 2014 Sony IMX135 Exmor RS CMOS 13 MP f/2.4
29 mm 1/3" 1.12 µm

Figure 4.   Designed adapter to mount smart phones on the ocular lens of a microscope to make the act of 
capturing the photos from the samples quicker and easier. Experts work with a microscope manually and see the 
images on the mounted smartphone and take photos.
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Labeling process
This section describes the labeling process, which involves determining the cell types and the ground truth 
of the nucleus and cytoplasm. As you can see in Table 1, the characteristics of the nucleus and cytoplasm can 
significantly affect determining the type of the cell. Some papers19,39 extract different features from the nucleus 
and the cytoplasm to classify white blood cells. These features usually describe the shape and the color of the 
nucleus and the cytoplasm.

Cell type labeling.  For labeling cells, two applications were developed for Android (Fig. 7). One applica-
tion is for labeling cropped cells (Fig. 7-part b), and the other is for selecting the location and type of each cell 
(Fig. 7-part a). Furthermore, a desktop application with the help of the Python Tkinter library40 was developed 
for manually selecting the location and type of the cells (Fig. 8). It is worth mentioning that most of the images 
were labeled by two experts.

Ground truths of the nucleus and the cytoplasm.  In recent years, many researchers have developed 
segmentation algorithms for the cytoplasm and nucleus of the white blood cells3,18–21,23. Hence, we tried to pre-
pare the ground truths of the cytoplasm and the nucleus for a proper number of cropped white blood cells. For 
this purpose, 1145 cropped images including 242 lymphocytes, 242 monocytes, 242 neutrophils, 201 eosino-
phils, and 218 basophils were randomly selected, and their ground truths were extracted by an expert. It is worth 
mentioning that we only prepared the ground truth of the whole cell for basophils, and we were not able to 
produce the ground truths of the nucleus and cytoplasm for basophils. This is because the basophils are usually 
covered by very purple granules, and the border between cytoplasm and nucleus is not easily visible. Figure 9 
shows some samples of the cells along with their ground truths. 

To produce the ground truths of nuclei, a newly published software called Easy-GT41 was employed. This 
software has been developed to extract the ground truths of nuclei. In Easy-GT software, a nucleus is determined 
by a relatively accurate segmentation method, and if necessary, the user can adjust the ground truth of the nucleus 
by modifying the final threshold41 (Fig. 10). In the segmentation process, the RGB image is first color-balanced41 
and converted to the CMYK color space. Secondly, the two-class Otsu’s thresholding algorithm42 applied to the 

Figure 5.   An example of two overlapped microscopic images.

Figure 6.   One sample that had been repeated three times.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1123  | https://doi.org/10.1038/s41598-021-04426-x

www.nature.com/scientificreports/

M channel gives us a threshold ( th2class ). Again, the three-class Otsu thresholding algorithm is applied to the M 
channel and the two lower and upper thresholds ( th3classlow , th3classup  ) are extracted. Finally, the ultimate threshold 
value is obtained by computing the convex combination of th2class and th3classup .

To make the ground truth of the cytoplasm, a light pen was used, and the ground truth of the whole cell was 
specified by an expert. Finally, by removing the nucleus part obtained from Easy-GT, only the cytoplasm remains.

Experiments
In this section, we are going to do some machine learning experiments on the Raabin-WBC data. Due to the 
diversity of information in the database, many research lines can be developed. Yet, we consider the most com-
mon possible experiment. We classify five classes of white blood cells, and we leave the rest to those who are 
interested in this field. For this purpose, we used the double-labeled cropped cells and considered only five main 
classes including mature neutrophils, lymphocytes (small and large), eosinophils, monocytes, and basophils. We 
called this sub-dataset Double-labeled Raabin-WBC. In the following, we will compare this database with some 

Figure 7.   The user interface of the two android applications that were designed to selecting and labeling the 
white blood cells.

Figure 8.   The user interface of the desktop application designed for labeling white blood cells.
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existing 5-class databases and train some deep popular neural networks. We will also discuss the generalization 
power of the models.

A comparison with similar datasets.  Various datasets of normal peripheral blood with different proper-
ties exist, but in general, most of them have a small number of samples. This is due to the fact that in the medi-
cal field, data collection and labeling are complicated. On the other hand, in the field of Hematology, artificial 
intelligence models are usually sensitive to some specifications of the dataset such as the number of data, the 
staining technique, the microscope and camera used, and the magnification. So, by altering the aforementioned 
characteristics, the accuracy of the models may be reduced. In Table 6, the characteristics of some datasets are 
presented and compared with Double-labeled Raabin-WBC. As you can see, our database is far better in several 
ways including data number, label assurance, ground truth, camera, and microscope variety. Most importantly, 
this database is available to everyone for free.

Utilized models.  Some popular pre-trained deep neural networks were trained on Double-labeled Raabin-
WBC to classify five types of white blood cells. VGG1643 is the oldest CNN model consists of alternating 
convolutional and pooling layers. From deep residual network families, Resnet1844, Resnet3444, Resnet5044, 
and Resnext5045 were tested. In Resnet architecture, identity shortcut connections that skip one or more lay-
ers are used44. Resnext is an extension of Resnet in which the residual block is replaced by a new aggrega-
tion component45. In mentioned aggregation component, the input feature map is projected to some lower-
dimensional representations, and their outputs are aggregated45. Another CNN used in the experiments is 
DenseNet12146 which consists of dense blocks. At each dense block, each layer is fed from all previous layers, 
and its outputs are transferred to all next layers.

Another tested deep architecture is MobileNet-V247 which is suitable for mobile devices. The building block 
of MobileNet-V2 is an inverted residual block, and non-linearities are removed from narrow layers. MnasNet148 
and ShuffleNet-V249 are other light-weight CNNs for mobile devices. In MnasNet, reinforcement learning is 
employed to find an efficient architecture48. In ShuffleNet-V249 at the beginning of the basic blocks, a split unit 
divides the input channels into two branches, and at the end of the block, concatenation and channel shuffling 
occur. Besides the aforementioned neural networks, we also utilized a feature-based method50 in which the 
nucleus was segmented at first, and its convex hull was then obtained. After that, shape and color features were 
extracted using the segmented nucleus and its convex hull. Finally, WBCs were categorized by an SVM model.

Classification results.  The generalization power of the models described in the former section is to be 
examined at two levels. For this purpose, we split data into three groups of training data, test-A, and test-B, the 
properties of which can be observed in Table 7. The quality of the images in the test-A dataset is similar to that 
of the training dataset, but the images in the test-B dataset have different qualities in terms of camera type and 
microscope type. Unfortunately, the test-B data only contains double-labeled neutrophils and lymphocytes.

The training data are not balanced, in other words, the number of cells in each class is imbalanced. Hence, 
the training set was augmented and moderated using augmentation methods such as horizontal flip, vertical flip, 
rescaling, and a combination of them. In order to evaluate the models, four metrics are considered for each class: 

Figure 9.   Some samples of ground truths provided in the Raabin-WBC dataset. First row contains the original 
cropped images of white blood cells. Second row contains the ground truths of some nuclei and cytoplasm. 
The columns (a), (b), (c), (d), and (e) show lymphocyte, monocyte, neutrophil, eosinophil, and basophil, 
respectively.
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precision (P), sensitivity (S), F1-score, and accuracy (Acc). The aforementioned criteria are obtained through 
the Eqs. (1), (2), (3), and (4).

In Eqs. 1–4, TP, FP, TN, and FN are true positive, false positive, true negative, and false negative, respectively. 
In Tables 8 and 9, the results on the test-A and test-B datasets are presented. Also, in the last row of Tables 8 and 

(1)Precision =
TP

TP + FP

(2)Sensitivity =
TP

TP + FN

(3)F1 = 2×
Prec × Sens

Prec + Sens

(4)Acc =
TP + TN

TP + FP + TN + FN

Figure 10.   The user interface of Easy-GT software41. This software was developed for extracting the ground 
truths of nuclei in white blood cells.
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9, the results of the feature-based classification presented in the paper50 are showed. In Fig. 11, the plots of the 
accuracy and the loss of training data and validation data related to nine pre-trained models are shown.

The results are surprising, and all methods have an acceptable outcome on the test-A data. Yet, the perfor-
mance of most of the models on the test-B data experience a dramatic decrease. The feature-based method50 
had the least performance reduction, despite having the lowest accuracy on the test-A data. Among deep neural 
networks, the VGG1643 network has relatively more generalizability. It can be said that the feature-based method 
could extract more meaningful features from cell images than the deep neural networks. If we had not tested the 
models on the test-B data, we would have thought that we have trained a strong classification model; yet, this was 

Table 6.   Comparing some datasets with double-labeled Raabin-WBC. Double-labeled Raabin-WBC does not 
contain the repeated samples as well as includes only five general cells (lymphocyte, monocyte, neutrophil, 
eosinophil, and basophil).

Dataset

Number of WBCs

Access Staining
Microscope 
and zoom Camera Label

Ground truths

Lymp Mon Neut Eos Bas Total Nucleus
Cytoplasm or 
whole cell

LISC20 59 55 56 42 54 266 Public Gismo-right Axioskope40
Zoom : 100X

Sony-SSCD-
C50AP One expert 266 266

BCCD18 33 19 208 86 3 349 Public Gismo-right
Regular light 
microscope
Zoom : 100X

CCD color 
camera One expert ⨉ ⨉

Hegde et al.39 33 23 30 22 14 122 Private Leishman
OLYMPUS 
CX31
Zoom : 100X

N/A One expert 122 ⨉

MISP19 36 33 38 42 0 149 Public N/A
Canon optical 
microscope
Zoom : 100X

Canon V1 One expert ⨉ ⨉

ALL-IDB17 60 3 18 2 1 84 Public N/A
N/A
Zoom : 
300X–500X

Canon Power-
Shot G5 N/A ⨉ ⨉

Zheng et al.21

(CellaVision) 37 18 30 12 3 100 Public N/A N/A
Zoom : N/A N/A One expert 100 100

Zheng et al.21 53 48 176 22 1 300 Public A newly devel-
oped method21

N800-D motor-
ized autofocus
Zoom : N/A

Motic moticam 
pro 252A One expert 300 300

Double-labeled 
Raabin-WBC 3609 795 10,862 1066 301 17,965 public Giemsa

1. Olympus 
Cx18
2. Zeiss micro-
scope
Zoom : 100

1.Camera phone 
Samsung galaxy 
S5
2.Camera phone 
LG G3

Two experts 1145 1145

Table 7.   The number of samples in training data, test-A, and test-B.

Sets Lymph Mono Neut Eos Bas

Training data 2427 561 6231 744 212

Test-A 1034 234 2660 322 89

Test-B 148 0 1971 0 0

Table 8.   The results of different pre-trained models as well as Tavakoli et al.50 on the test-A dataset.

Methods

Lymph Mono Neut Eosi Baso

Acc (%)P (%) S (%) F1 (%) P (%) S (%) F1 (%) P (%) S (%) F1 (%) P (%) S (%) F1 (%) P (%) S (%) F1 (%)

ResNet1844 98.84 99.23 99.08 96.96 95.30 96.12 99.66 99.36 99.5 95.77 98.45 97.09 100 100 100 99.06

ResNet3444 98.66 99.52 99.09 96.93 94.44 95.67 99.85 99.14 99.49 94.67 99.38 96.97 100 100 100 99.01

ResNet5044 98.47 99.52 98.99 97.36 94.44 95.88 99.74 99.40 99.57 96.94 98.45 97.69 100 100 100 99.10

ResNext5045 98.01 100 98.99 99.53 91.45 95.32 99.74 99.55 99.64 97.85 98.76 98.30 100 100 100 99.17

MnasNet148 98.93 98.65 98.79 94.14 96.15 95.14 99.66 98.76 99.21 92.15 98.45 95.20 100 100 100 98.59

MobileNet-V247 98.85 99.32 99.08 96.93 94.44 95.67 99.66 99.40 99.53 96.97 99.38 98.16 100 100 100 99.12

DenseNet12146 98.38 99.61 98.99 97.72 91.45 94.48 99.70 99.14 99.42 94.40 99.38 96.82 100 100 100 98.87

ShuffleNet-V249 98.09 99.32 98.70 96.49 94.02 95.24 99.74 99.36 99.55 97.85 98.76 98.30 100 100 100 99.03

VGG1643 98.26 98.26 98.26 95.09 91.03 93.01 99.43 98.57 99 89.01 98.14 93.35 100 100 100 98.09

Tavakoli et al.50 97.23 95.07 96.14 84.87 86.32 85.59 98 95.60 96.78 72.24 91.30 80.66 96.59 95.51 96.05 94.65
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not the case. In this experiment, we do not want to conclude that deep neural networks have less generalization 
power than feature-based methods. If we applied some appropriate pre-processing on the images before training 
or used some smarter image augmentation methods, the performance of deep neural networks would be better. 
In this experiment, you can easily understand the role of the dataset in the training of machine learning models.

All training processes were carried out using a single NVIDIA GeForce RTX 2080 Ti graphic card and were 
handled by Python 3.6.9 and Pytorch library version 1.5.1. We considered 15 epochs for the training process 
and the starting learning rate, and the batch size were 0.001 and 10, respectively. The learning rate was decayed 
by the ratio of 0.1 and step size 7. Stochastic gradient descent was utilized as the optimization method. We used 
the Torchvision library in order to load pre-trained networks on the ImageNet dataset51. The output size of the 
last linear layer was changed from 1000 to 5.

Table 9.   The results of different pre-trained models as well as Tavakoli et al.50 on the test-B dataset.

Method

Lymp Neut

Acc (%)P (%) S (%) F1 (%) P (%) S (%) F1 (%)

ResNet1844 21 94 34 100 2 3 8

ResNet3444 24 94 38 100 27 43 32

ResNet5044 21 95 35 100 2 4 8

ResNext5045 24 90 38 100 3 5 9

MnasNet148 20 88 33 100 0 0 6

MobileNet-V247 72 50 59 100 0 0 4

DenseNet12146 43 64 51 100 8 15 12

ShuffleNet-V249 42 75 54 100 0 0 5

VGG1643 96 89 93 100 65 79 66

Tavakoli et al.50 94 54 69 100 92 96 90

Figure 11.   The plots of the accuracy and loss of training data and validation data related to nine pre-trained 
models.
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Conclusion
By evaluating the peripheral white blood cells, a wide range of benign diseases such as anemia and malignant 
ones such as leukemia can be detected. On the other hand, early detection of some of these abnormalities, such as 
acute lymphoid leukemia, despite its lethality, can help its treatment process. Therefore, it is important to adopt 
methods that can be effective in the early detection of different diseases. The role of machine learning methods in 
intelligent medical diagnostics is becoming more and more prominent these days. Indeed, deep neural networks 
are revolutionizing the medical diagnosis process and are considered as one of the stare-of-the-arts.

Since deep neural networks usually have a huge number of training parameters, the overfitting problem is 
not highly unlikely. Therefore, the diversity of training data is necessary and cannot be ignored. In medical diag-
nostics, in particular, this diversity gets bolder, because the medical devices can be very diverse. For example, in 
the field of hematology, the type of microscope and camera is very influential. To this end, we collected a huge 
free available dataset of white blood cells from normal peripheral blood so as to relatively satisfy the mentioned 
diversity. This multipurpose dataset can serve as a reference dataset for the evaluation of different machine learn-
ing tasks such as classification, detection, segmentation, and localization.

Data availability
The Raabin-WBC dataset is publicly available through the following link: https://​www.​raabi​ndata.​com/​free-​data/.
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