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Abstract: Smart nanoexosomes are nanosized structures enclosed in lipid bilayers that are structurally
similar to the viruses released by a variety of cells, including the cells lining the respiratory system.
Of particular importance, the interaction between smart nanoexosomes and viruses can be used to
develop antiviral drugs and vaccines. It is possible that nanoexosomes will be utilized and antibodies
will be acquired more successfully for the transmission of an immune response if reconvalescent
plasma (CP) is used instead of reconvalescent plasma exosomes (CPExo) in this concept. Convalescent
plasma contains billions of smart nanoexosomes capable of transporting a variety of molecules,
including proteins, lipids, RNA and DNA among other viral infections. Smart nanoexosomes
are released from virus-infected cells and play an important role in mediating communication
between infected and uninfected cells. Infections use the formation, production and release of smart
nanoexosomes to enhance the infection, transmission and intercellular diffusion of viruses. Cell-free
smart nanoexosomes produced by mesenchymal stem cells (MSCs) could also be used as cell-free
therapies in certain cases. Smart nanoexosomes produced by mesenchymal stem cells can also
promote mitochondrial function and heal lung injury. They can reduce cytokine storms and restore
the suppression of host antiviral defenses weakened by viral infections. This study examines the
benefits of smart nanoexosomes and their roles in viral transmission, infection, treatment, drug
delivery and clinical applications. We also explore some potential future applications for smart
nanoexosomes in the treatment of viral infections.

Keywords: viral infections; convalescent plasma; smart nanoexosomes; drug delivery

1. Introduction

Recently, scientists have studied cells and found that, in addition to secreting sol-
uble factors, cells produce a series of nano-vesicles called exosomes with a diameter of
40–120 nanometers. After the outer membrane (inner vesicle) fuses with the plasma mem-
brane, they are secreted into the extracellular environment by the multi-vesicular endosome.
Therefore, nanoexosomes are another method of cell communication [1–6]. Nanoexosome
production was initially thought to be a method of disposing of intracellular wastes [7,8].

However, after that, the important role of nanoexosomes in natural and abnormal
biological processes was proven [9–11]. These vesicles are part of the extracellular vesicle
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family. Extracellular vesicles are classified according to size and origin. Nanoexosomes are
the smallest member of this family and are made through the endocytosis pathway. Nu-
merous molecules are involved in their construction, intracellular transport and secretion.
Numerous mechanisms have been identified in their construction and loading [12,13].

The membrane vesicles that most cells make and send out as extracellular vehicles
(EVs) include a wide range of other membrane vesicles. EVs are divided into two types: [3]
ectosomes and [14] exosomes, which differ in size, biogenesis and biophysical properties.

Smart nanoexosomes are formed when multivesicular bodies (MVBs) are secreted with
the fused plasma membrane by the exocytosis of intraluminal vesicles (ILVs) [15–17]. With
the further potential to enable complicated biological reactions, smart nanoexosomes are
suitable diagnostic and therapeutic tools for a variety of diseases. Smart nanoexosomes, due
to their biogenetic origin, can penetrate other cells without being targeted by the immune
system or causing toxicity and can cause the penetration and delivery of functional cargo
molecules [18–22].

Smart nanoexosomes are nanomaterials that have remarkable pharmacokinetic, bioavail-
able and biodistributive properties among others. Their characteristics include low toxicity
and immunogenicity, which are very low in comparison to other parts of the body. It is thought
that more smart nanoexosomes are released by cancer cells than by normal cells, which may
help in the formation of tumors [23–28]. In recent studies [29,30], smart nanoexosomes appear
to play many different roles in the development of viral diseases.

As an example, when smart nanoexosomes move through the body, they may help
fight infections by activating natural or learned immunity and killing pathogens through
apoptosis or other signaling pathways [31–34]. Even though it is not confirmed whether
various types of smart nanoexosomes are made by various parts of the process of making
MVBs, this is thought to be the case. What is unclear is the mechanism by which MVB is
allowed to combine with the plasma membrane instead of dissolving in a lysosome.

Rab35 is one of the activities of special membrane trafficking machinery on which
the release of smart nanoexosomes depends [35–37]. Many features of the generation
of intermediate latent virions (ILVs) within the MVB and the envelopment of enveloped
virions are shared by the two processes. Both processes require the induction of a membrane
primordium, the introduction of a specific cargo and the cleavage of the membrane to allow
for release of the cargo.

There has been a convergence in the use of the ILV generation machinery by viruses
that are essentially unrelated to promote their own budding [20,38–40]. The aim of this
review study was to investigate the plasma-enabled smart nanoexosome platform in
emerging immunopathogenesis for clinical viral infections and to highlight future areas
integrated in the work in this field.

In addition, this review covers the current research on smart nanoexosomes as viral
carriers in clinical applications, treatments and drug delivery with a particular focus on viral
infections to enable the use of smart nanoexosomes in the development of viral therapeutics
in the future. We also evaluate the background of smart nanoexosomes, plasma-derived
smart nanoexosomes, the clinical translation pathway, smart nanoexosomes as biosensors
and challenges with smart nanoexosome therapeutics.

2. Background of Smart Nanoexosomes

In certain studies, differential filtration has been used to distinguish between large
microvesicles that are caught by 0.65 micron filters and microscopic “exosomes” that pass by
zero- and one-micron filters [41–43]. EVs with unique surface markers, such as substance
A33 (GPA33) and EPCAM [44], have been found by researchers who used high-speed
separation to find them.

These markers include lipid moieties that bind the toxin cholera, annexin V, or Shiga
toxin [45,46] as well as the tetraspanins CD63, CD19 and/or CD81 [47,48]. Thus, many
possibilities, including the reprogramming of nanoexosomes, indicate the “smart” nature
of these vesicles as a means of treatment. The ability of nanoexosomes to home in on target
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cells/tissues without scaffolding, to combine therapeutic molecules within the lipid layer
and to easily change the desired surface ligands can contribute to the “smart” behavior
of nanoexosomes.

In addition, such approaches are ideal for programming nanoexosomes to respond to
changes in the cellular/tissue microenvironment. Nanoscale single-cell genomic manip-
ulation is an option for identifying and screening smart exosome clusters based on their
regenerative intermediates, which can be a model for smart exosome engineering. Intrinsic
features, stem cell modification, direct modification and the ability to load are some of the
features that make nanoexosomes “smart” [49–53].

Current research distinguishes between different types of smart nano- exosomes de-
pending on their origin. This categorization would ignore the properties of the different
types of smart nanoexosomes and their practical uses. Smart nanoexosomes consist of
a variety of molecules, as shown by high-throughput exosome studies, smart nanoexo-
somes contain a variety of molecules, including proteins, lipids, metabolites, mRNA [54],
mitochondrial DNA [55], miRNAs [56] and alternative non-coding RNA masses [57].
Smart nanoexosomes also contain mitochondrial DNA [58], which is consistent with high-
throughput exosome studies as seen in Figure 1.

Figure 1. Background of smart nanoexosomes.

Smart nanoexosomes have been discovered to be present in blood plasma/serum [58],
secretions [59], breast cancer [60], cerebrospinal fluid [57], urine and liquid body matter [61].
Smart nanoexosomes are divided into two types: natural smart nanoexosomes and designed
exosomes, regardless of whether they have been synthetically modified. Considering that
the glandular system in animals has features inferior to those in conventional and tumor
diseases, the exocrine system is divided into two groups: normal exocrine structures and
cancer structures.

Macrophages, natural killer cells (NK), mesenchymal stem cells (MSCs), dendritic cells
(DCs), human venous endothelial cells, T cells and B cells are some of the common cells
used in the production of exocrine bodies [30,45,62–64], exocrine bodies can be formed
by almost all common cell types. As tumor cells can release numerous exocrine bodies,
certain antigens on their surface could mimic the characteristics of donor cells. Therefore,
cancer research has shown great interest in tumor exosomes. Smart nanoexosomes for
tumor growth—in addition to monitoring disease progression—play an important role in
modulating immunity, tumor development and metastasis [65,66].

2.1. The Biogenesis of Nanoexosomes

Biogenesis nanoexosomes are endogenous bubble vesicles that are formed by germi-
nation in endosome division during endosome maturation, from primary to secondary
endosomes in the form of multi-vesicular bodies [67]. Inside the cell, nanoexosomes are
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initially created by a process of infiltration into endosomal membranes to form molec-
ular vesicles [68]. The formation of nanoexosomes begins with germination inside the
endosomal membrane to form nanoexosomes vesicles in the cytoplasm. This process de-
pends on the complex endosomal assemblage required for the carrier vesicles or ceramide
sphingolipids [69].

Proteins ESCRT Hrs, CHMP4, TSG101, STAM1, VPS4 and other proteins, such as com-
plex Syndecan-sytenin-ALIX, nSMase2, PLD2 and CD9, play important roles in controlling
the mechanisms of biogenesis of nanoexosomes [23,54,70,71]. The dependent integration
RAB GTPase of the nanoexosome of the parent cell releases the nanoexosomes produced
into the extracellular space, where they can communicate with the receptor cells. Delivery
of exosomal vesicles to the receptor cell can occur by interaction of the receptor ligand,
pinocytosis/phagocytosis fusion with the cell membrane [67,72,73].

The formation of nanoexosomes vesicles during their formation shows some similari-
ties with the exosome vesicles formed during lysosome formation, including the surface
proteins of lysosomes, such as LAMP and CD63, which are also present in exosomal mem-
branes [74]. Numerous external factors, including exocytosis, cell type, the presence or
absence of cytokines, serum conditions and growth factors, affect the biogenesis of na-
noexosomes. In addition, protein sorting, trans-acting mediators, nanoexosome sites and
physical and chemical aspects regulate biogenesis [75].

2.2. Roles of Smart Nanoexosomes of RNA Viruses

The relationship between smart nanoexosomes and viruses is unclear. The pathway
of exosome biogenesis overlaps significantly with the assembly and exit of numerous
viruses. Many viruses use the exosomal pathway and interact with ESCRT proteins to
enhance replication processes. Smart nanoexosomes contribute to infection and the evasion
of the immune system as well as the evasion of the host immune system [6,9]. Human
immunodeficiency viruses (HIV) are lentiviruses that belong to the Retroviridae family and
cause acquired immunodeficiency.

Nef, for example, is a non-enzymatic auxiliary protein with many activities that HIV
uses to infect host cells. Infected macrophages have been shown to produce more exosomes,
and the expression of Nef appears to increase the amount of late endosomes/MVBs (respon-
sible for exosome biogenesis) in a number of cell lines, including human T lymphocytes,
according to CIIT. Smart nanoexosomes generated from viral-infected cells were found
to contain virus genomic RNA, mRNA and miRNA. In the field of exosome production
among RNA viruses, HIV-1 was the first RNA viral to be studied.

Integrated provirus transcription is performed by smart nanoexosomes produced from
HIV-infected patients and/or HIV-1-infected cells that contain the virus transactivating
response element (TAR) [76,77]. By reducing apoptosis, HIV proliferation in receptor cells
is enhanced by TAR. Unspliced strains of HIV-1 RNA are adsorbed to smart nanoexosomes,
and the presence of sequences within the 5′ end of the Gag p17 open reading frame is
adequate for this recruitment.

Single-stranded or double-stranded DNA does not cause exosome formation. Figure 2
shows smart nanoexosomes and their role in the pathogenesis of RNA viruses. Nucleic acids
(such as non-coding RNA, DNA and mRNA), extracellular matrix proteins, metabolites
and membrane proteins compose cargo molecules including smart nanoexosomes. The
composition of smart nanoexosomes can vary greatly due to factors, such as their size,
cellular origin, intrinsic cell biology and cellular microenvironment. Recently, the protection
of RNAs against nuclease degradation as well as their release without side effects into
the cytoplasm of target cells requires an effective delivery system. The development of
RNAi-based therapies has been hampered by their rapid hydrolysis, bioavailability and
bioavailability issues [78–80].
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Figure 2. Smart nanoexosomes and their role in the pathogenesis of RNA viruses.

Currently, active targeting appears to be the most effective method to address this
problem. Other nanovehicles have a superior targeting ability compared with other ve-
hicles. First, the smart nanoexosomes show a weak household effect, which means that
nanoexosomes derived from viral infections are preferentially taken up by viral infections.
Secondary, modification of smart nanoexosomes derived from cell membranes is performed
by different proteins or peptides and then actively targets virals. In RNA-based viral in-
fections, smart nanoexosomes were found to be modified by a variety of target ligands,
including tLyp-1, folic acid, iRGD peptide and T7-peptide [13,81–83].

2.3. DNA Viruses

Virus genetic material (such as DNA) or proteins encoded in the genome are among
the items used to classify viruses. DNA viruses are small genetic units of intracellular
parasites. In fact, they can only multiply by entering the host cell and using its resources
and location for reproduction. DNA viruses use a variety of methods to replicate their
genomes, such as RNA polymerases and DNA polymerases [84,85]. Table 1 shows the
RNA and DNA species in smart nanoexosomes derived from virus-infected cells. Many
DNA virals in a timed approach have the ability to control gene expression through a virus
replication cycle.

The viral genome expresses “early” and “delayed” genes. The activation of the cell
DNA machine is performed through the interaction of early genes with the cell. The ac-
cumulation of virions is possible through delay genes, which are mainly brown proteins.
Amplification of all DNA viruses, except for poxviruses, occurs in the nucleus of infected
cells. These virals generally depend on the DNA machinery in the cell. Due to the un-
availability of DNA synthesis to replicate virus DNA, most host cells are inactive. The
extracellular form of the viral is referred to as the “brain”.

The brain is a piece of nucleic acid that is enclosed in a protein coating called a capsid.
Symmetry and flatness characterize the structure of the capsid. This brain can take over
cells and bind to them. Consisting of a cell membrane, the capsids are covered in DNA
viruses [86,87]. When the fibrous protein knob region binds to the host receptor, entry
into the host cell begins. Subsequently, the formation of a network with integrated AV is
possible by a pattern created in certain proteins.

Virion entry into the host into an endosome occurs due to the stimulation of aden-
ovirus internalization through clathrin-coated cavities. The endosome becomes acidic after
internalization, the topology of the virals changes, and the capsid components separate.
This causes the virus to be released into the cytoplasm. Then, the virus travels to where the
viral gene expression occurs (the nuclear pore complex) [88,89]. The immune system fights
the innate immune responses that are incompatible with viral infections.

Intrinsic immunity is the starting line of defense against microbes and includes cellular
and biochemical defense mechanisms that exist even before the infection enters the site,
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can respond quickly to the same infection and do not have the power to distinguish the
exact difference between microbes.

Pattern recognition receptors (PRRs) are proteins that cells in the body’s innate im-
mune system use to identify molecular patterns involved in pathogenesis. Activation of
a sequence of signaling events by viral infection induces transcription of interferon type
I (IFN) and proinflammatory cytokines. Recently, important information on the mecha-
nisms of viral RNA identification and signaling pathways generated by RNA viruses has
been provided through studies. Conversely, there is still no reliable information on the
mechanism of triggering host antiviral defenses and the detection of DNA viral infection
by host cells.

A total of 10 virus DNA sensors have been presented. Nevertheless, their use as
common sensors for detecting DNA viruses in various types of animals and cells has not
been confirmed [90,91]. Responses induced by IFN have no role in the immune responses
to DNA. Cytosolic DNA triggers activation proinflammatory cytokines, such as interleukin
(IL)-18 and IL-1ß, which are dependent on caspase-1. This pathway is facilitated by a
protein called AIM2, which contains pyrin and a HIN200 domain (PYHIN).

Recent data from knock-out studies demonstrated the importance of AIM2 in host
defense against DNA virals. One of the newest known PYHIN proteins is called IFI16.
Immune responses to certain DNA viruses and viral DNA stabilization are among the cases
in which IFI16 plays an important role. IFI16, as with AIM2, acts to achieve virus DNA by
HIN domains. Activation of IFI16 causes the activation of inflammatory cytokines and ß-
IFN production in response to cytosolically administered viral DNA or HSV-1 infection [23].

Table 1. RNA and DNA species present in smart nanoexosomes derived from virus-infected cells.

Virus Genome Features and Response Ref.

HIV-1 ssRNA positive sense

Broad host range (non-dividing
cells) Long-term, inducible

expression [92–95]

HIV-2 Chromosomal integration

NDV ssRNA negative sense Replication in tumor cells
Improved oncolytic vectors [96–98]

HPV dsDNA,
papillomavirus Double-stranded [99–101]

B19V ssDNA, parvovirus dispensable for cell cycle arrest at
phase G2/M [102–104]

Herpesvirus dsDNA Risk of recombination with latently
herpes simplex virus- infected cells [105]

3. Plasma Derived Smart Nanoexosomes

The colorless part of the blood that lacks red blood cells and is more active in producing
antibodies than other blood cells is called plasma. Cryosupernatant antibody-rich plasma
and solvent/detergent-treated plasma are called virus convalescent plasma, and these are
collected by producing neutralizing antibodies to the viral infection and donors recovering
from the viral infection [106–108]. The transmission of intracellular blood from people
whose viral load has decreased or who have recovered from a viral infection to people
who are at risk for infection includes the inactive transfer of immune protection using
convalescent plasma.

The reduction in deaths from severe influenza and related viruses is due to conva-
lescent plasma therapy [109–112]. Therefore, among the factors that have a potential
application against the side agents of convalescent plasma treatment, we can mention
activated exosomes from immune-stimulated regulatory, suppressing T cells and M2-type
macrophages [113–115]. Thus, it has been shown that M2-type macrophages and active
smart nanoexosomes derived from immunosuppressed suppressors and regulatory T cells
may have extraordinary side effects, including immunosuppressive effects [116–118].
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Convalescent plasma therapy with an antigen-specific antibody on the exosome sur-
face of plasma-derived immune cells has positive side effects. The use of viral convalescent
plasma and epigenetically active lncRNAs also affects the receptor response to the viral.
These plasma exosomes activated by the immune system may be responsible for, or inhibit,
the beneficial effects of immune antibodies beyond those present in plasma. The inhibition
of mRNA gene expression and mRNA conversion to a virus are among the applications of
smart nanoexosomes [6,119–121].

4. Clinical Translation Pathway
4.1. Coronaviruses

A number of molecular approaches are currently being developed or are already
commercially available for the management and detection of viral diseases. The detection
methods available today have both advantages and disadvantages. A gold standard
for the detection of SARS-CoV2 is considered when RNA virus detection in a sample is
performed by real-time polymerase chain reaction (RT-PCR). As can be seen in Figure 3,
there are a number of approaches and methods, all of which have their advantages and
disadvantages [122,123].

Figure 3. Recovery of a patient with coronavirus by plasma-derived smart nanoexosomes.

SARSCoV2 infection is classified into three stages: Stage one is associated with a low
degree of symptomlessness or as long as no virus is detectable, stage two is associated
with a nonsevere symptomatic phase in the presence of virus, and stage three is associated
with a severe symptomatic phase in the presence of a high pathogen load. However, even
though there are several diagnostic methods for detecting the virus, each approach has its
own limitations that must be considered before use.

With recent advances, PCR-based technologies are unable to distinguish between
the non-infective nucleic acid of the viral and the infected viral. Therefore, methods
and substrates for detecting viral infections were immediately increased and developed.
Smart nanoexosomes are released from virus-infected cells, and these smart nanoexosomes
contain virus-derived miRNAs and proteins as well as viral receptors that allow the virus to
enter recipient cells. According to reports, the detection of virus particles in dual membrane
vesicles can be performed by culturing SARS-CoV in AT2 cells [77,124,125].

Important information about the differential secretion of cargo in cells infected with
SARS-CoV compared to existing non-infected cells is obtained by studying exosomal
cargoes. According to the research, smart nanoexosomes isolated from COVID-19- infected
cells could contain specific proteins that can be detected and used as biomarkers for the
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disease as shown in Figure 3. These immune-activated smart nanoexosomes may have
beneficial effects on plasma in addition to the immunologic antibodies they contain, or
they may have inhibitory effects on plasma. Smart nanoexosomes are used to translocate
microRNA (miRNA) in viruses to decrease the production of mRNA genes [126,127].

4.2. Influenza Viruses

It was discovered that smart nanoexosomes produced by viral-infected cells, including
a mixture of influenza virus and host cell components that have the ability to influence
the responses of receiving host cells as shown in Figure 4. The researchers concluded
that smart nanoexosomes were able to stimulate inflammatory responses in the lungs
when they were released into the respiratory tract during the acute phase of influenza
infection, which in turn triggers the production of innate immune cells and the production
of proinflammatory cytokines.

Figure 4. Improved influenza virus of a patient by plasma-derived smart nanoexosomes.

Sialic acids associated with α2,3 and α2,6 are key receptors that are expressed through
airway-releasing smart nanoexosomes and are also used by the influenza viral to become
part of the target cells. Scientists have allowed either salivary glycoproteins or glycolipids
superficially expressed by smart nanoexosomes to recognize the influenza virus’s individual
hemagglutinin glycoprotein. They also equate sialylated cell surface receptors that are
essential for host cell infection and HA binding. Studies have shown that influenza viral
infection can be neutralized by airway exosomes.

According to other studies, reducing the severity of influenza infection in animals is
possible by intravenously administering sialylated nanoparticles to mice [128–130]. The
researchers believe that the internal smart nanoexosomes produced in the respiratory tract
likely function through a mechanism similar to that used in viral infections, such as the
influenza virus. One of the best treatments for diseases caused by severe insect contam-
ination is the remarkable result of synthetic smart nanoexosomes, such as nanovesicles
containing sialic acids.

It is also possible that the same approach will work for other virals, such as COVID-19
and rotaviruses, which continue to use sialic acid as a recipient to infect host cells. Scientists
report distinct biological activity by which exosomes, during the release of influenza virus
infection into the respiratory tract, are able to prevent the spread of the virus and have the
potential to help the inherited antiviral immune response.

Smart nanoexosomes from the respiratory tract have antiviral properties. A new
approach to promoting smart nanoexosomes or their synthetic derivatives by understand-
ing how they modulate disease progression can be developed in influenza status and
management, which remains a major threat to the global energy industry. The intranasal
administration of sialylated nanoparticles to mice has been shown to reduce the severity of
influenza infection [131–133].
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4.3. HPV

A comparison of smart nanoexosomes generated by HPV and HPV HNSCC cell lines
has shown that this is the case. These smart nanoexosomes have been shown to transport
proteins that correspond to the molecular and functional characteristics of an individual’s
tumor cells, thereby, providing the basis for this association. HPV or HPV cancer cells may
be surrogates for smart nanoexosomes that mimic the cells of the individual, suggesting
the effects of these smart nanoexosomes on tissues and uninjured cells.

A comparison of smart nanoexosomes derived from HPV cell lines and HPV with
the reprogramming of HPV exosomes was performed using an experimental model with
reprogramming of exosome-stimulated immune cells by HPV exosomes containing E6 and
E7. Smart nanoexosome analysis, which results in unique sensitivity to antitumor therapy
and better overall outcomes, reveals biochemical differences between HPV tumor cells
and HPV [134–138]. These smart nanoexosomes inhibit the activity of CD4+ and CD8+
T lymphocytes.

Nevertheless, HPV exosomes had a deleterious effect on the formation of DC and the
expression of APM components. In contrast, HPV exosomes not only did not inhibit the
expression of APM fragments but also regulated the expression of co-stimulated CD80 and
CD83 molecules in iDCs. Based on previous and current results, it can be concluded that
the interaction of exosomes with receptor cells and/or their internalization has a significant
role in the quality of the response to smart nanoexosomes [139–141].

As smart nanoexosomes from the plasma of HNC patients have been shown to contain
immunosuppressive proteins, separate HPV and HPV exosomes have also been shown
to be identical in morphology, variation and immunosuppression. Both HPV and HPV
exosomes accurately downregulated the activities of activated T cells; therefore, it was not
surprising that this was the case. However, we hypothesized that the contents of the smart
nanoexosomes of virus-infected cells were more likely to be altered than the contents of
smart nanoexosomes produced by uninfected cells.

HPV and HPV exosomes exhibited different protein properties because HPV HNC
cells produce exosomes that lack E6/E7 proteins and other important molecules. As
viral antigens produce strong immunity, it can be said that in experiments with human T
lymphocytes, smart nanoexosomes produced by HPV cancer cells that contain E6 and E7
proteins are immune-stimulating. In these types of exosomes, excitatory molecules, such as
OX40, OX40 L and HSP70 were found to be more than usual as shown in Figure 5 [142,143].

Instead, these smart nanoexosomes decrease the death of human T cells that have been
activated. Research has shown a direct effect of the ratio of immunosuppressive proteins to
stimuli in the exosome membrane on its ability to stop suppressing T cells.

The superiority of inhibition of T cell activation by surface receptors by cyst-derived
smart nanoexosomes has been demonstrated by the presence of FasL, LAP-TGF and possi-
bly other tumor-derived immunosuppressive proteins in HPV that counteract concomitant
stimulation. In tests with activated human effector T cells, smart nanoexosomes identified
as HPV or p16 reports were equally efficient at suppressing the immune system or inducing
cell death in HPV or HPV exosomes derived from patient plasma. Immunosuppressive
agents include deficiency of concomitant stimulatory proteins and cyst-derived exosomes
with high inhibitory ligands [144,145].

4.4. Hepatitis and HIV

Several determinants and host factors are associated with the long-term persistence
of hepatitis B virus disease. Chronic hepatitis B, liver cirrhosis and abnormal growth of
liver cells are caused by the hepatitis B virus (HBV). Chronic HBV infection poses a health
risk and incurs significant social costs, although HBV therapy can effectively prevent the
spread of the virus. Moreover, the processes behind the diminished immune response and
long-term infection caused by HBV are not well understood.
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Figure 5. The treatment cycle of a patient with HPV by plasma-derived smart nanoexosomes.

The role of smart nanoexosomes in HBV infection has not been elucidated, although the
ability of smart nanoexosomes to transmit HCV between cells has long been known [79,81,146].
According to the results of the study, RNA and proteins of HBV were held together by the
antitoxin of smart nanoexosomes from CHB patients. It was suggested that core HBV contains
cccDNA, which has a lower copy number than other HBV DNA or RNA.

On the other hand, retroviruses are probably the only viruses that can hijack the
exosomal machinery, grow in MVBs and then hide in exosomes. It is possible that HBV
cccDNA is found in the cytoplasm of hepatic parenchymal cells in people who have CHB.
This could lead to the unfolding of HBV cccDNA in smart nanoexosomes [147,148]. In
the innate immune response to fiery infections, NK cells are the key effector cells, and the
failure of NK cells allows fiery infections to persist. Researchers have found evidence of
decreased cell cytotoxicity and IFN levels in patients with CHB, suggesting that NK cells
may be damaged.

Hosts infected with HBV have increased levels of immunosuppressive determinants,
such as TGF-, which contributes to NK cell failure. HBV-derived smart nanoexosomes
have been shown to evade cytolytic and IFN-producing NK cells, demonstrating that HBV
can modulate NK cell function through exosomes. It has been reported that HBV nucleic
acids can be detected in smaller NK cells using PCR preparations or deep-sequencing
studies of the HBV genome, although their efficacy is still controversial [3,149,150]. The
biogenesis of nanoexosomes and the cell types that release the nanoexosomes determine
the exosomal content.

The study of nanoexosomes secreted by HIV-1-infected cells is complicated by the fact
that nanoexosomes share many features with HIV-1, including biophysical and molecular
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properties, biogenesis and uptake mechanisms. The density of nanoexosomes ranges from
1.13 to 1.21 g.mL−1, whereas the density of HIV-1 ranges from 1.16 to 1.18 g.mL−1 [151].
HIV-1 is slightly larger than exosomes, with the diameter of the virus ranging from 100 to
120 nm, while the diameter of exosomes is 40–100 nm [152]. In addition, the production of
HIV-1 is possible through the same pathway of smart nanoexosome biogenesis [36].

Interaction with a number of cellular factors, such as TSG101 and Alix, is called HIV-1
germination, which play an important role in exosome biogenesis [153]. The convergence
of exosome biogenesis and HIV-1 indicates that HIV-1 products (such as proteins and RNA)
causes exosome products to become infected from HIV-1-contaminated fluids or to become
encased within the exosomes. Isolation of HIV-1 particles from exosomes is accomplished,
through immunoaffinity approaches and iodixanol density gradients, which are among the
most intense purification strategies [152,154].

Cell-to-cell proliferation and the exosome Trojan hypothesis of HIV-1 accumulation are
due to striking similarities in HIV-1 in particular and the biogenesis of smart nanoexosomes
and enveloping viruses in general [155]. Therefore, the evolution of uptake pathways for
the formation of infectious virus and HIV-1 for the use of exosome biogenesis and the entry
of env-independent virus is suggested. The mechanism of treatment of hepatitis and HIV
by plasma-derived intelligent nanoexosomes is shown in Figure 6.

Figure 6. The mechanism of treatment of hepatitis and HIV by plasma-derived smart nanoexosomes.

5. Smart Nanoexosomes as Biosensors

All molecules in smart nanoexosomes can potentially be used to diagnose disease.
Smart nanoexosomes carry rich sources of potential biomarkers; the secretion of smart
nanoexosomes into the extracellular space provides a good opportunity to examine body
fluids, such as blood, urine and malignant ascites [12]. Smart nanoexosomes are widely
present in patients with lung cancer, breast cancer, melanoma, etc. [156]. The dual role
of smart nanoexosomes as biomarkers and messengers has provided opportunities for
researchers to measure the spatio-temporal state of cells and take a closer look at the role of
smart nanoexosomes in medicine [157].

Isolation of smart nanoexosomes and identification of their contents has led to the use
of smart nanoexosomes as biomarkers for pathological conditions or the severity or stage
of a disease. Smart nanoexosomes are widely used as biomarkers in cancer diseases. These
studies are not limited to cancer, and similar studies have been performed on the proteome
of exosomes of other cells and biological fluids. Study and understanding of the role of
smart nanoexosomes in the cardiovascular system in cardiovascular physiology has led to
the discovery of exosomal biomarkers in cardiovascular disease [158].
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In addition, the miRNA expression pattern of smart nanoexosomes can be used as
biomarkers for the early detection of various cancers; For example, in the case of breast
cancer, which is one of the most common malignancies, researchers have suggested that the
expression of exosomal miRNAs, such as miR-1246, miR-10, miR-21, miR-181 and miR-373
can be used as biomarkers in the early stages of cancer progression [159,160].

In addition to traditional methods, such as flow cytometry, nanoparticle tracking anal-
ysis (NTA), enzyme-linked immunosorbent assay (ELISA) and western blotting, different
biosensing platforms have been developed for the analysis of smart nanoexosomes by
targeting their surface proteins using the corresponding antibodies aptamers or antibodies.
Thus, the surface plasma resonance (SPR) biosensor has attracted widespread attention as
a fast, label-free and real-time diagnostic device.

Nevertheless, the SPR biosensor encounters unfavorable conditions for the detection
of smart nanoexosomes: (1) the low mass and small size of smart nanoexosomes cannot
cause obvious signal differences, which leads to the inevitable need for signal amplifiers;
and (2) the collected smart nanoexosomes are always mixed with the serum-free target
proteins, which results in the production of a false positive signal that reduces the accuracy
of the results [161].

6. Challenges with Smart Nanoexosome Therapeutics

Smart nanoexosomes are attracting increasing interest as potential growing stars be-
cause of their multifaceted functions, ranging from remedies to drug transport, automobiles
and detections. Notwithstanding these benefits, there are still quite a few clinical studies
looking at the use of these nanovesicles. This can be due to the many challenges associated
with nanoexosomes, which require additional investigation. One of the essential challenges
is to keep their balance and practicality for a period of time.

Nanoexosomes, in contrast to MSCs, are much more powerful and can survive at
−80 ◦C for extended periods of time. At some point in storage, freeze–thaw cycles can
cause the exosomes to clump together. Moreover, keeping the temperature all the way
through managing and transport is combined with an obstacle to their application in
translation. Therefore, different maintenance strategies should be examined to improve
their transport and equilibrium [162].

The suitability of freeze-dried smart nanoexosomes at room temperature has also been
assessed by several studies to overcome these challenges. One of the reliable methods for
proteins and nucleic acids, which includes molecules that are highly unstable, is freeze-dried
formulations. Therefore, their application is increased by reducing prices by shortening
cold-chain maintenance during transportation, thereby, increasing the service life and
reducing storage needs [163,164].

However, during the freeze-drying process, the degradation of the exosome cargo
and their accumulation has become a problem. This problem is solved by the addition of
numerous stabilizers, such as sucrose, trehalose and glucose, which replace the hydration
sphere around smart nanoexosomes during the freeze-drying process, preventing their
aggregation and maintaining their membrane integrity [165,166]. Considering the above
challenges and the usefulness of the freeze-dried methodology, we tend to compare the
freeze-dried formulation of smart nanoexosomes with the non-freeze-dried formulation.

We prefer to select Wharton’s jelly-derived MSCs as the source of smart nanoexo-
somes because they have high immunomodulatory properties and can be used in viral
infections, such as diseases [167]. Therefore, the advantage of this system in pertinence of
nanoexosomes and enhancing the supply has been shown, which confirms the application
of nanoexosomes in biomedical research. Smart nanoexosome therapeutics, such as sources,
cargoes and loading mechanisms as well as the observed effects for smart nanoexosomes
are shown in Table 2.
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Table 2. Smart nanoexosome therapeutics, such as the sources, cargoes and loading mechanisms as
well as the observed effects for smart nanoexosomes.

Smart
Nanoexosome

Source

Cargo and Loading
Mechanism Effect Observed Ref.

M
es

ec
hy

m
al

St
em

C
el

l

Anti-miR-9 (Transfection) Reversal of chemoresistance [168]
miR-133 b (Transfection) Suppression of progression [169]

Paclitaxel (Incubation) Growth inhibition of human
pancreatic adenocarcinoma cell [170]

D
en

dr
it

ic
C

el
l BACE1 siRNA

(Electroporation)

Knockdown of specific gene after
specific siRNA delivery to the

brain for AD
[171]

Doxorubicin
(Electroporation)

Specific drug delivery to the
tumor site and inhibited tumor

growth
[172]

HEK293T BCR-ABL siRNA
(Transfection)

Overcome pharmacological
resistance in CML cells [173]

Mouse lymphoma
cell Curcumin (Mixing) Increase anti-inflammatory

activity [174]

7. Conclusions and Perspective

This study provides an overview of the importance of smart nanoexosomes and
subgroups of extracellular vesicles in viral infection as well as the methods by which they
cause viral infection. Smart nanoexosomes are a type of nano-extracellular double vesicle
that arises in the endosomal region of most eukaryotes and are found in the cytoplasm of
many bacteria. Smart nanoexosomes have multiple biological purposes: they transfer their
cargo to other cells, and they act as mediators of cell communication and regulators. The
structure of nanoexosomes depends on the origins of the cells and tissues.

As a result, they may have various compositions in different pathological circum-
stances. Smart nanoexosomes are affected by many processes that are useful for many
purposes, including being abducted by many viruses. Finally, the secretion of viral particles,
the regulation of the production of virions and the activation of their capsid packaging
by viruses are accomplished through hijacked exogenous biogenesis systems. Therefore,
smart nanoexosomes are used as exogenous viral miRNAs for transmission to non-infected
cells and/or nanocarriers of viral proteins.

Smart nanoexosomes have the potential to be important for a variety of biological
functions, including vehicles to transport many components from one cell to another,
modulating immunity and cellular communication. In addition, viruses also use smart
nanoexosomes similar to other viruses to be transported for intra-host spreading and
viral reproduction. Therefore, smart nanoexosomes can be suitable candidates for the
preparation and development of many viral vaccines for use in the treatment and prevention
of many pandemic infections, such as COVID-19, HPV, HIV, influenza and hepatitis.

Due to the different functions of smart nanoexosomes in biological and pathological
processes, these small membrane vesicles have attracted widespread attention in the last
decade. Smart nanoexosomes have created a new therapeutic approach for the transfer
of biomolecules and drugs and can transfer various compounds, such as proteins, lipids,
nucleic acids and drugs.

Some of the most interesting advantages of smart nanoexosomes that have received
increasing attention are that they can be engineered, different compounds can be placed in-
side them, and their specificity can be increased by transferring specific exosomal receptors.
We hope that, in the not-too-distant future, smart nanoexosomes will be useful to develop
different vaccines to treat many diseases, particularly cancer.
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