
Wogonin and related natural flavones are inhibitors
of CDK9 that induce apoptosis in cancer cells by
transcriptional suppression of Mcl-1
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The wogonin-containing herb Scutellaria baicalensis has successfully been used for curing various diseases in traditional
Chinese medicine. Wogonin has been shown to induce apoptosis in different cancer cells and to suppress growth of human
cancer xenografts in vivo. However, its direct targets remain unknown. In this study, we demonstrate for the first time that
wogonin and structurally related natural flavones, for example, apigenin, chrysin and luteolin, are inhibitors of cyclin-dependent
kinase 9 (CDK9) and block phosphorylation of the carboxy-terminal domain of RNA polymerase II at Ser2. This effect leads to
reduced RNA synthesis and subsequently rapid downregulation of the short-lived anti-apoptotic protein myeloid cell leukemia 1
(Mcl-1) resulting in apoptosis induction in cancer cells. We show that genetic inhibition of Mcl-1 or CDK9 expression by siRNA is
sufficient to mimic flavone-induced apoptosis. Pull-down and in silico docking studies demonstrate that wogonin directly binds
to CDK9, presumably to the ATP-binding pocket. In contrast, wogonin does not inhibit CDK2, CDK4 and CDK6 at doses that
inhibit CDK9 activity. Furthermore, we show that wogonin preferentially inhibits CDK9 in malignant compared with normal
lymphocytes. Thus, our study reveals a new mechanism of anti-cancer action of natural flavones and supports CDK9 as a
therapeutic target in oncology.
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Flavonoids are naturally occurring polyphenolic compounds
present in fruits, vegetables and some medicinal plants. A
number of flavones and flavonols have been found to possess
anti-tumor activities. We and others have shown that wogonin,
one of the active flavones of the most popular Chinese herbal
remedy Huang-Qin (Scutellaria baicalensis Georgi ), induces
apoptosis in a wide spectrum of human tumor cells in vitro and
inhibits tumor growth in vivo in different mouse tumor
models.1–6 In addition, Scutellaria extracts were successfully
tested in patients with advanced breast cancer in early clinical
trials.7,8 Importantly, at doses lethal to tumor cells, wogonin
showed no or little toxicity for normal cells and had also no
obvious toxicity in animals.2–6

Although many studies have demonstrated that wogonin
preferentially kills tumor cells, little is known about the
molecular mechanisms. We have previously shown that
wogonin is a potent anti-oxidant capable to scavenge KO2

�

and, thereby, shifts the cellular redox potential to the more
reduced state H2O2.6 H2O2 in turn serves as a signaling
molecule to activate phospholipase Cg1 (PLCg1) and triggers
a PLCg1-regulated and Ca2þ -dependent apoptosis.3

Although the crucial role of Ca2þ in wogonin-induced
apoptosis was largely confirmed, we noticed that inhibiting
Ca2þ transport did not completely inhibit apoptosis

induction.3 Thus, other unknown mechanisms may be
involved in wogonin-mediated apoptosis.

Targeting apoptotic pathways is one of the therapeutic
strategies against cancer.9,10 In the intrinsic apoptosis
pathway, death and life of cells are largely controlled by pro-
apoptotic, for example, Bax and Bak, and anti-apoptotic
proteins, for example, Bcl-2, Bcl-xL, XIAP and myeloid cell
leukemia 1 (Mcl-1).9 Strong evidence has linked the anti-
apoptotic Bcl-2 family proteins to drug resistance and poor
treatment outcome in a variety of tumor types.10 Among the
anti-apoptotic proteins, Mcl-1 has been considered to be the
most relevant therapeutic target in multiple types of cancer
because it differs from other members of the Bcl-2 family by a
short half-life.11 Inhibition of Mcl-1 expression alone via RNA
interference has been shown to be sufficient to promote
mitochondrial membrane depolarization and apoptosis in
leukemic cells.12

In this study, we show that wogonin and structurally related
flavones, for example, apigenin, chrysin and luteolin, are
inhibitors of cyclin-dependent kinase (CDK) 9. Unlike other
CDKs, which primarily control cell cycle progression, CDK7
and CDK9 have a major role in regulation of transcription.
CDK7 is a component of the transcription factor TFIIH, which
phosphorylates Ser5 residues in the heptad repeats of the
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carboxy-terminal domain (CTD) of RNA polymerase II
(RNAPII) to facilitate transcription initiation.13,14 CDK9, the
core component of the positive transcription elongation factor
b, phosphorylates Ser2 residues in the CTD of RNAPII, which
is required for transcript elongation.13–15 We show that
inhibition of CDK9 activity by wogonin, apigenin, chrysin and
luteolin prevents phosphorylation of RNAPII and thereby
inhibits transcription. This event leads to the downregulation
of the short-lived anti-apoptotic protein Mcl-1 and, conse-
quently, to the induction of apoptosis. We also found that
wogonin, at a concentration that inhibits CDK9, does not
inhibit activities of the cell cycle-regulating kinases CDK2,
CDK4 and CDK6. Furthermore, we demonstrate that wogonin
preferentially inhibits CDK9 in malignant compared with
normal lymphocytes.

Results

Wogonin downregulates Mcl-1 expression in malignant
cells. To investigate the molecular mechanisms by which
wogonin induces apoptosis in cancer cells, we systematically
analyzed expression levels of pro- and anti-apoptotic proteins
after wogonin treatment in three tumor cell lines: the human
colorectal carcinoma cell line HCT116, the human leukemic
T-cell line CEM and the adult T-cell leukemic cell line SP
derived from a human T-cell leukemia/lymphoma virus 1
(HTLV-1)-infected patient. Consistent with the previous
study,3 wogonin treatment resulted in apoptotic cell death in
HCT116, CEM and SP cells in a dose- and time-dependent
manner (Supplementary Figure S1). Western blot analysis of
the pro- and anti-apoptotic proteins revealed that only the Mcl-1
protein expression levels were rapidly downregulated on
wogonin treatment (Figure 1a). The 3 h wogonin treatment
already resulted in 450% reduction in Mcl-1 protein levels. In
contrast, other pro- and anti-apoptotic proteins such as Bcl-2,
Bcl-xL, Bad, Bak and Bax remained unaffected until 24 h of
treatment (Figure 1a). A reduction in XIAP and PUMA protein
expression was also detected in wogonin-treated cells but only
after 24 h of treatment (Figure 1a). However, apoptosis was
initiated by wogonin already at earlier time points
(Supplementary Figure S1A).

Wogonin suppresses Mcl-1 expression at the
transcriptional level. To investigate the molecular
mechanisms by which wogonin suppresses Mcl-1
expression, we first examined the mRNA expression levels
of Mcl-1 in CEM and SP cells following wogonin treatment.
Real-time PCR revealed that wogonin, at the concentrations
that reduced Mcl-1 protein levels, suppressed Mcl-1 mRNA
expression in a time-dependent manner (Figure 1b and
Supplementary Figure S2A). However, we found that Bcl-2
mRNA expression was also downregulated by wogonin
although the Bcl-2 protein level was not affected (Figures
1a and c). Therefore, we asked whether wogonin inhibits
transcription. To investigate this question, we carried out a
[3H]-uridine-incorporation assay in the absence or presence
of wogonin. These experiments showed that wogonin
suppressed RNA synthesis in a dose- and time-dependent

manner (Figure 1d and Supplementary Figure S2B). Thus,
wogonin seems to be an inhibitor of transcription.

Mcl-1 is known to be a target of proteasomal degradation.11

To study whether the downregulation of Mcl-1 protein
expression by wogonin also involves a proteasome-depen-
dent mechanism, SP cells were treated with wogonin in the
presence or absence of the proteasome inhibitor MG-132.
MG-132 could only rescue the already existing Mcl-1 protein
but not the loss of Mcl-1 in response to wogonin (Supple-
mentary Figure S3A). To further investigate whether wogonin
treatment enhances the rate of Mcl-1 protein turnover, CEM
cells were treated with cycloheximide (CHX), a potent inhibitor
of translation, or wogonin for different time periods. This
experiment showed that wogonin treatment did not accelerate
the Mcl-1 turnover rate (Supplementary Figure S3B). These
results indicate that the effect of wogonin on Mcl-1 protein
expression is not mediated by enhanced degradation.

Wogonin inhibits CDK9 activity. CDK7 and CDK9 are two
well-known components of basal transcription factor
complexes important for transcription initiation and
transcription elongation, respectively.13–15 Therefore, we
asked whether wogonin-mediated transcriptional inhibition
involves inactivation of CDK7 and CDK9. We first
investigated the effects of wogonin on phosphorylation of
the CTD of RNAPII at both Ser2 and Ser5 sites. Western blot
analysis of CEM cells treated with different concentrations of
wogonin showed that Ser2 phosphorylation was diminished
in a dose-dependent manner after 2 h of wogonin treatment
(Figure 2a, left panel). In comparison, only weak reductions
in the phosphorylation of the Ser5 site were seen (Figure 2a).
Kinetic analysis showed that Ser2 phosphorylation was
rapidly inhibited by wogonin already within 1.5 h of
treatment, whereas Ser5 phosphorylation was reduced with
much slower kinetics compared with Ser2 (Figure 2a, right
panel). In contrast, at the concentration that inhibits RNAPII
phosphorylation, wogonin did not inhibit phosphorylation of
retinoblastoma (RB) protein, the target of CDK2, CDK4 and
CDK6 (Figure 2b). Also, neither an arrest of the cells in the
G1 phase nor in the G2/M phase was seen in wogonin-
treated cells (Supplementary Figure S4). The wogonin
concentrations required for CDK9 inhibition correlated with
the doses for Mcl-1 downregulation and apoptosis induction
(Figure 1a and Supplementary Figure S1). Above data
demonstrate that wogonin preferentially inhibits CDK9-
mediated phosphorylation of RNAPII.

To further investigate whether wogonin directly inhibits
CDK9 activity, we carried out two different cell-free kinase
assays. In the first assay, the effect of wogonin on CDK9
activity was examined by monitoring the levels of [33P]-
incorporation into the phosphorylated substrate peptide. The
experiment showed that wogonin inhibited CDK9 activity in a
dose-dependent manner (Figure 2c). Wogonin also reduced
CDK7 activity but with much less efficacy (Figure 2c). These
findings could be confirmed in a second assay, in which
phosphorylation of a substrate by recombinant CDK7 or
CDK9 was detected using phospho-specific antibodies
(Supplementary Figure S2C).

To exclude the possibility that wogonin-mediated inhibition
of RNAPII phosphorylation and Mcl-1 expression is the result
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of apoptosis induction, we investigated the effect of wogonin
in the presence or absence of the pan-caspase inhibitor
zVAD-FMK. Inhibition of apoptosis by zVAD-FMK did not
prevent wogonin-mediated inhibition of CDK9 activity and
Mcl-1 expression (Supplementary Figure S5). Thus, cells that
ultimately do not undergo apoptosis following treatment with
wogonin still have suppressed CDK9 activity.

Binding of wogonin to the ATP-binding pocket of
CDK9. To better understand the molecular mechanism of
action of wogonin, an in silico molecular docking study with
wogonin on the crystal structure of human CDK9 was
performed. Wogonin was shown to dock into the ATP-
binding pocket of CDK9 in a cluster at 98 out of 100 runs with
a mean docking energy (DG) of �7.65 kcal/mol. The
wogonin-binding site was predicted to consist of 16
residues using MultiBind webserver (Figure 3). This
docking analysis further supports CDK9 as potential target
of wogonin.

Inhibition of RNAPII phosphorylation by the natural
flavones apigenin, chrysin and luteolin. In recent years,
several natural flavones have been found to have anti-
carcinogenic activities. However, their modes of function as
anti-cancer agents are still largely unknown. To investigate
whether other flavones besides wogonin also target CDK9,
we randomly tested three naturally occurring anti-tumor
flavones, namely apigenin, chrysin and luteolin
(Figure 4a).16,17 All flavones tested were shown to inhibit
the phosphorylation of the CTD of RNAPII at the Ser2 sites
that correlated with the reduction of Mcl-1 protein expression
and induction of apoptosis in leukemic CEM cells (Figures 4b

and c). These experiments demonstrate that flavones that
have chemical structures similar to wogonin are potential
inhibitors of CDK9.

To examine whether flavones can directly bind to CDK9 in
cancer cells, a pull-down experiment was carried out with
flavone-conjugate-coupled Affi-Gel beads (see Materials and
Methods) or Affi-Gel beads containing only the linker as a
negative control (Figure 4d, upper panel). The flavone
coupled to the linker still exerted cytotoxicity for malignant
cells as demonstrated by apoptosis induction in CEM cells
(Figure 4d, lower panel, left). Western blot analysis of eluted
proteins showed that CDK9 was bound to the flavone-Affi-Gel
beads but not to the control beads (Figure 4d, lower panel,
right). Although wogonin could inhibit CDK7 activity in cell-free
in vitro assays, we could not detect CDK7 in this pull-down
experiment.

Wogonin inhibits Mcl-1 expression in different types of
cancer cells. To further study whether wogonin inhibits
Mcl-1 expression in other cancer cells, we examined five
different types of malignant cell lines including the human
Hodgkin’s lymphoma cell line L1236, the human melanoma
cell line SK-MEL-37, the human hepatocellular carcinoma
cell line HepG2, the human pancreatic carcinoma cell line
Colo-357 and the human breast cancer cell line SKBR3. For
all cell lines tested, wogonin was shown to inhibit Mcl-1
expression (Figure 5a). Inhibition of Mcl-1 expression by
wogonin correlated with apoptosis induction in these cells
(Figure 5b). Thus, in general wogonin can suppress Mcl-1
expression in tumor cells and inhibition of Mcl-1 expression
may account for one of the mechanisms of wogonin-induced
cell death in tumor cells.

0 1.5 3 6 9
0

20

40

60

80

100

Time (h)

R
el

at
iv

e 
m

R
N

A
ex

pr
es

si
on

Bcl-2 (CEM)

0 1.5 3 6 9
0

20

40

60

80

100 Mcl-1 (CEM)

Time (h)

R
el

at
iv

e 
m

R
N

A
ex

pr
es

si
on

1 10 100
0

5

10

15

U
rid

in
e 

in
co

rp
or

at
io

n
(1

00
0x

 c
.p

.m
.) 6 h

Wogonin (µM)

Time (h):

Mcl-1

Bcl-xL

Bax

Bad

Bcl-2

Bak

XIAP

Bid

ERK

HTLV-1-SP

PUMA

Time (h): 3

CEM

Mcl-1

Bcl-2

Bad

Bak

Bcl-xL

PUMA

Bid

XIAP

Tubulin

Wogonin (50 µM) Wogonin (50 µM) Wogonin (50 µM)

HCT116

Mcl-1

Bcl-2

Time (h): 2

Tubulin

Bcl-xL

Bak

Bid

Bax

Bad

XIAP

ERK

PUMA

24961.50 3 24961.50 840

Figure 1 Wogonin inhibits transcription and downregulates expression of the anti-apoptotic protein Mcl-1 in malignant cells. (a) Wogonin downregulates Mcl-1 protein
expression in malignant cells. CEM, HTLV-1-SP and HCT116 cells were treated with 50 mM wogonin for indicated time periods. The expression levels of the indicated proteins
were examined by western blot analysis. Data are representative of two independent experiments. (b and c) Wogonin downregulates Mcl-1 and Bcl-2 mRNA expression in
malignant cells. CEM cells were treated with 50 mM wogonin for indicated time periods. Mcl-1 and Bcl-2 mRNA expression levels were examined by real-time PCR.
Means±S.D. are shown. Data are representative of three independent experiments performed in triplicates. (d) Wogonin suppresses RNA synthesis in malignant cells. CEM
cells were treated with different concentrations of wogonin for 6 h as indicated. RNA synthesis was measured by [3H]-uridine-incorporation. Means±S.D. are shown. Data are
representative of two independent experiments performed in triplicates
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Genetic inhibition of Mcl-1 or CDK9 expression is
sufficient to mimic wogonin-induced apoptosis. To
investigate the role of Mcl-1 in regulation of life and death
of malignant cells, we performed a siRNA knockdown
experiment using the colon carcinoma cell line HCT116
and the leukemic T-cell line CEM as a model system.

Specific knockdown of Mcl-1 expression by RNA interference
resulted in induction of apoptosis in both cell lines
(Figure 6a). Similar results were also obtained using the
B-cell lymphoma cell line Raji (Supplementary Figure S6).
To further examine the role of Mcl-1 in wogonin-mediated
apoptosis, Mcl-1 was introduced into HCT116 cells by
transient transfection of plasmids expressing the Mcl-1
protein. Ectopic expression of the Mcl-1 protein resulted in
significant resistance to wogonin-induced apoptosis
(Figure 6b). Of note, the Mcl-1 overexpressing tumor cells
also started to die by wogonin treatment at later time
points compared with control-transfected cells. This is in
line with the observation that the overexpressed Mcl-1
protein was also downregulated by wogonin (Supplemen-
tary Figure S7).

To further investigate the role of CDK9 as a drug target, we
also examined the effect of CDK9 knockdown on apoptosis
induction. Specific knockdown of CDK9 expression in CEM
cells by RNA interference resulted in induction of apoptosis to
a similar extent as the knockdown of Mcl-1 (Figure 6c). Thus,
targeting CDK9 seems to be a promising approach to induce
apoptosis in tumor cells. Collectively, our data suggest that
suppression of CDK9 activity and downregulation of Mcl-1 is
an important mechanism of flavone-induced apoptosis
(Figure 6d).

Wogonin acts differentially on CDK9 activity in
malignant versus normal T cells. As many studies have
shown that wogonin preferentially kills tumor cells,1 we
wondered whether wogonin exerts different effects on CDK9
activity in leukemic and normal T lymphocytes. To investigate
this question, T cells were isolated from peripheral blood of
healthy donors. As proliferating cells are more susceptible to
drug treatment, freshly isolated peripheral blood T cells
were activated by PHA overnight and further cultured in
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Figure 2 Wogonin is a naturally occurring inhibitor of CDK7 and CDK9.
(a) Wogonin inhibits phosphorylation of the CTD of RNAPII at Ser2 and Ser5 sites.
CEM cells were treated with different concentrations of wogonin for 2 h (left panel) or
for different time periods with 50mM wogonin (right panel) and the cells were
analyzed for the status of RNAPII phosphorylation by western blot analysis using
antibodies specific for phosphorylated CTD of RNAPII Ser2 and Ser5 sites. One
representative experiment of three is shown. (b) Wogonin does not inhibit
phosphorylation of the retinoblastoma (RB) protein. CEM cells were treated with
50mM wogonin (Wogo) for 3 h. Cells were lysed and total RB was
immunoprecipitated and phosphorylated RB was examined by western blot using
phospho-specific antibodies as indicated (left panel). As a control, the same cell
lysates were analyzed for the status of phosphorylation of RNAPII at the Ser2

residue (right panel). Data are representative of three independent experiments.
(c) Wogonin inhibits CDK7 and CDK9 kinase activity determined by incorporation of
[33P]. CDK7/cyclinH/MAT1 or CDK9/cyclinT was incubated with substrate peptide
and [33P]-ATP in the presence of different doses of wogonin as indicated. The
kinase activity is described as % of [33P]-phosphorylated substrate peptide.
Means±S.D. are shown. The half-maximal inhibitory concentrations (IC50) are
indicated
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IL-2-containing medium for 5 days to generate proliferating T
cells (named activated T cells). CEM cells and activated T
cells were treated with wogonin in parallel. Consistent with
previous studies,3 wogonin showed no toxicity for normal
peripheral blood T cells at concentrations of 25–100 mM
(Figure 7a). Comparison of the status of phosphorylated
RNAPII between leukemic and normal T cells revealed that
RNAPII was phosphorylated at Ser2 to a greater extent in
leukemic cells indicating that CDK9 activity is higher in
malignant compared with normal T cells (Figure 7b). Kinetic
analysis showed that wogonin only moderately inhibited
CDK9 activity (approximately 20%) in normal T cells (Figures
7c and d). In contrast, 70% inhibition of RNAPII
phosphorylation was seen in CEM cells in parallel
experiments (Figure 7c). Thus, wogonin may preferentially
inhibit CDK9 activity in tumor versus normal T cells.

Discussion

In this study, we demonstrate that CDK9 is a direct target of
wogonin. Inhibition of CDK9 activity by wogonin results in
reduced RNA synthesis and subsequently rapid downregula-
tion of the short-lived anti-apoptotic protein Mcl-1 leading to

apoptosis induction in cancer cells. Furthermore, we also
show that other natural flavones such as apigenin, chrysin and
luteolin inhibit CDK9 function, which correlates with down-
regulation of Mcl-1 expression and induction of apoptosis in
malignant cells. This new finding provides, at least in part, the
molecular mechanisms of the medicinal function of natural
flavones.

Wogonin was shown to reduce phosphorylation of the CTD
of RNAPII at Ser5 to a lesser extent than Ser2. In a cell-free
assay, wogonin also inhibited CDK7 activity but with a strongly
reduced efficacy compared with CDK9 (460-fold higher half-
maximal inhibitory concentration (IC50) than for CDK9). These
results indicate that wogonin preferentially inhibits CDK9. This
indication is further supported by the fact that we could not
detect binding of CDK7 to flavones in the pull-down experi-
ment. In addition, wogonin did not inhibit the activity of other
members of the CDK family, for example, CDK2/4/6 in tumor
cells (Figure 2b).

Targeting apoptotic pathways is one of the therapeutic
strategies against cancer.9,10 Among the anti-apoptotic
proteins, Mcl-1 has been found to be upregulated in numerous
hematological malignancies and in solid tumors, and its
upregulation has been shown to be an important factor in
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resistance to apoptosis.11,18 One of the unique features of
Mcl-1 compared with other members of the Bcl-2 family is its
very short half-life.11 Specific knockdown of Mcl-1 expression

by RNA interference has been shown to be sufficient or at
least required for the induction of apoptosis in different types
of cancer cells.12,19,20 In this study, we confirmed by knock-
down and overexpression experiments that Mcl-1 is a key
survival factor for tumors. Thus, Mcl-1, which is efficiently
targeted by wogonin, may be the most relevant therapeutic
target in multiple types of cancer.11,18

Wogonin has been shown to have no or little toxicity for
normal cells and had also no obvious toxicity in animals.1–6

The tumor selectivity of wogonin may involve several
mechanisms. First, tumors show an increased metabolism
and often a metabolic switch to aerobic glycolysis (Warburg
effect) known to influence the redox status.21 Thus, tumors,
particularly in advanced stage, produce elevated levels of
reactive oxygen species and show an altered redox status.22

This biochemical property of cancer cells can be exploited to
achieve therapeutic activity and selectivity. We have pre-
viously shown that wogonin is a strong anti-oxidant that
differentially regulates the cellular redox status of tumor and
normal cells by neutralizing KO2

� to the more reduced form
H2O2.3,6 This effect leads to stronger activation of PLCg in
malignant T cells and, consequently, triggers prolonged (or/
and stronger) intracellular Ca2þ mobilization and Ca2þ -
mediated apoptosis. In this study, we show that wogonin
differentially inhibits CDK9 activity in malignant versus normal
T lymphocytes. This action may account for another mechan-
ism of the selectivity of wogonin. Although CDK9 is a general
regulator of transcription, recent studies indicate that CDK9
activity is rather involved in pathological cellular processes
than in normal cellular functions.13,23 In addition, the
phosphorylation of CTD of RNAPII at Ser2 has been shown
not to be required for basal transcription in vitro.24 A
deregulation of the CDK9-related pathway has been sug-
gested, similar as, for example, growth factor receptor
signaling, to be involved in the establishment and main-
tenance of a malignant cell phenotype.23 Consequently,
transformed cells with high oncogenic stress are ‘addicted’
to CDK9 activity due to the requirement for continuous
production of anti-apoptotic proteins.

The semi-synthetic flavone flavopiridol, a pan-inhibitor of
CDKs including CDK9, has been shown to effectively kill
different tumor cells by apoptosis induction.13,14 Currently,
flavopiridol is tested in clinical trials as anti-cancer drug.
Although encouraging efficacy has been reported, 440% of
patients showed side effects including tumor lysis syndrome,
electrolyte and liver function abnormalities, fatigue, diarrhea
and cytopenias leading to infections.25 Recently, a study,
which aimed to analyze the direct effects of CDK9 inhibition
in global gene expression by using a dominant negative
form of CDK9 (DN-CDK9), showed that DN-CDK9 targets
fewer genes than flavopiridol, suggesting that flavopiridol
has additional effects.26 As flavopiridol shows little selectivity
between cancer and normal cells,27 our study may help
to develop more specific CDK9 inhibitors by chemical
modifications.

Besides their anti-cancer effects, wogonin, apigenin,
chrysin and luteolin have also been shown to have anti-viral
activity.28,29 It is well known that viruses depend on their
infected host for the transcription of their genome. CDK9 has
been shown to be critical for viral replication of, for example,
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Figure 5 Wogonin inhibits Mcl-1 expression and induces apoptosis in different
malignant cell lines. (a) Wogonin inhibits Mcl-1 expression in different malignant cell
lines. Hodgkin’s lymphoma L1236, melanoma SK-MEL-37, hepatocellular
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human immunodeficiency virus (HIV)-1 and HIV-2 in human
cells.13,23 Therefore, our study may partially explain the anti-
viral effect of flavones.

In this study, wogonin was shown to inhibit CDK9 at a
concentration of 25–50 mM in cell culture experiments. The
effective concentrations are relatively high. However, in the
cell-free assay, wogonin was shown to inhibit CDK9 activity
with an IC50 of about 200 nM (Figure 2c). The discrepancy
between the concentrations used in cell culture and in cell-free
assays may be because of the poor bioavailability of wogonin
in cell culture partially because of binding to bovine serum
albumin. Several independent research groups have demon-
strated that at a dose of 10–20 mg/kg wogonin efficiently
inhibited tumor growth in vivo in several mouse tumor models
although higher concentrations of wogonin (25–200 mM) were
needed to achieve the same effects in cell culture experi-
ments.2,4,5 The mouse data demonstrate that the amount of
wogonin required to achieve anti-cancer effects in vivo is in a
suitable range. Toxicological studies in experimental animals
(rat and dog) showed that up to 60 mg/kg/day wogonin had no
organ toxicity when intravenously administered for 90
days.30,31 Thus, wogonin may be an attractive new anti-
cancer compound that offers relative safety for long term
therapies.

Taken together, our results demonstrate that wogonin and
related natural flavones are CDK9 inhibitors. The current
knowledge about the biology of CDK9 strongly suggests that
targeting CDK9 is a promising therapeutic strategy in
oncology and virology.13 Thus, our finding provides a new
mechanism for the anti-cancer as well as the anti-viral
activities of natural flavones (Figure 6d).

Materials and Methods
Cell lines and culture. The human malignant cell lines used in this study are
the T-cell leukemic cell lines CEM and Jurkat (J16), the T-cell lymphoma cell lines
Hut78 and Myla, the adult T-cell leukemic cell line SP derived from a HTLV-1-
infected patient,32 the B-cell lymphoma cell line Raji, the Hodgkin lymphoma cell line
L1236, the melanoma cell line SK-MEL-37, the hepatocellular carcinoma cell line
HepG2, the pancreatic carcinoma cell line Colo-357, the breast cancer cell line
SKBR3 and the colon carcinoma cell line HCT116. All cells were cultured in RPMI
1640 or DMEM medium (Gibco laboratories, Grand Island, NE, USA), respectively,
supplemented with 10% FCS, 100 U/ml penicillin (Gibco), 100mg/ml streptomycin
(Gibco) and 2 mM L-glutamine (Gibco) at 371C and 5% CO2.

Preparation of human T cells from peripheral blood. Human
peripheral T cells were prepared as described previously6 and were 490% CD3
positive. For activation, freshly isolated T cells were cultured at 2� 106 cells/ml and
were activated with 1 mg/ml PHA overnight. Activated T cells were then washed
three times and cultured for additional 5 days in the presence of 25 U/ml IL-2
(activated T cells).
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Determination of apoptosis. Cells were treated with different
concentrations of wogonin (Biotrend Chemicals AG, Wangen, Switzerland),
apigenin, chrysin, luteolin (Sigma-Aldrich, St. Louis, MO, USA) solved in
dimetyl sulfoxide (Roth, Karlsruhe, Germany) at a stock concentration of 50 mM,
zVAD-FMK (Bachem, Weil am Rhein, Germany), MG-132 (Calbiochem, Darmstadt,
Germany) or CHX (Chem Service, West Chester, PA, USA) for the indicated periods
of time. Apoptotic cell death was examined by analysis of DNA fragmentation as
previously described.3,6 Results are presented as % specific DNA fragmentation
using the formula: (percentage of experimental apoptosis�percentage of
spontaneous apoptosis)/(100�percentage of spontaneous apoptosis)� 100.

Western blot analysis. For each sample, 1� 106 cells were lysed as
previously described.3,6 Equal amounts of protein were separated on 5–13% SDS-
PAGE depending on the molecular sizes of the proteins, blotted onto a nitrocellulose
membrane (Amersham Biosciences, Little Chalfon, UK) as previously described.6,7

The following antibodies were used: RNAPIIa (hypo-phosphorylated form) and
phospho-RNAPII (Ser2 and Ser5) are made by our laboratory;33 Bad, Bax, Bcl-xL,
Bid, CDK7, CDK9, ERK1, PUMA, RB, phospho-RB (Ser780 and Ser795) and XIAP
from Cell Signaling Technology (Danvers, MA, USA); Bcl-2 (sc-509), HSP90, Mcl-1
(sc-819) and phospho-RB (Thr821/826) from Santa Cruz Biotechnology (Heidelberg,
Germany); Mcl-1 from BD Biosciences (Erembodegem, Belgium) and Tubulin from
Sigma-Aldrich.

Quantitative real-time PCR. RNA was isolated using the RNeasy kit
(Qiagen, Hilden, Germany) according to the manufacturer’s instructions. A 1 mg of
total RNA was reverse transcribed using the Perkin Elmer GeneAmp RNA PCR
kit (Foster City, CA, USA). For TaqMan quantitative real-time PCR, the conditions
and the sequences of primers and fluorescent-labeled probes for the human
Mcl-1, Bcl-2 and 18S rRNA were described previously.34–36 The level of mRNA,
relative to 18S rRNA, was calculated using the formula: Relative mRNA
expression¼ 2–(Ct of Mcl-1/Bcl-2�Ct of 18S rRNA) whereby Ct is the respective
threshold cycle value.

[3H]-uridine-incorporation. CEM cells (2� 105 cells/well) were treated with
wogonin serially diluted across the plate. After addition of 1mCi/well [5,6-3H]-uridine
(Perkin Elmer, Waltham, MA, USA), cells were incubated for 2 h and 6 h at 371C
and 5% CO2 in a final volume of 200ml. At the end of the incubation time, the cells
were aspirated onto glass fiber filters using a multiple automated harvester (Tomtec,
Perkin Elmer). The filter mats were washed with distilled water to remove non-
adherent material, dried and the amount of [5,6-3H]-uridine incorporated into the
retained RNA was measured using a Wallac Microbeta Trilux scintillation counter
(Perkin Elmer).

Kinase assay. To determine the effect of wogonin on CDK7 and CDK9
activities, CDK7/cyclinH/MAT1 or CDK9/cyclinT (Millipore, Dundee, UK) and the
substrate peptide (Millipore) were incubated with 8 mM MOPS (pH 7.0) 0.2 mM
EDTA, 10 mM Mg-acetate and 10mM g-[33P]-ATP. The reaction was initiated by the
addition of the MgATP mix. After incubation for 40 min at room temperature, the
reaction was stopped by the addition of a 3% phosphoric acid solution. An aliquot of
the reaction was then spotted onto a P30 filtermat and washed three times for 5 min
in 75 mM phosphoric acid and once in methanol before drying and scintillation
counting. Alternatively, the inhibitory effect of wogonin on kinase activity was
examined by incubating recombinant CDK7/cyclinH/MAT1 or CDK9/cyclinT
(Proqinase GmbH, Freiburg, Germany) and recombinant substrate RBER-
CHKtide (Proqinase) in the presence of different concentrations of wogonin in
60 mM HEPES-NaOH (pH 7.5) 3 mM MgCl2, 3 mM MnCl2, 3mM
Na-orthovanadate, 1.2 mM DTT, 50 mg/ml PEG20000 and 1mM ATP for 2 h at
301C. The amount of phosphorylated substrate was determined by western blot
analysis using phospho-specific antibodies.

Molecular docking studies of wogonin on CDK9. The X-ray structure
of human CDK9/cyclinT1 in complex with flavopiridol (PDB CODE:3BLR)37 was
taken as docking structure template. Docking calculations were performed using the
AutoDOCK program. An energy-minimized 3D structure of wogonin compatible for
docking was used throughout the docking operation. Before the start of the docking
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operation, essential hydrogens and Gasteiger chargers were added to the
macromolecules CDK9. To sample the binding site, a grid of 120� 120� 120 Å (in
case of blind docking) and 60� 60� 60 Å (in case of specific docking) with a
spacing of 0.375 Å was first computed. In total, 100 cycles of flexible ligand docking
with approximately 250 000 energy evaluations in each cycle without any flexibility
constraints on the ligand were performed in the grid representation of the receptor
binding site, followed by scoring the ligand–receptor interaction. AutoDock
clustering was performed based on similarities in binding modes and affinities in
these cycles. The AutoDock docking output contains solutions ranked according to
the scoring functions with information about the frequency of occurrence, mean
energies (DG), inhibition constant and root mean square deviations (RMSDs) within
the cluster each defined by its corresponding 3D coordinates. PyMOL was used as a
visualization tool to further achieve a deeper insight into the binding modes and to
calculate the RMSD.38 Residues involved in protein–ligand interactions and their
chemical binding patterns were analyzed using MultiBind online web-server,
http://bioinfo3d.cs.tau.ac.il/MultiBind/.39

Pull-down assay. The pull-down assay was performed using a flavone-
conjugate coupled to Affi-Gel-10 agarose beads (Bio-Rad laboratories, Hercules,
CA, USA). CEM cells (1� 108) were washed in phosphate-buffered saline and
lysed in 2 ml lysis buffer containing 50 mM Tris/HCl (pH 8.0), 120 mM NaCl, 1%
NP-40, 5 mM DTT, 200mM Na-orthovanadate, 25 mM NaF and protease inhibitor
cocktail (Roche Diagnostics, Mannheim, Germany). Cellular debris was removed by
centrifugation at 10 000� g for 30 min. A 500mg of total protein extract was
incubated for 12 h at 41C with 40ml of flavone-coupled, negative control-coupled or
uncoupled Affi-Gel beads. The beads were extensively washed with lysis buffer and
bound proteins were eluted by SDS sample buffer containing 20 mM Tris/HCl (pH
6.8), 1% SDS, 10% glycerol, 3% b-mercaptoethanol and bromophenol blue. Eluted
proteins were recovered from the beads by centrifugation and subjected to SDS-
PAGE and western blot analysis.

Knockdown and overexpression studies. CEM cells (2� 106) or Raji
cells (3� 106) were transfected in Nucleofector solution (Nucleofector kit C or V,
respectively, Amaxa Biosystems, Cologne, Germany) with 1–2mM of nonsense
siRNA (Qiagen), Mcl-1 siRNA (50-CGCCGAAUUCAUUAAUUUATT-30; Qiagen),
CDK9 siRNA #1 (50-UGAGAUUUGUCGAACCAAATT-30; Applied Biosystems,
Warrington, UK) or CDK9 siRNA #2 (50-GGCACAGUUUGGUCCGUUATT-30;
Qiagen) using the Amaxa Nucleofector apparatus and the program X-01. Cells were
collected at indicated time points after transfection for apoptosis measurement and
Mcl-1 protein expression analysis. Transfection of HCT116 cells was carried out
using Lipofectamine 2000 (Invitrogen, Paisley, UK) and 33 nM of Mcl-1 siRNA
according to the manufacturer’s instructions. Cells were collected at 48 h after
transfection for apoptosis measurement and Mcl-1 protein expression analysis. For
Mcl-1 overexpression, HCT116 cells were transfected using Lipofectamine 2000
with the specific expression vector pEF4Mcl-1 or empty vector as described
previously.40
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