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Abstract
Tauopathies consist of over 25 different neurodegenerative diseases that include argyrophilic grain disease (AGD), pro-
gressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick’s disease (PiD). Tauopathies are defined 
by brain accumulation of microtubule-associated protein tau in fibrillar aggregates, whose prevalence strongly correlates 
with dementia. Dominant mutations in tau cause neurodegenerative diseases, and most increase its aggregation propensity. 
Pathogenesis of tauopathies may involve pathological tau conformers that serve as templates to recruit native protein into 
growing assemblies and also move between brain cells to cause disease progression, similar to prions. Prions adopt pathologi-
cal conformations, termed “strains,” that stably propagate in living systems, and create unique patterns of neuropathology. 
Data from multiple laboratories now suggest that tau acts as a prion. It propagates unique strains indefinitely in cultured 
cells, and when these are inoculated into mouse models, they create defined neuropathological patterns, which establish a 
direct link between conformation and disease. In humans, distinct fibril structures are associated with different diseases, 
but causality has not been established as in mice. Cryo-EM structures of tau fibrils isolated from tauopathy brains reveal 
distinct fibril cores across disease. Interestingly, the conformation of the tau monomer unit within different fibril subtypes 
from the same patient appears relatively preserved. This is consistent with data that the tau monomer samples an ensemble 
of conformations that act as distinct pathologic templates in the formation of restricted numbers of strains. The propensity of 
a tau monomer to adopt distinct conformations appears to be linked to defined local motifs that expose different patterns of 
amyloidogenic amino acid sequences. The prion hypothesis, which predicts that protein structure dictates resultant disease, 
has proved particularly useful to understand the diversity of human tauopathies. The challenge now is to develop methods 
to rapidly classify patients according to the structure of the underlying pathological protein assemblies to achieve more 
accurate diagnosis and effective therapy.
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Introduction

Tauopathies are a large group of neurodegenerative diseases, 
unified by accumulation in the brain of fibrillar aggregates 
of the protein microtubule-associated protein tau (MAPT). 

While these diseases are all linked to the deposition of tau, 
the morphology of the tau aggregates varies by disease [51]. 
Furthermore, there is poor correlation between clinical phe-
notypes and neuropathology [73]. New work on tau sug-
gests that it behaves as a prion: it converts from a soluble, 
monomeric state to one that self-propagates aggregates rich 
in beta-sheet structure [105]. These tau assemblies stably 
maintain unique conformations in vivo that induce or “seed” 
the native monomer to oligomerize into amyloid aggregates 
[67, 104]. Recent structural studies of tau fibrils isolated 
from patient samples have revealed conformations unique to 
each of several tauopathies [106]. Human and animal studies 
strongly suggest that tau strains spread distinct tauopathies 
through the brain[43]. The concept of prion strains usefully 
frames the question of how tau’s distinct conformational 

 *	 Lukasz A. Joachimiak 
	 Lukasz.Joachimiak@utsouthwestern.edu

1	 Neuroscience Graduate Program, University of Texas 
Southwestern Medical Center, Dallas, TX 75390, USA

2	 Center for Alzheimer’s and Neurodegenerative Diseases, 
Peter O’Donnell Jr. Brain Institute, University of Texas 
Southwestern Medical Center, Dallas, TX 75390, USA

3	 Department of Biochemistry, University of Texas 
Southwestern Medical Center, Dallas, TX 75390, USA

http://orcid.org/0000-0003-3061-5850
http://crossmark.crossref.org/dialog/?doi=10.1007/s00401-021-02301-7&domain=pdf


58	 Acta Neuropathologica (2021) 142:57–71

1 3

states might cause distinct diseases. This review will discuss 
why knowledge of tau strains could bridge the current gap 
between clinical presentation and neuropathology, in which 
an assigned antemortem diagnosis often is not confirmed by 
subsequent neuropathological analysis. Importantly, insight 
into the initial formation and subsequent propagation of dis-
tinct strains could inform future diagnostic and therapeutic 
strategies.

Tau

The human gene encoding the microtubule-associated pro-
tein tau (MAPT), is located on chromosome 17q31 [90]. It 
encodes 16 exons, of which exons 2, 3 and 10 are alterna-
tively spliced [6, 90]. In the human central nervous system, 
it may exist as six isoforms (0N3R, 0N4R, 1N3R, 1N4R, 
2N3R, and 2N4R, detailed in Fig. 1a) and is highly abun-
dant in neurons [45, 50, 83], whereas in the periphery a 
longer form is expressed [25, 48]. In the developing brain, 
isoforms mostly lack exon 10, which encodes the second of 
four highly conserved microtubule-binding repeats (Fig. 1a; 
R1, R2, R3 and R4) followed by a fifth less conserved repeat 
(Fig. 1a; R’) [49]. The adult human brain expresses both 4R 
and 3R isoforms at near equivalent proportions [45, 55]. The 
consequence of these expression patterns is not understood.

A causal role of tau was established in neurodegenera-
tion when dominant mutations in MAPT were determined 
to cause familial Frontotemporal dementia with Parkinson-
ism linked to chromosome 17 (FTDP-17) [56, 96, 116]. 
The majority localized to the repeat domain (Fig. 1b). Most 
mutations decrease microtubule binding and increase aggre-
gation propensity, both in vivo and in vitro, and transgenic 
mouse models with these forms of mutant tau exhibit neuro-
degenerative phenotypes in association with tau fibril forma-
tion [4, 46, 79]. Mutations that do not increase aggregation 

may increase protein levels or alter isoform ratios, favoring 
inclusion of exon 10, and promoting four-repeat tau [115, 
119].

Diversity of tauopathies and gaps in our 
knowledge

Neurodegenerative tauopathies are defined by deposition of 
abnormal tau as ordered beta-sheet-rich fibrils. Individuals 
with tauopathy often display symptoms consistent with Alz-
heimer’s syndrome (AS), frontotemporal dementia (FTD), 
corticobasal syndrome (CBS) or progressive supranuclear 
palsy syndrome (PSPS). However, within these clinical pres-
entations there is considerable neuropathological variation, 
including the involvement of proteins other than tau [62, 
89]. Hence, while clinical symptoms reflect dysfunction in 
specific brain regions that have succumbed to pathology, 
the considerable anatomical and symptom overlap among 
tauopathies, and the involvement of other amyloid pro-
teins makes it difficult to reliably determine antemortem 
the underlying proteinopathy based on presentation alone 
[10, 58]. For example, a patient may present with symp-
toms of the clinical syndrome known as behavioral variant 
FTD (bvFTD), yet the underlying disease may be due to 
one of more than ten possible neurodegenerative pathologies 
grouped under the umbrella term of frontotemporal lobar 
degeneration (FTLD) (Fig. 2).

The gold standard for classifying neurodegenerative dis-
eases is neuropathology. However, the lack of correspond-
ence between clinical syndromes and neuropathological 
diagnosis suggests a fundamental gap in understanding of 
these diseases [73]. The recent discovery that different tau 
strains are sufficient to induce diverse neuropathological 
outcomes in mouse models and the atomistic description 
of tau fibril polymorphs (structural variants) associated 

Fig. 1   Tau protein. a Domain organization of tau brain isoforms. 
Schematic of the 441 residue 2N4R tau isoform highlighting the 
domains (N1, N2 and R2) which define the isoforms. The tau 
repeats are colored red (R1; residues 244–274), green (R2; resi-
dues 275–305), blue (R3; residues 306–336), purple (R4; residues 
337–368) and dark grey (R’; residues 369–400). The proline-rich 

domain (PRD) is colored in light blue and the N1 and N2 domains 
are colored in orange. Two key disease-associated mutations are 
highlighted by arrows: Proline301 to serine or leucine mutations and 
valine337 to methionine. b Disease-associated mutation frequencies 
found in human tauopathies. Most mutations are found within the 
repeat domain
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with unique tauopathies suggests that defining the relation-
ship between tau strains and clinical syndromes will let us 
diagnose and thus treat tauopathies more effectively. This 
is entirely analogous to how we can now parse cancer sub-
types based on genetic and epigenetic features, which in turn 
guides diagnosis and therapy.

Clinical syndromes associated with tau 
neuropathology

AD and FTLD pathologies may be discriminated molecu-
larly and histologically but they often present with simi-
lar diagnostic features [73]. Age-related phenotypic varia-
tions further complicate the antemortem diagnosis of these 
diseases.

The first four syndromes are collectively termed FTD and 
encompass behavioral and language phenotypes (Fig. 2).

bvFTD (behavioral variant) is the most common variant 
of FTD. It refers to a disorder of conduct, judgement, self-
control, and socialization.

nfvPPA (non-fluent variant) of primary progressive apha-
sia (PPA). The syndrome is characterized by difficulties in 
the production and grammatical structure of speech.

svPPA (semantic variant) of PPA is characterized by 
focal word loss during spontaneous speech.

lvPPA (logopenic variant) PPA is characterized by slow 
or hesitant speech without problems with articulation but 
with momentary difficulties in word finding. Impaired sen-
tence comprehension and naming are also present.

CBS (corticobasal syndrome) and PSPS (progressive 
supranuclear palsy syndrome) are motor syndromes that may 
reflect underlying tauopathy. CBS features unilateral rigid-
ity, apraxia, and alien hand phenomena. PSPS prominently 
features axial rigidity, bradykinesia, vertical gaze palsy and 
dysphagia.

AS (Alzheimer’s syndrome) is typically characterized by 
a progressive amnestic phenotype with executive and visu-
ospatial dysfunction.

Neuropathology of tauopathies

Primary tauopathies are those in which tau deposition is the 
most pronounced pathological finding. Neuropathological 
tau phenotypes are most often classified by their anatomical 
distribution, cell type involvement, and the protein isoforms 
deposited (Fig. 3, Table 1) [74, 75]. The most prominent pri-
mary tauopathies include corticobasal degeneration (CBD), 

Fig. 2   Relationship between 
clinical syndromes and neuro-
pathology. Illustration of the 
association of different clinical 
syndromes with the deposition 
of specific inclusions of proteins 
including tau as determined by 
neuropathology. Each disease, 
defined by neuropathology of 
specific proteins, is colored 
differently. The fractional 
percentage of protein deposi-
tion in each clinical syndrome 
is estimated from the literature. 
(Figure is  adapted from a slide 
shared by Dr. William Seeley, 
UCSF)
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progressive supranuclear palsy (PSP), Pick’s disease (PiD) 
and argyrophilic grain disease (AGD) [51, 58, 115]. Alz-
heimer’s disease (AD), the most studied tauopathy, features 
aggregated tau in the form of neurofibrillary tangles (NFTs), 
linked to prior deposition of amyloid beta protein aggregates, 

and is thus classified as a secondary tauopathy (Fig. 3) [51]. 
Secondary tauopathies may also result from environmental 
exposure such as trauma in the case of chronic traumatic 
encephalopathy (CTE) [41]. 

At the molecular level, tauopathies may be classified 
by the degree of incorporation of 3R and 4R isoforms into 
detergent-insoluble material from brains of individuals [74]. 
At the histological level, characteristic patterns of atrophy 
and tau pathology define each disease (Table 1). While AD 
is considered a separate entity, PSP, CBD, AGD, PiD and 
CTE fall into the category of FTLD pathologies related to 
tau (FTLD-tau) which distinguishes them from FTLDs asso-
ciated with TAR DNA-binding protein (TDP-43), fused in 
sarcoma (FUS) or charged multivesicular body protein 2B 
(CHMP2B).

Prion strains

Hundreds of papers in the last decade have investigated the 
idea that tau and other amyloid-forming proteins might func-
tion as prions. The notion that a neurodegenerative disease 
could be mediated by propagation of a unique protein con-
formation originated with the discovery that the key com-
ponent in prion disease infectivity was prion protein (PrP). 
The discovery of a protein-based infectious agent led to the 
Nobel prize in 1997 for Stanley Prusiner. Prions represented 
a stunning new biological concept wherein a protein trans-
mitted pathological information in an infectious manner by 
serving as a template to corrupt native protein and thereby 
self-replicate. The most notable prion diseases are bovine 
spongiform encephalopathy (BSE), scrapie of sheep and 
Creutzfeldt–Jakob disease (CJD) [22, 23, 126].

Fig. 3   Neuropathology of tauopathies. Representative IHC staining 
using AT8 on brain sections from different human tauopathy patients 
AD, CBD, PSP, AGD, PiD and CTE

Table 1   Neuropathological diagnosis

Neuro-
pathological 
diagnosis

Anatomical distribution Neuropathological hallmark Tau isoform

AD Neocortex and limbic regions Neurofibrillary tangles (NFTs), neuropil threads and 
dystrophic neurites

3R + 4R

PiD Frontal, temporal, and parietal lobes Cytoplasmic spherical structures, termed Pick Bodies 3R
CBD Focal atrophy of superior frontal gyrus and parietal lobe Small-NFTs, corticobasal bodies (Fig. 3b) and diffuse 

granular tau inclusions. Occasional Pick bodies 
are observed. The most specific pathology is the 
astrocytic plaque which appears as a circular or ring-
shaped collection of argyrophilic tau-positive cell 
processes

4R

PSP Subthalamic nucleus, superior cerebellar peduncle and 
hilum of cerebellar dentate nucleus

Globose NFTs, tufted astrocytes (Fig. 3c) and oligoden-
droglial coiled bodies

4R

AGD Amygdala, limbic cortex, mesial temporal lobe, and 
temporal neocortex

Small dot-like spindle-shaped structures, termed grains. 
Oligodendroglial coiled bodies and pre-tangles

4R

CTE Varying degrees of atrophy in frontal and temporal 
lobes. Often found in the depths of sulci

NFTs (Fig. 3f) and astrocytic tangles 3R + 4R
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Prions have been extensively characterized biochemically 
and by experimental transmission in vivo. In the absence 
of high-resolution structures—which are difficult to obtain 
using classical structural biology methods, prions associ-
ated with different diseases are commonly detected and com-
pared by physicochemical analyses. This includes resolving 
the aggregate core by limited proteolysis, or comparing the 
solubility of aggregates in non-ionic detergents or sedimen-
tation properties in sucrose gradients [35, 100]. A recent 
cryo-electron microscopy (cryo-EM) structure of PrP-based 
prion fibrils isolated from hamster brains adopt a parallel 
in-register intermolecular beta-sheet and connecting chains 
similar to other amyloid fibrils isolated from tauopathy and 
alpha-synucleinopathy tissues [76]. Alternatively, prions 
are characterized by experimental transmission into animal 
models which may give rise to characteristic incubation 
times, disease phenotypes, and distribution of pathological 
lesions in the brain [13, 35].

When distinct forms of prion disease were characterized 
it became apparent that pathogenic PrP adopts different con-
formations, each responsible for a different disease, and sta-
bly transmissible over time between animals [15, 37, 107]. In 
summary, distinct pathogenic conformers, or strains of PrP 
explain well the variability of prion diseases.

Other prion proteins

Prusiner originally predicted that there might be multiple 
proteins that form prions based on the presence of amyloid 
fibrils in both scrapie and AD preparations [97]. Several 
groups subsequently observed that other amyloid-forming 
proteins such as amyloid beta, alpha-synuclein, huntingtin, 
and tau had similar template-based aggregation characteris-
tics in vivo [44, 117, 118, 125]. In the 1990s, AD brain inoc-
ulation of AD lysates into primates hinted at infectious mate-
rial in this disorder [9]. Walker and colleagues then observed 
that inoculation of bAPP-transgenic mice (tg2576) with AD 
brain homogenate induced b-amyloid pathology [66], and 
followed up this work in collaboration with Jucker [63, 85, 
128]. And recent neuropathological studies of patients who 
developed CJD following administration of cadaveric pitui-
tary extract indicated that amyloid beta pathology might also 
be transmitted between humans [29, 60, 98, 101]. Observa-
tions regarding the propagation of pathology have now been 
extended to other proteins including alpha-synuclein [27, 72, 
80, 82], huntingtin [18, 61] and tau [20, 57, 104].

Despite the many advances in biochemistry and molecu-
lar genetics of amyloid-forming proteins, the origins of 
phenotypic diversity and the molecular basis of progres-
sive neurodegeneration remained mysterious. Studies of 
amyloid beta revealed that a monomer could form multiple 
distinct fibril structures in vitro [95], and that injection of 

pure amyloid beta fibrils into a vulnerable transgenic mouse 
initiated extracellular amyloid beta deposition [85]. Moreo-
ver, conformers of amyloid beta fibrils could be transmitted 
by seeded conversion into brains of two mouse models of 
amyloid beta pathology [52]. The development of ligands 
for amyloid pathology has now allowed for the post-mortem 
discrimination of conformers of amyloid beta pathology in 
patients with diverse lesions, and between subjects with dis-
tinct clinical phenotypes [99, 129].

In 2009, two groups evaluated tau prion activity. Tolnay 
and colleagues observed that inoculation of brain lysates 
containing pathological tau derived from a tauopathy 
mouse model induced the intracellular aggregation and 
apparent spread of tau aggregates from the site of injec-
tion [20]. Concurrently, the Diamond laboratory discovered 
that exposure of cultured cells expressing full-length tau to 
extracellular fibrils triggered aggregate uptake that in turn 
triggered intracellular aggregate formation and subsequent 
transfer between co-cultured cells [39]. It became clear that 
tau might have "infectious" properties, at least from the 
standpoint of pathology transferred from the outside to the 
inside of a cell. With the development of novel cell-based 
detection systems (termed "biosensors") the Diamond lab 
subsequently determined that tau-mediated seeding activity 
correlates with disease progression and anticipates classical 
pathological markers in mouse models of tauopathy and in 
Alzheimer’s disease [40, 53, 54, 68].

While these observations provided ideas regarding dis-
ease progression, a major question has been the origin of 
diversity of neuropathological phenotypes in tauopathy. The 
concept of a prion strain has provided a critical framework. 
A strain is a self-replicating conformer that creates unique, 
transmissible pathological outcomes. A clue that this might 
underlie tauopathies came in 2013 when the Goedert lab 
inoculated human tauopathy lysates from PSP, CBD, and 
AGD into brains of ALZ17 mice, which express the longest 
brain isoform of human tau (2N4R). Patterns were described 
that were reminiscent of those seen in human pathology[19]. 
However, it remained unclear if aggregated tau vs. other 
disease-specific factors created these distinct pathological 
phenotypes, and, further these studies did not biochemically 
determine the inoculated preparations as unique protein 
conformers.

In 2014, Sanders et al. determined that tau is a bone 
fide prion that can be formed in vitro and creates unique 
strains[104]. An aggregation-prone mutant (P301L/V337M) 
of the repeat domain of tau fused to yellow fluorescent pro-
tein (RD-YFP) was expressed in HEK cells. When exposed 
to recombinant tau fibrils, distinct inclusion patterns formed 
and could be isolated and propagated indefinitely as unique 
clones via mother–daughter transfer, or via inoculation of 
naïve cells. Clonal tau strains had distinct seeding activ-
ity, detergent solubility, and pronase digestion patterns 
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indicative of unique structures. Tau strains extracted from 
a given cell line were transmissible to naive cells by inoc-
ulation, indicating they were caused by tau, and were not 
a feature of the original clonal cells. Tau strains induced 
unique neuropathology patterns in vivo after inoculation of 
a mouse model expressing full-length human tau containing 
a disease-associated mutation (P301S). The unique patterns 
of neuropathology were faithfully transmitted across three 
generations of mice. In summary, infectious strain properties 
of tau were maintained in a synthetic cell system based on 
RD-YFP, and a mouse model based on full-length human 
protein. Because these studies created an infectious form of 
tau from recombinant protein, with strain properties linked 
to unique, and transmissible neuropathological outcomes 
in vivo, the authors considered it most appropriate to refer 
to tau as a prion.

Sanders et al. also observed that isolation of strains from 
patients with identical neuropathological diagnoses, revealed 
considerable diversity within certain neuropathological 
diagnoses (Fig. 4a) [104]. That is, a given neuropathological 
diagnosis could be additionally sub-typed by strain analy-
sis. This has raised the provocative question of whether the 
"ground truth" of neuropathological diagnosis is sufficient 
to properly define tau strains.

Expanding on the initial observations, Kaufman et al., 
isolated and characterized 18 tau strains that originated from 
either recombinant protein, tauopathy mice, or human brain 
[67]. The newly isolated strains were distinguished by mul-
tiple methods including inclusion morphology, detergent 
solubility, seeding, proteolytic digestion, and toxicity. After 
analyzing the distinct patterns of neuropathology produced 
upon inoculating PS19 mouse brains with the 18 strains, 
the authors concluded that strain diversity could account 
for all of the major neuropathological features associated 
with distinct tauopathies, including unique intraneuronal tau 
accumulation, distinct patterns of regional vulnerability, and 
rates of progression. In summary, evidence from inoculation 
studies in cell and mouse models, and analyses of strain 
content of human brain tissues strongly supported a model 
in which tauopathies can be understood as diseases caused 
by diverse strains [105, 125]. This raised the questions of 
how strains arise, and what assemblies account for them.

Mechanisms of template formation 
and self‑assembly

In recombinant form, or when expressed in non-diseased 
cells, tau is very stable and does not readily aggregate 
[38]. Early analyses of tau structure suggested that it 
does not adopt a stable folded conformation but rather 
is intrinsically disordered [12, 21, 114]. Given that tau 
encodes sequence elements that mediate self-assembly, 

a key question is how these elements are controlled so 
that aggregation only occurs under certain circumstances. 
Recent isolation and characterization of distinct pools of 
tau monomer, some with properties of seeding and self-
assembly, and others without, indicate that tau adopts 
structure surrounding the elements that mediate aggre-
gation (Fig. 4b) [16, 86]. A framework based on local 
structures that engage aggregation-prone sequences could 

Fig. 4   Propagation of tau strains. a Schematic illustrating biosensor-
based detection of tau seeds derived from different tauopathies (AD, 
AGD, CBD and lead to cellular aggregates with different morpholo-
gies. b Model of tau domain structural rearrangement and subse-
quent aggregation. Inert tau monomer (left) has a propensity to form 
a relatively collapsed conformation, which buries aggregation-prone 
elements. In the presence of disease-associated mutations, proline 
isomerization events, or certain splice isoforms, the equilibrium is 
shifted to disfavor local compact structure. This exposes the aggre-
gation-prone elements and enhances aggregation propensity, leading 
to subsequent tau pathology. Structural models are shown in car-
toon representation and are colored according to repeat domain as in 
Fig. 1. The aggregation-prone element is colored in blue. c Schematic 
of tau aggregation pathway for the formation of different strains. Sol-
uble inert tau is shown as a cartoon highlighting local structures sur-
rounding repeat domains, seed-competent monomer highlights struc-
tural rearrangements surrounding the aggregation-prone elements and 
fibrils are shown as an array of ordered monomers. Tau domains are 
colored as in Fig. 1
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explain tau’s stability and inability to aggregate in the 
absence of inducers.

Prior studies have indicated that the repeat domains 
contain local structure surrounding conserved KXGS and 
PGGG motifs [5, 64, 87]. The KXGS motifs are located 
within the middle of each repeat domain and are thought to 
be important for microtubule binding [11].The PGGG motifs 
which stabilize beta-hairpin conformations are located at 
the end of each repeat and are also immediately adjacent to 
aggregation-prone elements. Disease-associated mutations 
are enriched at these sites just upstream of these aggrega-
tion-prone elements (i.e. 275VQIINK280, 306VQIVYK311 and 
337VEVKSE342). The Joachimiak lab has characterized the 
sequences surrounding the VQIVYK aggregation-prone ele-
ment, finding that disease-associated mutations upstream 
from this element drive aggregation of tau by disrupting 
the protective structure (Fig. 4b) [16]. Thus, the formation 
of protective structures at these different amyloid-forming 
sites limits tau self-assembly and the transient nature allows 
it to be compatible with extended conformations necessary 
for microtubule binding [69]. Interestingly, recent work on 
tau under liquid–liquid phase separation conditions from the 
Zweckstetter lab proposed that stabilization of local struc-
tures around the KXGS motifs may promote oligomerization 
[5] but their capacity to drive aggregation remains unknown. 
Thus, local structure engaged by different sequence elements 
within tau may have opposing effects on the aggregation 
propensity. Indeed, recent work on alpha-synuclein has 
shown that engineering a specific beta-turn to adopt differ-
ent geometries can have anti- and pro-aggregation proper-
ties, and thus the details of the beta-turn conformation are 
important for regulating aggregation [1]. Future work on 
tau will reveal details for how the specific conformations of 
beta-turns at these sites modify aggregation.

Initiation of tau aggregation in vitro requires the addition 
of preformed tau seeds or incubation with polyanions such 
as heparin [47, 94], octadecyl sulfate [17], RNA [47, 65], 
or arachidonic acid [70, 130] that disrupt these structures. 
Heparin appears to interact with defined sequences within 
the second tau repeat (RD2) [112, 136] and stabilizes an 
unfolded conformation of tau [30, 31, 112]. Thus, binding 
of polyanions to positively charged residues in the repeat 
domain may preferentially expose sequences that promote 
oligomer assembly during the lag phase followed by the 
elongation phase adhering to a classical nucleation mecha-
nism [8, 109].

Tau monomer that is otherwise inert has the capacity 
to adopt stable aggregation-prone conformations that self-
assemble and initiate aggregation upon induction in vitro 
and in the setting of disease states [110]. Structural analy-
ses comparing inert vs. seed-competent monomer revealed 
preferential exposure of aggregation-prone sequence ele-
ments in seed-competent tau monomer, which then can act 

as a nucleus to promote elongation [16]. Furthermore, the 
seed-competent form of tau isolated from distinct tauopa-
thies has been observed to encode distinct subsets of strains, 
which indicates a possible ensemble of aggregation-prone 
monomer conformations that have the capacity to adopt and 
propagate distinct fibrillar conformations (Fig. 4c) [110]. 
The idea that tau monomer alone can drive its own assembly, 
and, indeed can serve as a template to form structural poly-
morphs is not widely accepted, although additional recent 
work on tau [88], and Sup35, a yeast prion protein [92, 
111], is consistent with this idea. Indeed, cryo-EM images 
of different filament conformations from individual patients 
reveals that the monomeric unit of tau in the fibrillar core 
of each polymorph is unique, however, subtypes have been 
observed in fibrils isolated from AD, CTE, CBD patients 
which might suggest some variation even within a disease [7, 
32–34, 36, 135]. It remains unknown how tau might adopt 
these distinct monomeric conformations to yield oligomers 
and eventually fibrillar structures, but differential utiliza-
tion of regulated local amyloid-forming sequences provides 
a testable model. A more detailed structural understanding 
of these initial conformational changes in tau monomer may 
be critical for identifying novel strategies for diagnosis and 
treatment.

Cryo‑EM structures of patient‑derived fibrils

The Scheres, Goedert and Fitzpatrick laboratories have now 
used cryo-EM to describe in atomic detail the core structures 
of tau fibrils extracted from AD [33, 36], CBD [7, 135], 
Pick’s disease [32], CTE [34] and recombinant fibrils cre-
ated by heparin induction [134]. Biochemical purification of 
insoluble filaments first allowed creation of electron micro-
graphs [26], and methodological gains in cryo-EM now pro-
vide a glimpse of their core structure. Initial work involved 
classical paired helical filaments (PHFs) and straight fila-
ments (SFs) from AD brains [36]. The PHF and SF are 
derived from a related C-shaped protofilament encom-
passing repeats 3, 4 and R’ (Fig. 5a; residues 306–378) as 
part of the core, but two different modes of assembly into 
fibrils (Fig. 5a). Subsequently, a related C-shaped confor-
mation to AD-PHF/AD-SF that also encompassed repeats 
3, 4 and R’ (Fig. 5a; residues 305–379) was observed in 
CTE fibrils, with two possible with packing arrangements 
between the two protofilaments defined as Type I and Type 
II (Fig. 5b) [34]. Interestingly, the authors observed an 
unexplained density, suggestive of a ligand within the core. 
Subsequently the structure of a PiD fibril revealed a flatter 
and more extended fibrillar shape that utilized repeats 1, 
3, 4 and R’ (Fig. 5c; residues 254–378) [32]. Finally, two 
groups independently determined cryo-EM structures of 
CBD fibrils, revealing a conformation that utilizes repeats 
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2, 3, 4 and R’ (Fig. 5d; residues 274–380) [7, 135]. The 
CBD structures partitioned into two types: Type I with a 
single protofilament and Type II with two protofilaments 
related by a C2 symmetry (Fig. 5d). The monomer confor-
mations were similar in each type, but the extent of ordering 
was different between the two types. As for CTE, the CBD 
fibril also had an unexplained density coordinated by basic 
residues. In addition to tauopathy-derived fibrils, cryo-EM 
structures for heparin-induced tau fibrils are described [134], 
which appear coated with heparin, suggesting that it plays 
a stabilizing role [36]. The stark differences between the 
disease- and heparin-derived fibrils raise obvious questions 
about the biological relevance of recombinant forms, espe-
cially for conformation-based therapies. Thus, the diverse 
tauopathy fibril conformations revealed by cryoEM supports 
our proposed model of tau strains and its unambiguous link 
to disease. Although cryo-EM structures have rightfully 
captured the field’s attention, this method has important 
limitations: a relatively small number of brain samples can 
be studied, and only after extensive purification of fibrils 
from large quantities of brain material. Further, there is no 
structural information for residues outside of the amyloid 
core that could contribute to strain formation, and only large 
detergent-insoluble filaments have been successfully imaged, 
which may not represent the critical tau oligomers.

Molecular interactions in tau structural 
polymorphs

It is now possible to define unifying and/or distinguishing 
interactions that govern tau aggregation in fibrils. Aggrega-
tion-prone sequence elements mediate key interactions that 
appear to kinetically drive the formation of fibrillar folds in 
each of the tauopathy-derived fibrils. By contrast, recombi-
nant heparin-induced tau fibrils lack these interactions. In 
the tauopathy fibrils, the remaining amino acids also segre-
gate into defined clusters that create favorable interactions. 
These residues likely contribute less to the kinetics that 
determine the fold but may guide the final fibril conforma-
tion. Unlike globular proteins, fibril cores bury a mixture of 
polar and nonpolar interaction clusters leaving large, poorly 
interacting regions. This suggests multiple contributions 
to stability and specificity, and further a role for biological 
“tuning” to regulate functional amyloids. The importance 
of the nonpolar interaction clusters is highlighted by the 
central role of the VQIVYK aggregation sequence across 
all the published cryo-EM fibril conformations, including 
synthetic fibrils. Interactions of the VQIVYK sequence ele-
ment vary, but common themes arise: three residues (V306, 
I308, and Y310) form essential contacts to either 373KLT-
FRE378 (AD, CTE, Fig. 5e) or 337VEVKSE342 (PiD, CBD, 
Fig. 5e), defined by discrete nonpolar-X-nonpolar amino 
acid patterning. In the case of the CBD fibril, the VQIINK 
amyloid motif interacts with 373KLTFRE378 (Fig. 5e) mim-
icking the VQIVYK interaction observed in the AD and 
CTE fibrils. Structures of isolated VQIVYK hexapeptides 
showed homotypic contacts between V306, I308 and Y310 

Fig. 5   Unifying themes for diverse tauopathy fibrils. a–d Cryo-EM 
structures of tau fibrils isolated from AD-PHF, AD-SF, CTE (Type 
I and II), PiD and CBD (Type I and II). The structures are shown in 
spacefill representation, colored according to the repeat domains as 
in Fig. 1 and viewed down the fibril axis. e Schematic illustrating key 
contacts involving aggregation-prone elements observed in the differ-
ent structures. Amino acids of each fibril are shown as a schematic 

and colored as in Fig.  1. Amino acids (including aggregation-prone 
elements) are colored according to the repeat domain and location 
indicated by an arrow. The linkage between contacts observed in AD/
CTE, PiD and CBD are indicated by semi-circles and are colored 
black, magenta and green. The residues that comprise the amyloid 
structures are shown in the cartoon schematic
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and neighboring peptides. This highlights the propensity of 
these three residues to interact with themselves or form het-
erotypic contacts to other amyloidogenic motifs with defined 
spacing to drive fibrillization. While the AD-PHF, AD-SF, 
and CTE fibril structures are similar overall, and appear to be 
stabilized by similar contacts, the CBD and PiD structures 
differ, while still utilizing VQIVYK sequences identically 
(Fig. 5e). The comparison of tau fibril structures highlights 
the importance of nonpolar contacts for amyloid motifs, and 
how variation in their interactions stabilize similar (AD, 
CTE) and different (CBD, PiD) conformations. We hypoth-
esize that nonpolar contacts may modulate aggregation and 
stabilize interactions that define the structural variants. 
Finally, considering the role of local structural elements in 
modulating aggregation, we propose that differential expo-
sure of amyloid motifs may predetermine which contacts 
form thus play an important role in the kinetics of aggrega-
tion. This would constitute a series of structural "branches" 
defined by modular heterotypic interactions between amy-
loidogenic sequences that governs strain conformation, and 
ultimately disease manifestation.

Therapeutic approaches

Tau is now considered the critical target in treating Alzhei-
mer’s disease and other tauopathies [24, 59, 124]. The novel 
insights afforded by understanding tau strain diversity in 
tauopathies and in vitro models of aggregation must now be 
considered strongly in therapeutic development. For exam-
ple, the first small molecules tested were methylene blue 
and its derivative LMTM which interfere with tau fibrilli-
zation in vitro and in animals reduced tau deposition [2, 3, 
84, 131]. Unfortunately, in phase 3 trials testing LMTM in 
AD patients, there was no reduction in rate of decline of 
cognition compared to placebo [42]. We now recognize that 
in vitro and AD-derived fibrils have very different topologies 
and would likely be affected in different ways by a small 
molecule inhibitor of fibrilization. Thus, we must probably 
use models that mimic tau strains in tauopathy to properly 
evaluate small molecule aggregation inhibitors.

Because phosphorylation of tau fibrils was described in 
pathology, it was hypothesized that this drives tau pathology 
and thus that inhibition of tau kinases such as GSK3b would 
reduce disease. In preclinical mouse models, tideglusib, a 
small molecule targeting GSK3b reduced tau phosphoryla-
tion levels [108], but in subsequent phase 2 trials in AD 
patients, it failed to produce a clinical benefit [81]. Argu-
ably, this failure may have been due to insufficient selectivity 
against other kinases [14] or non-optimal isoform selectivity 
[127]. However, it remains unclear whether phosphorylation 
is important in the initiation of aggregation.

Based on compelling cell and animal data that supports 
a model of trans-cellular propagation of pathology, passive 
and active vaccines to reduce tau pathogenicity are now 
in advanced human trials. Two active immune strategies 
are being tested. The first strategy, AADvac-1 is based on 
an epitope encoding residues 294–305 just preceding the 
VQIVYK amyloid motif[71]. The antigen is conjugated to 
a keyhole limpet hemocyanin carrier [91] is in Phase 2 trials 
clinical trials NCT02579252. Different tau strains feature 
this region either immediately outside the filament core 
or embedded within the amyloid segment. Thus, it will be 
informative to learn whether these differences in accessibil-
ity affect therapeutic outcomes. A second active vaccine, 
ACI-35.030, based on a multicopy synthetic phosphorylated 
peptide embedded in liposomes is now in Phase1b/2a. This 
strategy relies on the contribution of phosphorylated tau to 
seeding and trans-cellular propagation [120]. Numerous 
passive vaccines are in clinical trials [113]. A monoclonal 
antibody against the N-terminus of tau reduced pathological 
tau in a P301S mouse model [133]. A humanized version 
(ABBV-8E12/Tilavonemab) is in phase 2 for patients with 
early AD, after phase 2 for PSP was discontinued. Other 
anti-tau antibodies are in various stages of the clinical pipe-
line including Semorinemab, BIIB076, Gosuranemab, JNJ-
63733657, Zagotenemab, and Bepranemab. Development of 
antibodies that are specific for tauopathy strains will likely 
be essential for optimal treatment of disease, and critically, 
vaccines will primarily target extracellular tau.

While vaccines to prevent trans-cellular propagation and 
small molecules that directly bind tau to inhibit aggrega-
tion will likely depend to some degree on tau strain identity, 
there are still many other approaches, especially those that 
target tau gene expression [124], which may work regard-
less of strain identity. While these are beyond the scope 
of this review, they offer important additional therapeutic 
opportunities.

Strains in diagnosis of tauopathies

The recent development of tau binding agents has enabled 
the study of tau pathology onset and progression in patients 
with tauopathies. The description, over a decade ago, of 
[18F] FDDNP as a tracer with affinity for the tau lesions 
in AD catalyzed the expansion of markers in this category 
[121]. Broadly, there have been two iterations of tau ligands 
[93, 123]. The first-generation ligands include [18F] THK 
5317, [18F] THK5351, [18F] Flortaucipir (previously 
known as AV1451/also-T-807), and [11C] PBB3. The sec-
ond generation include [18F] MK 6240, [18F] RO-948, 
[18F] PI-2620, [18F] GTP1, [18F] PM-PBB3, [18F] JNJ-
311 and its derivative [18F] JNJ-067 and were developed 
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either based on existing structures of the first generation to 
improve specificity or represent new entities[123].

Virtually all published data from in vivo studies involves 
the first generation of tau PET ligands. These data have gener-
ated considerable excitement for the utility of this signal, but 
they have illustrated shortcomings with regard to off-target 
binding. Notably, several of the first-generation ligands bind 
monoamine oxidase isoforms [28, 77]. The substantial over-
lap in clinical presentation among primary tauopathies and 
other neurodegenerative syndromes further complicates the 
diagnostic utility of these agents. For example, Flortaucipir, 
THK 5317 and THK5351 are seen as useful for segregating 
cognitively normal individuals from patients in the CBS/PSP 
spectrum, yet have off-target binding in regions recognized to 
be harbingers of pathology, such as basal ganglia [78, 122]. 
Furthermore, several studies report intra-individual variability 
of tracer binding that is discordant with expected patterns of 
neuropathology [103, 132].

The lack of detailed study of the tau strain selectivity of 
each tracer has further complicated head-to-head compari-
sons [102]. The THK family, PBB3 and AV1451 reportedly 
bind NFTs, ghost tangles and neuritic plaques, and while 
AV1451 has relatively low affinity to SFs in CBD and PSP, 
the opposite is true for PBB3 and THK5351 [78]. If these 
differences in binding properties derive from conforma-
tional differences in tau, this would be very important. When 
viewed from the perspective of tau strains, it is not at all sur-
prising that tau tracers with different binding sites on fibrils 
could conceivably detect alternative conformations of tau. 
The novel cryo-EM structures of filaments from different 
tauopathies may thus represent an important step toward the 
design of more specific tau tracers that allow the diagnosis 
of primary and secondary tauopathies by binding to strain-
specific regions of tau fibrils.

Outlook: strains in therapy and diagnosis

Awareness and knowledge of tau strains must guide both 
therapy and diagnosis. Specifically, unique conformations 
of tau will determine efficacy of small molecules in positron 
emission tomography (PET) and immunotherapy. For exam-
ple, it is now well recognized that some tau PET ligands, 
while effective in certain tauopathies, are largely ineffec-
tive for others [78]. For immunotherapy, it seems likely that 
without determination of epitopes specific or common to 
various diseases, it will not be able to provide a universal 
treatment. Indeed, we should expect that therapies will have 
efficacy limited to subsets of tauopathy patients. We view 
this early stage of understanding as similar to the role that 
cancer genetics has played in personalizing therapy. The 
future seems very bright for similar successes in treating 
tauopathy, likewise we should not be discouraged by the 
fact that some patients will respond better than others. It will 

become ever more important to define the strains responsible 
for pathology antemortem, and preferably before symptoms 
arise in the first place.

Key concepts

Nucleation: Event which generates a conformational state 
that is capable of propagation.

Propagation: Refers to the templated misfolding.
Spread: The movement of seeds between cells and brain 

regions.
Amyloid: Long, unbranched protein fibrils that display 

cross-beta fiber diffraction when examined by x-rays.

Seed:   (Noun) a conformational state that is capable of tem-
plating. Seeds may be generated by templated misfolding 
from pre-existing amyloid fibrils.

(Verb) to template misfolding.

Infectious: Likely to be transmitted to cause disease.
Structural polymorph: Distinct stable protein conforma-

tions (i.e.fibrils) adopted by a single protein sequence.
Strain: A unique prion conformation that replicates faith-

fully in living systems and confers specific biological effects.
Prion: A structured protein assembly that self-replicates 

in living systems and whose conformation controls its 
biological activity and potential for transmission between 
individuals.
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