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The ability to evaluate sperm at the microscopic level, at high-
throughput, would be useful for assisted reproductive technolo-
gies (ARTs), as it can allow specific selection of sperm cells for
in vitro fertilization (IVF). The tradeoff between intrinsic imaging
and external contrast agents is particularly acute in reproductive
medicine. The use of fluorescence labels has enabled new cell-
sorting strategies and given new insights into developmental bi-
ology. Nevertheless, using extrinsic contrast agents is often too
invasive for routine clinical operation. Raising questions about cell
viability, especially for single-cell selection, clinicians prefer intrin-
sic contrast in the form of phase-contrast, differential-interference
contrast, or Hoffman modulation contrast. While such instruments
are nondestructive, the resulting image suffers from a lack of spec-
ificity. In this work, we provide a template to circumvent the
tradeoff between cell viability and specificity by combining high-
sensitivity phase imaging with deep learning. In order to introduce
specificity to label-free images, we trained a deep-convolutional
neural network to perform semantic segmentation on quantitative
phase maps. This approach, a form of phase imaging with compu-
tational specificity (PICS), allowed us to efficiently analyze thou-
sands of sperm cells and identify correlations between dry-mass
content and artificial-reproduction outcomes. Specifically, we
found that the dry-mass content ratios between the head, mid-
piece, and tail of the cells can predict the percentages of success
for zygote cleavage and embryo blastocyst formation.

assisted reproduction | quantitative phase imaging | phase imaging with
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Males are responsible for more than 40% of the total in-
fertile couples (1). The ability to evaluate sperm at the

microscopic level would be useful for assisted reproductive
technologies (ARTs), as it can allow specific selection of sperm
cells for in vitro fertilization (IVF). For example, it has been
shown that intracytoplasmic morphologically selected sperm in-
jection (IMSI) improves the outcome of in vitro fertilization, as
compared with the conventional intracytoplasmic sperm injec-
tion (ICSI) (2, 3). Previous studies suggested that the anomalies
detected by IMSI are due to abnormalities in chromatin pack-
aging (4). It is also important to note that the chemical reaction
of the stain or label and the required fixative change the shape
and size of spermatozoa (5–7). Due to the potential toxic effects
of fluorophores, morphology of sperm cells is observed using
intrinsic contrast imaging, such as differential interference con-
trast (DIC) (8), phase-contrast (9), or Hoffman modulation
contrast (10) microscopy. These methods generate contrast from
local variations in refractive index across the cell. As a result,
these technologies do not require fluorescence tagging and are
relatively harmless. However, the relationship between the

intensity map generated by these methods and the properties of
the cell (e.g., thickness, mass) are only qualitative.
Quantitative phase image (QPI) (11) is a label-free approach

that has been gaining significant interest in the biomedical
community (for a recent review, see ref. 12). QPI combines in-
trinsic contrast microscopy with holography and, as a result, can
render precise information about the optical path-length map
introduced by the specimen. This quantitative phase image is
linearly related to the dry-mass density of the cell under inves-
tigation (13–15). As a result, QPI has been applied successfully
to studying cell-mass transport and growth (16–20). Further-
more, acquiring QPI data over a third axis, e.g., axially, angularly,
spectrally resolved, allows us to extract tomographic recon-
structions of unlabeled cells (21–25). Due to these capabilities,
recently, QPI has been applied to imaging sperm cells as well
(26–29). In particular, several studies used QPI for measuring
sperm motility (27, 30–33).
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However, as an intrinsic contrast method, QPI also suffers from
lack of molecular specificity. Our solution to this challenge has been
to implement QPI as an add-on module to an existing microscope
stand with fluorescence or bright-field capability (16). This way, the
QPI and fluorescence (or staining) channels integrate seamlessly,
providing both specific and quantitative information (for a recent
implementation for pathology applications, see ref. 34). Of course,
this solution does not avoid the fact that labels are needed to gain
specificity, which brings in limitations due to fixation, photo-
bleaching, and phototoxicity (35, 36).
Here, we show that using highly sensitive QPI in combination

with deep learning allows us to identify subcellular compart-
ments of unlabeled bovine spermatozoa. The deep-learning
“semantic segmentation” model automatically segments the
head, midpiece, and tail of individual cells. We used these pre-
dictions to measure the respective dry mass of each component.
We found that the relative mass content of these components
correlates with the zygote cleavage and embryo quality. The dry-
mass ratios, i.e., head/midpiece, head/tail, midpiece/tail, can be
used as intrinsic markers for reproductive outcomes. Because the
QPI module can be attached to existing microscopes, we antic-
ipate that our approach will be adopted broadly. This paper is
structured as follows. We first present first the study design and
instrumentation. Next, we illustrate the slide scanning capability
of our automated spatial light-interference microscopy (SLIM)
system (see also Movie S1). Then, we describe in detail how we
optimized a U-Net–based deep-learning model for the semantic
segmentation of individual cells. Once the deep-learning net-
work is trained, we show that the inference can be performed
very fast on thousands of cells across entire microscope slides.
Finally, we identify the intrinsic dry mass-based markers that
correlate with fertility outcomes.

Results
Imaging Spermatozoon Ultrastructure. Fig. 1A illustrates the prin-
ciple of the proposed phase imaging with computational speci-
ficity (PICS). The semen from five bulls was processed for
fertilization, and aliquots were fixed on microscope slides for

imaging. To investigate the relationship between the ultrastruc-
ture of sperm cells and artificial-reproduction outcomes, we
collected semen samples from frozen-thawed straws used for
IVF for which the rates of zygote cleavage and embryo blastocyst
development were known. The specimen preparation is detailed
in Materials and Methods.
To image the unlabeled spermatozoa, we employed SLIM

(Fig. 1B), which is a high-resolution, high-sensitivity phase im-
aging method developed in our laboratory (16, 24, 37). The
SLIM system consists of a commercial module (CellVista SLIM
Pro; Phi Optics., Inc) attached to the output port of an existing
phase-contrast microscope (Z1 Axio Observer; Zeiss). SLIM
augments traditional phase-contrast microscopy by acquiring
four intensity images corresponding to different delays between
the incident and scattered light. Combining the four frames,
SLIM outputs in real time the quantitative phase map associated
with the specimen. Due to the white light illumination, SLIM
lacks speckles, which yields subnanometer path-length spatial
sensitivity. The interference is created by waves propagating on a
nearly identical path, which confers SLIM subangstrom path-
length temporal sensitivity (37). Owing to these features and
complete automation of data acquisition, SLIM can be used to
study cell behavior of long periods of time and large fields of
view across microscope slides and multiwell plates (18, 34). To
demonstrate the potential for SLIM to be used in a high-
throughput setting, we imaged a whole microscope slide pre-
pared according to Materials and Methods. In Fig. 2A, we as-
sembled a mosaic made from 27,000 tiles, covering an area of
7.1 cm2 (Movie S1). The imaging time for the slide was ∼90 min
(40×/0.75). The sensitivity in SLIM comes at the expense of a
coherence-related halo-artifact present in phase-contrast geom-
etries, which is removed by a Hilbert transform-based technique
(Fig. 2B) (38, 39).
To illustrate the ability of our instrument to capture subtle

cellular structures, we reconstruct a representative sperm cell
from a series of through-focus measurements (z-stack). Fig. 2C
shows the reconstructed cell tomography, which follows the
procedure that we reported previously (24, 40). Various cellular
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Fig. 1. Experiment design and SLIM. (A) To find the relationship between dry-mass and assisted-reproduction outcomes, semen samples from the same
ejaculate were used for embryo transfer and quantitative phase imaging. For each animal, a fraction of the embryos underwent zygote cleavage (fertil-
ization), from which a smaller fraction formed blastocysts. To assay cellular ultrastructure, we performed high-resolution quantitative phase imaging and
developed a deep-convolutional neural network to perform automatic annotation. The results of this network were used to relate the morphology to the
aforementioned outcomes. (B) The SLIM system upgrades a conventional phase-contrast microscope with the ability to measure optical path-length shifts.
Compared with typical phase contrast, SLIM highlights the mitochondria-rich midpiece as a denser portion of the cell (white arrow).
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compartments are revealed with high resolution and contrast.
We observe that the highest-density region of the sperm is the
mitochondria-rich neck (or midpiece), which is connected to a
denser centriole vault leading to the head (41). The poste-
rior of the sperm consists of a flagellum followed by a less
dense tail.

Deep Learning for Semantic Segmentation. To analyze microscope
slides, we develop an artificial-intelligence (AI) system to label
the pixels in the image as “head,” “midpiece,” “tail,” or “back-
ground.” The complete workflow and U-Net architecture are
presented in Fig. 3. The challenges for developing such a system
are twofold. First, the system must be trained on annotated im-
ages that are labor-intensive to generate and necessarily include bias
from the individual annotators. As outlined in Materials and Meth-
ods, we developed a “bootstrapping” image-segmentation approach
that ameliorates these concerns by annotating a subset of images
that are then used to train the initial classification system. The re-
sults of this initial classification form a larger set of training images
that can be quickly corrected for coarse defects and used to retrain
the classification system. This approach, which produces a larger
training set in a shorter period than annotating finely the entire
training corpus, resembles a manual form of generative adversarial
networks (42).
The second challenge is developing an efficient classification

system. Our classification is based on deep-convolutional neural
networks (43), which apply a sequence of nonlinear image filters
that result in a transformed image. In contrast to previous
techniques, such as the texture frameworks used in, for example
ref. 44, deep-convolutional networks add pooling layers to effi-
ciently integrate textural and contextual information while
maintaining a large number of learnable free parameters through

subsequent, hidden or “deep” layers. As we aim to incorporate
both local textural and contextual information, we select a U-Net
architecture where textural information is learned in the top
layers and contextual information is learned at the bottom layers
(45, 46).
The construction of the network is described in detail in Ma-

terials and Methods. As shown in SI Appendix, we achieve an F1-
score above 0.85 after only 30 training epochs (47). This network
is then used to annotate the sperm cells across all slides, resulting
in a semantic map for every SLIM image. Additionally, we used
the connected coordinate analysis (44) to generate instance
segmentation, which separates individual sperm cells, enabling
us to group the labels on a per-cell basis (48). This step also
removes sperm cells that are stuck together.

Analysis of Cellular Compartments. Following the procedure out-
lined in ref. 18, the dry mass of the cellular structures can be
integrated within the margin’s given by our computationally
generated labels to yield the total dry mass for the three cellular
compartments. The dry mass for these elements can then be
related to the known fertility outcomes for the sperm sample
from which they were drawn.
We measured the dry-mass ratios between the head, midpiece,

and tail, as the absolute dry-mass values showed no statistically
significant correlations with outcomes. To investigate the cells
that participate in fertilization, we excluded damaged or other-
wise incomplete compartments by removing the bottom and top
quarter of all detected objects. Interestingly, we found that the
dry-mass ratios between the three components of interest are
distributed relatively narrowly across the population (Fig. 4).
We verify this observation by computing the percentage
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Fig. 2. SLIM can image sperm as a fully automated slide scanner, with thousands of samples on each slide. (A) A large number of samples in each slide
motivates the use of automated segmentation techniques. (B) The superior sensitivity of SLIM images is, in part, due to the use of spatially and temporally
broadband fields. The partially coherent illumination corrupts the low frequencies, evident as a halo glow surrounding the cell. The halos are corrected by
solving a nonlinear inverse problem. (C) Tomographic rendering of a spermatozoon using SLIM. The mitochondria-rich midpiece appear as substantially
higher in dry-mass density. Rendering of the tomogram was performed using Amira (Thermo Fisher) with the “physics” color map corresponding to high
phase values and a grayscale color map corresponding to the lower-phase values in the nucleus and tail.
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difference between the first, Q1, and third, Q3, quartile points
of the distributions,

ΔQ = 100 × |Q3 −Q1|
[Q3 +Q1

2
]
.

[1]

The quartile points, Q, are determined by finding Fx(x) = {0.25,
0.50, 0.75}, with Fx(x) representing the cumulative probability,
Fx(x) = Pr[X ≤ x], of the dry-mass distribution, X .
The results in terms of percentages of zygotes cleaved and

expanded blastocysts produced are summarized in Fig. 5A. Sta-
tistically significant correlations between dry-mass ratios and
fertility outcomes are shown in bold. The graphs in Fig. 5 B and
C show these findings in more detail. Essentially, cleavage out-
comes correlate negatively with head/tail and midpiece/tail dry-
mass ratios but not statistically significantly for head/midpiece
ratios. These results suggest that a relatively more massive sperm
tail is beneficial. However, when we evaluate the blastocyst de-
velopment rate, it appears that a large head-to-midpiece value is
desirable, while the other two ratios are only weakly correlated.
This result appears to indicate that a denser head relative to the
midpiece promotes blastocyst development. Note that this subgroup

of spermatozoa that are associated with the embryo blastocyst
development rate also has, with a high probability, larger tails
(Fig. 5B).

Discussion
The relatively high incidence of male factor infertility may sug-
gest a need for examining new ways of evaluating male gametes
(49). In this context, we presented an approach that combines
label-free imaging and artificial intelligence to obtain nonde-
structive markers for reproductive outcomes. Our phase imaging
system, SLIM, reveals nanoscale morphological details from
unlabeled cells. Deep learning, on the other hand, provides a
semantic segmentation map, labeling with high accuracy the
head, midpiece, and tail. Using these annotations applied to the
quantitative phase images, we can precisely measure the dry-
mass content of each component. Remarkably, we found that
the dry-mass ratio represents intrinsic markers with predictive
power for zygote cleavage and embryo blastocyst development.
The trend for relatively more massive head leading to poorer

performance during early stages of embryo production could, in
part, be attributed to the need for sperm cells to be capacitated
before participating in fertilization (50). In other words, when a
population of sperm cells appears to contain a relatively denser
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removal to account for the partially coherent illumination. Next, we use ImageJ to manually segment the cells into the head, midpiece, and tail. We down-
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Semantic segmentation converts phase maps into a binary mask corresponding to the head, midpiece, and tail. The U-Net architecture performs well on our
data, as it contains a large receptive field, well suited for the rich, broadband images typically found in microscopy. The U-Net architecture consists of a series
of nonlinear operations as outlined in Materials and Methods. In our implementation, we modify the training procedure for the network by introducing
dropout at the bottom of the network as well as batch-normalization on all paths. The network results in a four-channel image with the probability for each
of the four classes (“head,” “midpiece,” “tail,” “background”), the largest of which assigned the label for the class.
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head, they are also more difficult to capacitate. Another inter-
pretation of our findings is that more massive heads are harder
to “push” with smaller tails, which is consistent with findings
concerning head shape (51, 52). Likewise, it was observed that
deer sperm with longer midpieces swim at an overall slower
speed (53). Our results are compatible with this line of thought
by confirming that such cells not only are swimming more slowly
but also result in poorer fertility. This provides additional evi-
dence for the hypothesis that faster swimmers are correlated with
higher fertility (54). While it is known that swimming speed is

important in cases of natural fertilization, our results add further
weight that parameters affecting swimming speed are also im-
portant in artificial, in vitro scenarios. Another outcome of our
work is to verify the conjecture that relative sizes, rather than
absolute dimensions, are more relevant for fertility analysis (55).
Incorporating the findings from embryo-production rates, we

observe two competing trends (Fig. 5 B and C). Having a head or
midpiece with relatively more dry mass compared with the tail
penalizes early stages of fertilization (zygote cleavage, negative
trend), while having a larger head relative to midpiece is
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represents a decrease in ART outcome, as determined in Fig. 5 and SI Appendix. These differences are especially difficult to visualize with conventional
techniques as typical microscope images are not proportional to dry mass and the naked eye is unable to segment, integrate, and divide portions of an image
(40×/0.75; SLIM).
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important for embryo development (blastocyst rate, positive
trend). In bovine embryos, like in humans, the centriole is car-
ried by the sperm and inherited after subsequent division (52). It
has been hypothesized that damaged or otherwise defective
centrioles can block an embryo from developing (56). In our
images, the centriole structure is included in the dry mass of the
head. It is not surprising, then, that the ratio of the head to the
midpiece is positively related to the early stages of embryo de-
velopment (as captured by embryo-production rates). Thus, our
data suggest that for high cleavage rates, the head and midpiece
should be light compared with the tail, while a larger head rel-
ative to the midpiece is preferable for blastocyst formation
(Fig. 5C). We note that ratiometric differences between the
sperm compartments are small, in absolute terms, but nonethe-
less significant for sperm selection. It is conceivable that our
approach would be especially useful when selecting among
seemingly healthy sperm, with no obvious defects. We note that
the assay of these relatively small ratios is made possible by the
high sensitivity of SLIM (57, 58). Importantly, in this work, we
presented a template for automating the annotation of a large
number of cells. By using a two-step training approach, we can
expand a relatively small number of annotations with minimum
effort, enabling the automated segmentation on entire micro-
scope slides, while reducing practical problems such as bias be-
tween different annotators. The network training requires
manual annotation, but we anticipate that this procedure needs
to be performed only once per species. For example, moving to
human studies will likely require a one-time retraining.
In a broader context, our methodology is in the same class with

but distinct from very recent proposals to use neural networks in
conjunctions with label-free phase images. In ref. 59, the authors
recover synthetic histopathology stains by training on colocalized
phase and hematoxylin/eosin images. A similar image-to-image
translation estimation was used in ref. 60 to perform synthetic
staining on sperm cells. While those proposals rely on the use of
chemical-based markers to train the neural network, in this work,
we avoid stains altogether and instead rely on SLIM’s ability to
directly observe cell ultrastructure.
IVF clinics have been using conventional phase-contrast mi-

croscopes for nondestructive observation, which does not allow
for a detailed and quantitative evaluation of cellular compart-
ments. We foresee that PICS can be implemented to these
existing systems as an add-on. Thus, we envision that our system
can be applied to individual sperm selection, which is performed
on chemically slowed cells (61) or as a slide cytometer capable of
automatically assessing sperm sample quality. Since transferring
the AI code is straightforward, our methodology can likely be
embraced at a large scale. The inference time, of ∼70 ms per
field of view is shorter than the image acquisition time. Thus, our
technology may provide a solution for sperm classification and
sorting in real time, as well as valuable insight into the rela-
tionships between cellular ultrastructure and fertility.

Materials and Methods
Semen Preparation. Postprocessing, semen samples were fixed with 4%
paraformaldehyde (ThermoFisher Scientific) at room temperature. After ∼30
min, fixed spermatozoa were spread on microscope slides and air-dried.
Subsequently, slides were immersed for 1 h in deionized water, air-dried,
and stored at 4 °C until morphometrical analyses.

Animals. Animal use was approved by the University of Illinois Institutional
Animal Care and Use Committee (IACUC) under IACUC Protocol 19186.
Healthy, nonpregnant, cycling Holstein cows (11 to 17 mo of age) were used
as oocyte donors. All cattle were evaluated by transrectal palpation and
ultrasonography before each procedure. No exogenous hormones were
given to stimulate follicle production or synchronize the follicular cycle. All
procedures were performed on animals with random estrous cycle.

Follicle Aspiration. Follicular aspiration was performed according to standard
procedure (62). Briefly, all of the follicles with a diameter of 2 mm or more
were aspirated via transrectal B-mode ultrasound (Ibex EVO II; E.I. Medical
Imaging), from 5- to 10-MHz convex array transducer fitted into the intra-
vaginal device (Ibex C9OPU-HD; E.I. Medical Imaging) and a stainless-steel
needle guide. Follicular puncture was performed using a disposable
10-gauge × 3-mm hypodermic needle (Air-Tite Products Co., Inc.) connected
to a 50-mL conical tube (Corning) via a silicon tube (0.8 m long; 2-mm inner
diameter). Aspiration was performed using a vacuum pump (Watanabe
Tecnologia Aplicada) with a negative pressure of between 60 and 80 mmHg.
The collection medium was VIGRO Complete Flush (Vetoquinol). The aspi-
rated material was immediately filtered through an EasyStrainer 100 μm
(Greiner Bio-One) with ABT 360 complete flush medium (ABT 360). Cumulus
oocyte complexes were classified as follows: 1) more than three layers of
compact cumulus cells; 2) at least one layer of cumulus cells; 3) denuded; and
4) degenerated (cytoplasmic degeneration). After evaluation, only groups 1
and 2 were placed into maturation. Prior to in vitro maturation (IVM), cu-
mulus oocytes complexes (COCs) were washed three times in M-199 (M7528)
supplemented with 5% fetal bovine serum (FBS) (F2442) and 10 mg/mL
penicillin streptomycin (Gibco Life Technologies). The COCs were maturated
in IVM medium (described in Media for In Vitro Embryo Production), in an
incubator, for 24 h at 38.5 °C, in 5% CO2 in air.

Media for In Vitro Embryo Production. Unless otherwise stated, all reagents
were purchased from Sigma-Aldrich. The IVM medium was in Medium 199
(M4530) supplemented with 15% FBS (F2442), 0.5 μg/mL FSH (F8174), 5 μg/
mL LH (L5269), 1 μg/mL estradiol (E8875), and 50 μg/mL gentamycin (G1264).
The IVF medium was Tyrode’s modified medium (63) without glucose, sup-
plemented with 95.6 USP/mL heparin (H3149), 30 μM penicillamine (P4875),
15 μM hypotaurine (H1384), 1 μM epinephrine (E4250), and 6 mg/mL bovine
serum albumin (A6003). The intravaginal culture (IVC) medium consisted of
synthetic oviduct fluid (SOF) medium (64), with 30 μL/mL essential amino
acids, 10 μL/mL nonessential amino acids (Gibco Life Technologies), and
3% FBS.

Embryo Production. Embryos were produced as previously described (65).
Briefly, in vitro-matured COCs were washed and transferred in 50-μL drops
of IVF medium, covered with 4 mL of mineral oil (no. M8410; Sigma), and
placed in the incubator at 38.5 °C in 5% CO2 in air. The sperm samples were
then processed via Bovipure discontinuous gradient (45 to 90%) (Nidacon
Laboratories AB) (66). After processing, the sperm pellets were diluted with
IVF medium and added to the fertilization drops at the concentration of 1 ×
106 sperm per milliliter (final volume, 60 μL). Gametes were coincubated for
18 to 20 h at 38.5 °C, in 5% CO2 in air, after which presumptive zygotes were
mechanically pipetted to remove cumulus cells in hydroxyethyl piper-
azineethanesulfonic acid tissue culture medium with 5% FBS and then
washed twice in the same medium. Presumptive zygotes were placed in 100-
μL drops of SOF, where they were incubated in a humidified mixture of 5%
CO2, 6% O2, and 89% N2, at 38.5 °C (day 1). At day 3 of culture (72 h from
the beginning of the culture), zygotes were evaluated for cleavage, and
cleavage rate was calculated. The cleaved embryos were placed in fresh
equilibrated SOF for an additional 4 d (96 h) of culture. At the end of 7 d of
culture, the fertilized oocytes were evaluated and scored for quality on the
basis of morphological criteria, and only grade 1 and 2 blastocysts (Bl) were
considered in the evaluation of the final embryo rate (65, 67).

Construction of the Neural Network. Deep-convolutional neural networks
consist of a series of pixel-wise nonlinear operations that remap the original
data into another form such as a single number or whole images (43, 68). To
annotate sperm cells, we develop a neural network that remaps the halo-
removed SLIM image into a four-channel probability map that specifies the
probability for the three cellular compartments as well as the background.
The most probable label is taken to produce a single image that contains the
annotated sperm.

Our architecture is based on U-Net (45), which benefits from a large re-
ceptive field enabling the network to learn textural (local) and contextual
(surrounding) features (46).

The network transforms the image data through a series of layers with
each layer operating on the results of subsequent layers. The U-Net archi-
tecture shown in Fig. 3B is divided into a “contracting” and “expanding”
portion that is linked by a “bottleneck” at the bottom. Importantly, the
U-Net architecture includes concatenation layers that effectively copy the
output from previous levels to stabilize the training procedure.

Each “block” of the contracting path results in a smaller version of the
input image that has been processed in a nonlinear way. The first block
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consists of a filter bank of random initialized convolutional kernels (“conv”).
In the first block, there are 64 three-by-three filters. The weights are
updated at each training step so that the network output will converge to
the training data. To introduce nonlinearity, the convolution is paired to a
nonlinear activation function (“ReLu”), which removes negative outputs
(69). The resulting image resembles a distorted version of the input, and the
operation is repeated a second time with different weights. The values are
propagated to the next block by max-pooling, i.e., selecting the maximum
value of each two-by-two pixel neighborhood, which effectively down-
samples the image by two.

Subsequent blocks decrease the image size while increasing the number of
filters. After passing the bottleneck of the network, the image is up-sampled
by a factor of 2, and a filter bank is applied. The results of that filter bank are
combined with the matching filter bank operation from the contracting
path, leading to improved numeric stability when training (Fig. 3B; 1,024
filter block). These operations are repeated, with the last block of the ex-
pansive path containing a one-by-one convolution applied to a “softmax”
activation function (70). This operation reduces the number of channels in
the output image to the four-channel probability map. A pixel-wise maxi-
mum argument of this four-channel probability map (“argmax”) results in a
one-channel image with a label for each of the four categories.

In SI Appendix, Model for Real-Time Imaging, we demonstrate that a
similar architecture can be used for real-time operation.

Generation of Labels for the Neural-Network Training. The training data were
annotated manually by individuals trained to identify the sperm head,
midpiece, and tail. A fraction of the sperm images were manually segmented
by three annotators using ImageJ. The final segmentations were verified by
one of the annotators. For each sperm cell, we traced the sharp discontinuity
between the background and the cell, separated by an abrupt change in
phase shift. An alternative strategy is to annotate the ultrastructure using
immunochemical stains (71) or genetic engineering (39, 71, 72), at the ex-
pense of potential artifacts, more complicated specimen preparation pro-
tocol, and difficulty in maintaining genetically modified livestock (73).

To improve the segmentation accuracy, we used a two-pass training
procedure where an initial training round was corrected and used for a
second, final round. Manual annotation for the second round is comparably
fast, which also allows us to correct for debris and other forms of clearly
defective segmentation (60). To obtain the dry mass, we ran inference using
our newly trained network. The resulting semantic segmentation maps were
applied to the phase images to compute the dry-mass content of each
component. We note that by using a single neural network, rather than a
group of annotators, we can compensate for differences between annota-
tors. In total, training and inference were run on 20 slides.

Training the Neural Network. The network was trained from scratch by using
an adaptive momentum optimizer (74) against the categorical cross-entropy
loss,

E = − 1
r × c

· ∑h
r=1

∑w
c=1

∑4
k=1

[δ(y[r][c] == k) · log(ŷ[r][c][k])] , [2]

where h and w represent the number of rows and columns in the image. δ is
an indicator function, which evaluates to 1 if y[r][c], the true label for that
pixel (r, c) is k. This loss function takes the average of the negative log-likelihood

for the target class across every pixel in one image. It penalizes small
logŷ[r][c][k], which is the predicted probability for the target class.

As shown in Fig. 3B, following the typical procedure for training a U-Net,
we introduce dropout at the bottleneck (bottom) portion of the architec-
ture. To improve performance as well as accelerate the training, we intro-
duce batch-normalization between input layers in our network (75).

The training was performed using the Tensorflow backend for Keras (76,
77) on a workstation equipped with a GPU (GTX 1080; NVIDIA). The cross-
entropy loss function was already implemented as a built-in loss function
in Keras.

To reduce computing requirements, images were down-sampled to match
the optical resolution (78). To account for the shift variance of convolutional
neural networks, the training pairs were augmented using rotation,
flipping, and translation.

In this work, we trained a total of three neural networks. An initial net-
work was used to “bootstrap” the training by producing a coarser seg-
mentation map. This coarse segmentation was used to train the second
neural network which was used for data analysis. Finally, as discussed in SI
Appendix, Model for Real-Time Inference, a third neural network was
trained to demonstrate real-time imaging capabilities. The split in images
between training, test, and validation is shown in SI Appendix, Table S3. A
typical image contained between one and four sperm cells.

The model used for data analysis was trained with a learning rate of 5e−6

for 30 epochs. Due to memory limitations, the batch size is set to one,
meaning the model will update its weights after seeing one image. In our
case, after each epoch, the model weights were updated 3,296 times (with
data augmentation).

Evaluating the Performance of the Neural Network. The learning curves for the
final training round are shown in SI Appendix, Fig. S4A. Both the training
and validation loss simultaneously converge to a minimum value, indicating
a lack of training defects such as overfitting. As training was performed on
thousands of images, we found little motivation to perform computationally
expensive cross-validation. The number of images used is summarized in SI
Appendix, Table S3.

The ability of the network to reproduce themanual annotation is shown in
SI Appendix, Fig. S4B. The diagonal terms of the confusion matrix represent
the number of pixels that are correctly classified for each class, while the off-
diagonal terms indicate different types of errors. For a more intuitive pre-
sentation, we normalized the confusion matrix by the total number of pixels
in the test set. The resulting F1 scores (47) are all above 0.85, indicating good
performance.

We note that the performance metrics reported are a comparison to
manual annotation, which invariably has error due to human factors. As the
neural network, generally, averages out these discrepancies, we expect the
real-world performance to exceed what we report.

Data Availability. Data are available upon reasonable request.
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