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A to I editing in disease is not fake news

Prajakta Bajada, Michael F. Jantscha, Liam Keeganb, and Mary O’Connellb

aMedical University of Vienna, Center of Anatomy and Cell Biology, Department of Cell- and Developmental Biology, Schwarzspanierstrasse, Vienna,
Austria; bCEITEC at Masaryk University, Kamenice, Czech Republic

ARTICLE HISTORY
Received 18 January 2017
Revised 27 February 2017
Accepted 9 March 2017

ABSTRACT
Adenosine deaminases acting on RNA (ADARs) are zinc-containing enzymes that deaminate adenosine
bases to inosines within dsRNA regions in transcripts. In short, structured dsRNA hairpins individual
adenosine bases may be targeted specifically and edited with up to one hundred percent efficiency,
leading to the production of alternative protein variants. However, the majority of editing events occur
within longer stretches of dsRNA formed by pairing of repetitive sequences. Here, many different
adenosine bases are potential targets but editing efficiency is usually much lower.
Recent work shows that ADAR-mediated RNA editing is also required to prevent aberrant activation of
antiviral innate immune sensors that detect viral dsRNA in the cytoplasm. Missense mutations in the
ADAR1 RNA editing enzyme cause a fatal auto-inflammatory disease, Aicardi–Gouti�eres syndrome (AGS) in
affected children. In addition RNA editing by ADARs has been observed to increase in many cancers and
also can contribute to vascular disease. Thus the role of RNA editing in the progression of various diseases
can no longer be ignored.
The ability of ADARs to alter the sequence of RNAs has also been used to artificially target model RNAs in
vitro and in cells for RNA editing. Potentially this approach may be used to repair genetic defects and to
alter genetic information at the RNA level.
In this review we focus on the role of ADARs in disease development and progression and on their
potential use to artificially modify RNAs in a targeted manner.
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A-I editing in mammals

With the introduction of high throughput methods such as
RNA-Seq, a glimpse of the complexity of RNA in living organ-
isms is being perceived. One current difficulty is that transcrip-
tion and protein expression data do not correlate well.1 While
it is likely that there are many reasons for this lack of correla-
tion, this is a major gap in biology that requires addressing as
otherwise the monetary cost of accumulating RNA-Seq data
are questionable. RNA modification can strongly influence
translation.2 Many reverse transcriptases currently used to pro-
duce cDNA erase modification marks thereby generating
cDNA lacking important information. Instead RNA modifica-
tions require specific chemical reagents to alter them so that
they can be detected by RNA-Seq.3 With more than 140 differ-
ent RNA modifications,4 approximately 50 of which are known
to occur in humans, the amount of variation present in RNA is
likely to be significant and to have many pleiotropic effects.
Thus, defining the landscape of RNA modification has become
a pressing matter.

The deamination of adenosine to inosine is one of the most
common modifications occurring in RNA. The enzymes that
catalyze this reaction are the adenosine deaminases acting on
RNA (ADARs).5 These proteins do not recognize a specific
consensus sequence surrounding the adenosine that is edited,

instead they bind to and deaminate adenosine in stretches of
double-stranded (ds) RNA.6 Often a specific duplex RNA can
form between an exon and a nearby intron, thus editing occurs
co-transcriptionally in pre-mRNA.7 ADAR enzymes are
thought to have evolved from ADATs (adenosine deaminases
that act on tRNA) enzymes as their catalytic deaminase
domains are related.8 The ADAR proteins acquired dsRNA
binding domains9 that are N-terminal to the deaminase
domain. A recent study demonstrated that inosine is present in
RNA from the fungus Fusarium graminearum however no
ortholog of an ADAR enzyme was found in this species.10 The
authors suggest that in this fungal species an ADAT enzyme
may be editing the RNA. If this proves to be true it would rep-
resent the evolutionary step from an ADAT to an ADAR type
of activity.

In mammals there are 3 ADAR proteins and 2 other homol-
ogous proteins; ADAD1 and ADAD2 (adenosine deaminase
domain-containing protein) that are testis specific.11 ADAR1 is
the most highly and ubiquitously expressed of the ADARs and
has 3 dsRNA binding domains.12,13 It can be induced by inter-
feron (IFN) and this results in the expression of a 150 kDa iso-
form that is extended at the N-terminus and is predominately
cytoplasmic.14 The shorter constitutively expressed p110
protein shuttles15 but is mainly nuclear. ADARp150 has 2
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Z-binding domains that can bind to nucleic acids that are in Z-
conformation at the amino-terminus whereas the shorter iso-
form has one Z-binding domain.16 ADAR2, which like ADAR1
is enzymatically active, is nuclear and has 2 dsRNA binding
domains.17 Its expression is more restricted, it is expressed
mainly in the brain and it is considered to be responsible for
the majority of the site-specific editing events. The third ADAR
protein; ADAR3 is brain-specific however, there is no evidence
that it has any enzymatic activity.18 Instead it is thought to
modulate RNA editing activity by competing for binding to the
same transcripts as the other ADAR enzymes.19 Both ADAD1
and ADAD2 have one dsRNA binding domain and are also
enzymatically inactive. They are testis-specific dsRNA binding
proteins with unknown biologic functions.20

A recent co-crystal of the deaminase domain of ADAR2
with an RNA substrate identified in yeast revealed how the
deaminase domain flips out the adenosine base for deamina-
tion.21 The structure also identified an RNA binding loop
within the deaminase domain close to the active site that is evo-
lutionarily conserved in ADAR2-type enzymes but not in
ADAR1 or ADAR3. This RNA loop may explain the editing
site-selectivity of the different enzymes.

Inosine is interpreted by the translational machinery, and by
reverse transcriptase as a guanosine. Thus, the hallmark of
RNA editing by ADARs is the replacement of adenosine in
genomic DNA sequences by guanosine in cDNA sequences.22

RNA-Seq data has now revealed the occurrence of millions of
editing sites.23,24 There are 2 classes of RNA editing sites; site-
specific editing sites and promiscuous editing sites.25 Site-spe-
cific editing targets a few specific adenosines within a tran-
script. Site-specific editing usually occurs to a high level and
can even reach 100% at a particular position. If editing occurs
within an exon it can result in recoding with a new amino acid
being inserted at the edited position. Promiscuous editing
occurs to a lower level, with different adenosines within the
dsRNA region edited to approximately 10–20%. Transcripts
encoding SINEs (Short Interspersed Nuclear Elements) such as
Alu elements in humans are the main substrates for ADARs.26

When 2 Alu elements are inserted in opposite orientations
within a transcript then they can easily form a duplex that can
be edited. Alu elements in humans underwent a recent expan-
sion so inserted copies are more closely related to each other
than are SINE inserts in mouse transcripts.27 Moreover, SINEs
constitute 10% of the human genome and consequently more
double-stranded structures can be formed in the human tran-
scriptome explaining the higher RNA editing in humans than
in mice. Overall, promiscuous editing accounts for > 99% of
editing by ADARs in humans.28 Examination of site-specific
editing events in humans have also shown that editing effi-
ciency is frequently higher than in mice. Often there are Alu
elements in the vicinity of site specific editing events in
humans.29 It is thought that the ADAR enzymes are attracted
to the region due to the duplex formed by the inverted Alu ele-
ments thereby increasing editing efficiency at nearby sites.

This review primarily focuses the recent findings of the effect
of RNA editing by ADARs on disease due to its recoding activity
or when the enzyme is mutated. Due to space limitations we will
not cover many topics such as the regulation of ADARs nor its
role in RNA interference or in other model organisms. Some

excellent reviews and research that cover these topics include.30-33

We also provide a view on recent attempts to artificially redirect
ADARs to novel sites to manipulate RNAs in a targeted manner.

Recoding of protein-coding sequences by ADARs

ADARs can deaminate mRNA leading to the alteration of
codons and subsequent generation of novel proteins that are
not encoded in the genome.23,34 Moreover, splice sites can be
introduced35 or eliminated,36 or stop codons can be eliminated.
In Hepatitis delta virus, editing by ADAR can eliminate a stop
codon by editing the antigenome RNA.37-39 This is used by the
virus to generate 2 protein products. In many cases ADAR2 is
the enzyme responsible for site-specific editing events that
affect protein coding regions.

Interestingly, ADAR2 can autoregulate its activity by editing
its own pre-mRNA thereby generating a novel splice site that
leads to an insertion of 47-nucleotide cassette in the coding
region, causing a frameshift and premature termination.35

Genetically modified mice which are incapable of editing
ADAR2 pre-mRNA, show an increase in ADAR2 protein expres-
sion concomitant with an increase in the editing of pre-mRNAs
targeted by ADAR2 but show no obvious phenotypic defects.40

A well-studied editing target for ADAR2 is the pre-mRNA
encoding glutamate receptor subunit 2 (Gria2) of aminome-
thylphosphonic acid (AMPA) receptors.41 ADAR2 edits Gria2
at 2 exonic sites, the Q/R site located in exon 11 and the R/G
site in exon 13.41 In mature mRNAs the Q/R site can be edited
to almost 99%. Editing changes the glutamine codon to an argi-
nine codon which results in low Ca2C permeability of Gria2
containing receptors41,42 (Fig. 1). In the absence of ADAR2 the
higher Ca2C permeability of AMPA leads to epileptic seizures
and premature death in mice.43 Constitutive expression of a
pre-edited GRIA2 subunit rescues ADAR2 deficiency.44 Lack of
ADAR2 editing also leads to inefficient splicing of the nearby
intron 11 causing nuclear accumulation of incompletely proc-
essed primary Gria2 transcripts and a fivefold reduction in
Gria2 mRNA.44 Reduced splicing levels may be caused by
under-editing of an intronic hotspot in the Gria2 pre-mRNA.45

In humans a decrease in editing of the GRIA2 has been found
to be associated with amyotrophic lateral sclerosis (ALS).46

Several other mRNAs encoding receptors expressed in the
brain are target for site-directed RNA editing leading to amino
acids exchanges in the encoded proteins. Interestingly, overall
editing of these mRNAs increases with age and is very low or
absent during embryogenesis. This obviously raises the question
why and when the developing nervous system seemingly requires
the expression of the unedited version of these receptors.47-49

Another interesting editing event changes the amino acid
composition of antizyme inhibitor-1 (AZIN1). This protein
inhibits cell growth by binding to and inducing degradation of
tumor promoting proteins such as ornithine decarboxylase
(ODC) and cyclin D1.50-52 AZIN1 is an ODC homolog and
shares its capacity to bind to antizyme-1 thereby competing for
and stabilizing other targets of antizyme-1 by preventing their
degradation.50-52 The AZIN1 encoding transcript is edited by
ADAR1 resulting in a serine to glycine substitution at residue
367. This amino acid exchange alters the localization from
cytoplasmic to nuclear where antizyme-1, the substrate for
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AZIN1, is predominantly localized.53 Moreover edited AZIN1
shows higher affinity for antizyme-1 therefore stabilizing cell
cycle promoting proteins such as ODC. Consistently, an
increase in AZIN1 editing is associated with
hepatocellular carcinoma (HCC). Xenograft studies in mice,
revealed that pre-edited AZIN1S367G results in high levels of
tumor development when compared with wild type protein.
This demonstrates a key role of RNA editing in HCC.53

Control of RNA stability

One of the newly identified transcripts edited by ADAR1 enco-
des Cathepsin S (CTSS), a lysosomal cysteine protease which is
expressed in endothelial cells and various other cell types.54

CTSS participates in the degradation of antigenic peptides and
extracellular matrix proteins such as laminin, fibronectin and
osteocalcin and plays an important role in vasa vasorum devel-
opment, angiogenesis, atherosclerotic plaque rupture and aortic
aneurysm formation.55-58 The 30UTR in the mRNA harbors
numerous Alu repeats which form stem loop structures, a pre-
requisite for RNA editing. ADAR1 was found to edit the region
containing the inverted Alu repeats in CTSS transcripts in
HUVEC cell lines and in patients with coronary or carotid ath-
erosclerotic disease. Editing in the inverted Alu repeats disrupts
the stem loop structure by generating mismatched wobble IU
base pairs in place of the more stable AU base pairs. The incor-
poration of inosines destabilizes the dsRNA structure which
leads to the recruitment of the stabilizing RNA-binding protein
HuR, thus stabilizing the CTSS mRNA.54 RNA editing levels of
the 30UTR of CTSS are significantly increased in patients with
coronary or carotid atherosclerotic disease along with a con-
comitant increase in CTSS mRNA expression. In vitro, ADAR1
knockdown in HUVEC cells inhibits angiogenic sprouting in a
3 dimensional model of angiogenesis and in a 2D vascular net-
work formation assay.54 Thus, CTSS is an example of how edit-
ing events can have a major impact on disease progression even
without changing the coding information or splice isoforms.

Editing in cancer

Considering the link between cancer, genomic mutations and
DNA methylation, there has been interest to investigate if RNA

editing by ADARs correlates with particular cancers or if there
is aberrant editing of specific cancer-related transcripts. Initial
studies found a decrease in editing in gliomas and in pediatric
astrocytoma.59,60 However in other cancers the reverse was
found, as for instance, an increase in editing occurs in chronic
myeloid leukemia progression.61

In 2015 3 in-depth studies addressed the question of
whether the changes in RNA sequences generated by RNA edit-
ing are a driver or a passenger in cancer progression.62-64 The
major resource used in these studies was The Cancer Genome
Atlas (TCGA) collection. Again these researchers found a
mixed picture; in the majority of cancers there is an elevated
level of editing by ADARs however there are exceptions, such
as kidney renal papillary cell carcinoma tumors.63 Overall,
increased editing levels were associated with poor prognosis.
These studies focused on promiscuous editing events in regions
harboring Alu elements and they found a positive correlation
between tumorigenesis and editing by ADAR1 but not by
ADAR2. The study focusing on breast cancer found that Type
1 IFN response and ADAR1 copy number can explain 53% of
the variation in ADAR1 expression in breast cancers.64 In addi-
tion, silencing of ADAR1 in breast cancer cell lines caused a
decrease in both proliferation and apoptosis.64 Treatment of
some cancer cell types with DNA-demethylating agents leads
to IFN induction, apparently through cytoplasmic dsRNA that
should also be substrate for ADAR1.65 These studies suggest
that RNA editing events could be used as novel biomarkers for
cancer and that RNA editing by ADARs may influence the
response to some therapeutic agents.

Seemingly there is no simple answer to the question whether
RNA editing by ADARs is a driver or a passenger in cancer
progression, as this depends on the type of cancer. While
increased editing in the AZIN1 transcript is associated with
hepatocellular carcinoma, suggesting ADAR1 as the driver, one
has to consider that ADAR1 is induced by IFN and therefore
frequently upregulated upon tumor associated inflammation.64

Therefore tumor associated IFN expression can also put
ADAR1 in the passenger’s position. As RNA editing by ADARs
can have many pleiotropic effects, adjusting editing levels as a
cancer therapy may therefore have unforeseen consequences.

ADARs edit viral dsRNA and exert antiviral effects

Some of the earliest sequence-based evidence for ADAR editing
came from aberrant measles viruses in brains of patients with
measles inclusion body encephalitis, which showed A to G
sequence changes.66,67 When ADAR1 was found to have a long
IFN-inducible cytoplasmic isoform that shuttles between the
nucleus and the cytoplasm but accumulates in the cytoplasm,
an antiviral role was proposed for ADAR1 (for review68).

Adar1 null mutant mice were found to die by embryonic day
E12.5 with aberrant IFN induction and failure of hematopoiesis
in the embryonic liver.69,70 In humans, heterozygous loss of
function mutations in ADAR1 causes the dominantly-inherited
skin disease Dyschromatosis symmetrica hereditaria 1
(DSH1).71 This disorder is found predominantly in Asia. One
Japanese DSH1 family also presented with a fatal dystonia due
to brain calcium accumulation that resembled Aicardi–
Gouti�eres syndrome (AGS).72 Characterization of the

Figure 1. Editing of protein coding targets can alter the function of the encoded
protein. A critical editing site in Gria2 changes a glutamine (Q) to an arginine (R)
codon. The presence of an arginine in this subunit is essential as it restricts calcium
influx, thereby preventing neuronal death.44
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ADAR1G1007R mutant protein expressed heterozygously in this
family revealed that it is a catalytically-inactive ADAR1 that
binds dsRNA with a higher affinity than wildtype ADAR1.73

Subsequently the group of Yanick Crow found that mutations
in ADAR1 cause AGS, a fatal encephalopathy that affects infants
and young children.73 AGS patients have heightened levels of
IFN in the serum and show induction of IFN stimulated genes
(ISGs) resembling the elevated IFN signature found in ADAR1
deficient mice. The increased IFN levels lead to calcification of
the brain. The Crow group found a further example of the
ADAR1G1007R allele among their AGS cohort, in addition to a
series of other missense mutations in ADAR1, mainly in the
deaminase domain. These other mutations cause AGS when
homozygous or compound heterozygous in affected children of
these consanguineous Asian families living in Europe. In most
DSH1 patients heterozygous mutations resulting in premature
termination of ADAR1 seem to cause the milder skin disease as
one functional ADAR1 gene is insufficient to suppress the pig-
mentation defect i.e. the dominant skin phenotype results from
ADAR1 haploinsufficiency. Interestingly, a more detailed exami-
nation of ISG expression in DSH1 patients revealed that they also
show an ISG signature albeit not as elevated as the one in AGS
patients.73 Elucidating how failure to edit dsRNA substrates leads
to an autoinflammatory disease requires understanding how the
innate immune system normally detects pathogenic dsRNAs.

Recognition of cytoplasmic dsRNA by the innate immune
system

It is vital that vigorous antiviral responses are not activated
unnecessarily as these responses are energetically very costly
and damaging to the host. The cellular sensors that detect viral
nucleic acids are innate immune Pattern Recognition Receptors
(PRRs) and the molecular features of viral nucleic acids that
activate them are Pathogen Associated Molecular Patterns
(PAMPs) (for review74). The PRRs that sense dsRNA in the
cytoplasm are a family of 3 large RNA helicase-related proteins
called RIG-I (retinoic acid-inducible gene I),75 MDA5 (mela-
noma differentiation-associated protein 5)76 and LGP2 (labora-
tory of genetics and physiology 2)77 that are collectively called
RIG-I-like receptors (RLRs) (Fig. 2). These helicase-related pro-
teins do not melt or unwind dsRNA extensively. Instead it is
thought that they use their ATPase activity to scan dsRNAs to
determine if the RNA is of viral origin. RIG-I is activated by
dsRNA ends that are blunt or have 30 overhangs. The affinity of
the RIG-I for dsRNA is much greater when a 50 tri- or di-phos-
phate is present at the N-terminus.78 Many viral RNAs have 50
triphosphates as these are required for recognition by viral
RNA polymerases. RIG-I does not require long, perfectly-
paired dsRNA and it is also activated by fold-back or panhan-
dle dsRNA structures formed during replication of single-
strand RNA viruses. On the other hand, MDA5 binds long
dsRNAs, coating them and forming a large nucleoprotein com-
plex.79 These different binding preferences of RIG-I and
MDA5 are reflected in the type of virus each protects against,
with RIG-I defending against paramyxoviruses, influenza virus
and Japanese encephalitis virus that have 50 triphosphates while
MDA5 detects picornaviruses that have long dsRNA that do
not have these terminal features.80,81

In the case of RIG-I, binding to dsRNA, leads to a conforma-
tional change in RIG-I that exposes 2 caspase-activation and
recruitment domains (CARD domains) present at the N-termi-
nus.82,83 The CARD domains of RIG-I or MDA5 associate with
CARD domains on the Mitochondrial Antiviral Signaling
(MAVS) protein, an integral membrane protein of the mitochon-
drial outer membrane. Clustering ofMAVS and associated nucle-
oprotein complexes into a signaling complex then activates the
IFN response factors (IRFs).84 These transcriptional regulatory
proteins become phosphorylated and enter the nucleus to acti-
vate transcription of IFN that is then secreted to signal infection
to neighboring cells and to trigger systemic host defenses (Fig. 2).

It is essential for the cell that endogenous cellular dsRNA
does not trigger an immune response. It is believed that
ADAR1 edits potentially immune-inducing dsRNA, altering it
so that it does not aberrantly activate RLRs (Fig. 2). We and
others showed that Adar1D2–13 mouse null mutant embryonic
lethality is rescued in double mutant mice in which signaling
from RLRs through MAVS leading to activation of IRFs and
NFkB is blocked; pups are born but die within a day of
birth85.86 The failure of Adar1D2–13, Mavs pups to live beyond
the day of birth may be due to signaling from activated RIG-I
that bypasses MAVS and has been reported to cause inflamma-
some activation. In addition to dsRNA editing activity the
ADAR1 protein itself also appears to have significant effects on
RLR signaling that may reflect sequestration of key dsRNAs or
further mechanisms such as protein-protein interactions.

Mice expressing the catalytically inactive Adar1E861A

allele also die embryonically but survive 2 d longer than the

Figure 2. Unmodified, dsRNAs can trigger an innate immune response through RIG-
I, MDA5 MAVS signaling, leading to IFN signaling and the activation of ISG. This, in
turn, leads to embryonic lethality. The presence of inosine in RNAs suppresses the
activation of this signaling cascade. Similarly, mutations in MAVS or MDA5 can sup-
press the embryonic lethality displayed by Adar1 deficient animals.85,87
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Adar1D2–13 null mutant.87 However the Adar1E861A,IfiH1
double mutant lacking the Mda5 sensor only, gives com-
plete rescue and the mice appear fully normal.87,88 In con-
trast the Adar1D2–13, IfiH1 double mutants do not rescue
fetal lethality of the Adar1 null mutant to live birth of
pups. This significant difference between the 2 Adar1
mutants is very interesting. The delayed embryonic lethality
in Adar1E861A and the complete rescue in the Adar1E861A,
IfiH1 double mutant suggest that the 2 Adar1 alleles differ
in the extent to which they aberrantly activate different
RLRs. Aberrant activation of RIG-I may be prevented or
reduced by the catalytically inactive Adar1E861A protein. On
the other hand, Adar1E861A protein may not be sufficient to
prevent aberrant immune activation by long dsRNA
through MDA5. Therefore, in the Adar1E861A mutant the
aberrant innate immune induction is more predominant
due to aberrant MDA5 activation.

How does editing by ADAR1 make self dsRNA less
immune-inducing? The simplest view is that I-U dsRNA has a
potent suppressive effect on RLRs that is unlikely to reflect sim-
ply faster disassociation and reduced binding affinity. To
address the importance of inosine, Adar1,Trp53 double mutant
mouse embryo fibroblasts (MEFs) were generated that have a
robust IFN activation when transfected with in vitro tran-
scribed RNA.85 A 20mer dsRNA oligonucleotide containing 2
I-U base pairs at the center was cotransfected and suppressed
the aberrant immune activation. This suppression was much
stronger than when cotransfecting a similar control dsRNA oli-
gonucleotide lacking the I-U base pairs. The simple interpreta-
tion of this result is that RLR/I-U dsRNA complexes are
formed that inhibit the innate immune response.

The identities of dsRNAs that cause aberrant innate
immune induction in Adar1 mutant mice remain to be
elucidated. There is some expectation that long dsRNAs
formed by repetitive sequences such as Alu elements
embedded in human transcripts are a critical type of target
but there are also arguments against this. First, mice lack
Alu elements and consequently have lower levels of RNA
editing in their more sequence-disparate set of SINES, but
there is no reason to conclude that the Adar1 mutant
mouse phenotype is less severe than in humans. A more
interesting possibility is that aberrant innate immune
induction is triggered by some structured self RNAs con-
served between human and mouse. Second, the aberrant
transcription of repeat sequences in Adar1 mutant mice
appears to be a secondary effect of systemic IFN activa-
tion. When this is prevented in the Adar1D2–13, Mavs dou-
ble mutant neither IFN-induced transcripts nor repetitive
sequence transcripts increase.85 This indicates that loss of
ADAR1 is not directly changing the dosage of these repeti-
tive sequences.

Targeted editing

The rapidly developing CRISPR/Cas9 genomic editing methods
give a new boost to gene therapeutic approaches. At the same
time increasing concerns are raised about potential misuse and
problems with off-target effects leading to unforeseeable conse-
quences.89 Moreover, delivery and accessibility of nuclear DNA

also poses a problem for many gene therapeutic strategies. In
contrast, RNA-based therapeutic strategies do not need to tar-
get nuclear DNA, can have transient effects and can also be
used to modulate gene expression. Re-directing deamination of
adenosines or cytosines but also other nucleic acid modifica-
tions provide good tools to alter genetic information tran-
siently. Here, the above mentioned consequences of RNA
editing, ranging from recoding, over splice site alteration to
stop codon deletion and RNA destabilization can be exploited
to alter, repair or inactivate existing, potentially harmful RNAs.

To this end 2 strategies have been developed to target the
catalytic activity of ADARs to specific sites. The group of
Rosenthal, for instance tagged the ADAR2 deaminase domain
with a 22 aa long λ- N protein.90 λ- N binds the 17 nucleotide
long box B RNA. A box B fusion with an antisense guide RNA
can therefore guide the catalytic activity of the deaminase
domain to specific sites of interest that become deaminated
with reasonable selectivity90 (Fig. 3A). In vitro, this system can
reach editing levels of more than 90 % but also shows off-target
effects. As a proof of principle this approach was used to cor-
rect the premature stop codon in the cystic fibrosis transmem-
brane conductance regulator (CFTR) in Xenopus oocytes. To
achieve this, the substrate RNA harboring the CFTR W496X
mutation was microinjected alongside with an RNA encoding
the λ- N-deaminase fusion with the targeting oligonucleotide.
In oocytes, editing levels of about 30% could be achieved and
most importantly, CFTR activity could be restored (Fig. 3).
Also genetically encoded λ- N-deaminase constructs could be
used to repair premature stop codons in reporter constructs
when transfected with a repair-oligo in tissue culture cells90

(Fig. 3D). This system has the potential to be further optimized.
Point mutations in the deaminase domain and improved teth-
ering by an increase of λ- N domains and box B sites in the tar-
geting oligo have been used to boost editing efficiencies in cells
from 11 to 70%.91

A conceptually similar, yet different approach was devel-
oped in the Stafforst laboratory, where 50-O-benzylguanine
(BG) modified antisense guide RNAs were used to target SNAP
tagged deaminase domains to regions of interest (Fig. 3B). This
approach was successfully used in vitro to reach editing levels
of 60–90%.92 Chemical modifications of the guide RNAs helped
to improve stability, membrane permeability, and substrate
specificity to allow application of the system in cells with an
efficiency of up to 70%.93 Also, protecting the BG modification
with a photoinactivatable cage did allow specific photoactiva-
tion of editing in cells and polychaete embryos.94

In trying to avoid the need for the transfection of activated
oligonucleotides the Stafforst group has also aimed at retarget-
ing endogenous ADARs to novel sites. Here, guide RNAs were
designed to basepair with candidate editing substrates in a way
to resemble known editing stems. By systematically probing the
length of complementarity, the optimal basepair composition
and relative position to the site to be edited specific adenosines
could be optimized to target various substrates with up to 30%
efficiency in cells (Fig. 3C). At present this system still relies on
the ectopic expression of ADAR2, a reporter construct and a
guide RNA but has also been used to repair a premature stop
codon in ectopically expressed PINK195 and to target several
endogenous RNAs.95 However, attempts are on the way to also
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retarget the ubiquitously expressed ADAR1 which should elim-
inate the need for enzyme expression and would only require
expression or delivery of a well designed guide RNA.96

Such a single component system would have applications for
gene therapy but could also be used to modulate and alter gene
function, RNA stability or splicing in model systems. Moreover,
retargeting of nucleic acid modifying enzymes may have

applications way beyond adenosine deaminations. Retargeting
modifications such adenosine methylation, pseudouridinyla-
tion, or ribose methylation may be used to modify RNA stabil-
ity, turnover, or translation, to name a few.97-100

The initial studies on RNA editing by ADARs focused on
recoding and the generation of diverse isoforms of proteins
that were not genetically encoded. While this is still an active
area of research, the field has expanded to ADAR’s role in can-
cer and other disease. The essential role of ADAR1 in innate
immunity in the RLR pathway has come as a surprise. Now
there is a new twist whereby ADARs enzymatic activity may be
harness for gene therapy and modulation of gene function.
Seemingly, 30 y after the discovery of A to I editing ADARs are
still offering new perspectives.
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Figure 3. RNA editing enzymes can be repurposed to correct genetic defects at
the RNA level. Several approaches have been taken to retarget ADARs to novel
sites. (A) An antisense RNA (pink) harboring a Box B (a Lambda-N binding site) is
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with a Lambda-N domain to an mRNA (black). (B) Alternatively, chemically modi-
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sites. (C) Complex guide RNAs (pink) that resemble endogenous ADAR targets can
be used to attract endogenous ADARs to novel sites in endogenous RNAs (black).
(D) These systems have been used to eliminate stop codons, but can conceptually
also be used to introduce other A to I mediated codon exchanges.
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