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The corticospinal tract (CST) transmits movement signals 
from the motor cortex to the spinal cord. Since the CST is the 
predominant nerve fiber tract for voluntary motor function in 
humans, traumatic injuries to the CST leave patients with life 
long paralysis. Historically the CST has been very refractory 
to regenerating into a spinal cord lesion site; in the absence of 
a growth-supportive NPC graft, regeneration has only been 
reported through thin residual astroglial remnants1 (Figure 
1A). Even with the supply of a cellular graft such as mesen-
chymal stem cells (MSCs) cells, no CST growth is supported 
(Figure 1B). These findings were interpreted to suggest that 
corticospinal neurons lack the intrinsic transcriptomic and 
molecular mechanisms needed to adequately respond to 
injury and regenerate. This stands in stark contrast to neurons 
of the peripheral nervous system, which undergo extensive 
transcriptional changes in response to injury to activate the 
expression of Regeneration Associate Genes (RAGs). RAGs, 
such as the growth associated protein 43 (GAP-43), that are 
associated with successful periphery axon regeneration over 
long distances, which ultimately reconnect to their targets 
and lead to functional recovery.2

We reported in 2016 that corticospinal axons regenerate 
extensively into embryonic spinal cord-derived NPC grafts 
placed into a spinal cord lesion site,4 indicating that when an 
appropriate target is provided, regenerative growth can occur 
(Figure 1C). Since then, we demonstrated that CST regenera-
tion is triggered by embryonic spinal cord derived NPCs in 
mouse,3,5 rat,4,6 and non-human primate7 models of spinal cord 
injury. These results could indicate that extrinsic signals (NPC-
graft),8,9 rather than intrinsic signals, trigger CST regenera-
tion. To test this hypothesis, we investigated the transcriptomic 

changes in corticospinal neurons in response to lesion alone 
(non-regenerating CST, Figure 1A) and during NPC-graft 
supported regeneration (regenerating CST, Figure 1C). We 
compared transcriptomic profiles of corticospinal neurons in 
both conditions to an intact animal to be able to differentiate 
the injury signal from the regeneration signal.3

Injury-Induced Transcriptional Changes are 
Essential for CST Regeneration
As expected, injury to the CST axons drastically altered gene 
expression in corticospinal neurons (~4000 significantly differ-
ently expressed genes (DEG) at 10 days post lesion using a sig-
nificance criterion of False Discovery Rate ⩽ 10%). Over the 
time course of 3 weeks, these changes diminished almost com-
pletely and gene expression reverted back to the intact state. 
Interestingly, the regenerating cohort that received a NPC-
graft displayed a similar pattern of gene expression at 10 days 
post lesion, indicating that the transcriptomic profile at this 
early timepoint is dominated by the injury signal. Notably, in 
the presence of a graft, this pro-regenerative transcriptional 
profile did not diminish but was sustained after 3 weeks post 
injury. This demonstrated that intrinsic transcriptional mecha-
nisms necessary for regeneration of corticospinal axons are 
activated by injury alone. This finding fundamentally changes 
our view on the intrinsic regenerative capacity of the corti-
cospinal system.

We have further shown that this intrinsic change in gene 
expression represented a shift to a more immature transcrip-
tional state of the corticospinal neuron, allowing for the reca-
pitulation of the temporal progression of distinct aspects of 
CST development. Gene expression starts with the activation 
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of cell survival and cellular growth genes, followed by the acti-
vation of axon regeneration and axon guidance pathways, to 
finally genes involved in synapse formation and synaptic plas-
ticity. Hence, within a 3-week time frame the anatomical and 
transcriptional changes mimicked developmental processes of 
corticospinal neurons. And these changes seem to be necessary 
for successful axon regeneration.

Huntingtin is Essential for CST Regeneration
We utilized bioinformatic datamining to identify transcrip-
tional regulators that modulate the regenerative response and 
showed a critical role for huntingtin (HTT) in corticospinal 
axon regeneration. It is interesting that HTT mRNA expres-
sion was not altered during CST injury and regeneration, but 
it was identified as a central hub of a network of differentially 
expressed genes that constituted the regeneration state. The 
identification of HTT as a potential candidate involved in 
CST regeneration was based purely on unbiased bioinfor-
matic analysis. Indeed, HTT knockout resulted in a signifi-
cant reduction of corticospinal regeneration. Whether HTT 

overexpression might improve CST regeneration will be 
investigated in future studies.

CST Axon Regeneration Strategies Utilizing NPC/
NSC Grafts
Hypothetically, two distinct mechanisms might be associated 
with NPC grafts to promote functional recovery following spi-
nal cord injury: (1) The functional synaptic relay strategy and (2) 
the catch and release strategy.

In the functional synaptic relay strategy (Figure 2A), NPC-
grafts receive direct corticospinal synaptic inputs that do not 
extend beyond the graft. The neural stem cells, in turn, extend 
axons into the caudal host white matter, eventually (through 
mono- or poly-synaptic relays) innervating motor neurons in 
the ventral horn of the distal host spinal cord. This would 
form novel relays across the injury site by “splicing the circuit.” 
We hypothesize that this relay formation might be further 
refined and optimized by rehabilitative training and possibly 
by electrical stimulation to rewire interrupted circuity and 
restore lost motor function.10

Figure 1. NPC-grafts support corticospinal tract (CST) axon regeneration. Sagittal spinal cord sections (40 µm) from non-regenerating conditions: (A) 

lesion without graft,3 (B) lesion + mesenchymal stem cell graft (MSC-Graft),4 and (C) lesion + NPC graft. Sections were labeled for corticospinal tract 

(CST) axons and in (A) the glial scar marker (GFAP). Drawings were Created with BioRender.com
Lesion margins are indicated with white striped/dotted lines. Scale bars: 100 µm.
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In an alternative hypothesis, the catch and release strategy, 
NPC grafts might trigger corticospinal axon regeneration into 
and entirely beyond the graft. We have observed corticospinal 
regeneration into and beyond grafts over short gap lengths of 
1 mm, but we have not observed regeneration of corticospinal 
axons over greater distances.4 To promote longer-distance 
regeneration, we hypothesize that synaptic connectivity with 
grafted neurons would need to be inhibited. This will be tested 
in future studies.

It might also be possible to promote host corticospinal 
regeneration across a lesion site by identifying specific mole-
cules that are presented by the NPC grafts to the injured CST 
axons and that trigger regeneration. We have shown in 2016 
that these molecules are not secreted by the NPC grafts since 
direct contact with the CST axons is necessary for regenera-
tion.4 Accordingly, we will apply multi-omic screens of the 
grafted NPCs as well as the regenerating CST axons to iden-
tify the extracellular proteins, molecules and lipids on the 
NPCs that trigger CST growth. Once the key molecular 
mechanisms that are necessary to stimulate CST regeneration 
are identified, cellular or molecular grafts can be engineered, 
expressing or carrying these growth promoting biomolecules.

Summary
Injuries to the corticospinal tract following spinal cord injury 
leave patients with lifelong paralysis. We have demonstrated 
that corticospinal neurons activate intrinsic regenerative pro-
grams in response to injury alone. Successful regeneration is 

dependent on the sustained activity of these regenerative 
transcriptomic profiles throughout the regenerative process.3 
This can be achieved via the application of neural progenitor 
or neural stem cell grafts into the lesion site. The complete 
molecular and cellular mechanisms that promote the exten-
sion of the active transcriptomic signature remain to be iden-
tified. Progenitor cell grafts provide an important tool to 
study the extrinsic and intrinsic mechanisms of successful 
CST regeneration and will be instrumental in the develop-
ment of therapies promoting functional recovery following 
spinal cord injury.
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Figure 2. CST axon regeneration strategies utilizing NPC/NSC grafts. Schematic overview of possible scenarios of NPC-graft triggered CST 

regeneration: (A) Functional synaptic relay strategy and (B) Catch and release strategy. NPC-graft derived neurons send out axons into host white and 

gray matter and reconnect with host motor neurons. In (A) grafted neurons can receive synaptic inputs from regenerating CST axons, while in (B), NPCs/

NSCs have been genetically altered to not receive synaptic inputs. Drawings were Created with BioRender.com.
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