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Abstract

Since many bat species thrive in densely vegetated habitats, echoes from foliage are likely to

be of prime importance to the animals’ sensory ecology, be it as clutter that masks prey ech-

oes or as sources of information about the environment. To better understand the character-

istics of foliage echoes, a new model for the process that generates these signals has been

developed. This model takes leaf size and orientation into account by representing the leaves

as circular disks of varying diameter. The two added leaf parameters are of potential impor-

tance to the sensory ecology of bats, e.g., with respect to landmark recognition and flight

guidance along vegetation contours. The full model is specified by a total of three parame-

ters: leaf density, average leaf size, and average leaf orientation. It assumes that all leaf

parameters are independently and identically distributed. Leaf positions were drawn from a

uniform probability density function, sizes and orientations each from a Gaussian probability

function. The model was found to reproduce the first-order amplitude statistics of measured

example echoes and showed time-variant echo properties that depended on foliage parame-

ters. Parameter estimation experiments using lasso regression have demonstrated that a

single foliage parameter can be estimated with high accuracy if the other two parameters are

known a priori. If only one parameter is known a priori, the other two can still be estimated,

but with a reduced accuracy. Lasso regression did not support simultaneous estimation of all

three parameters. Nevertheless, these results demonstrate that foliage echoes contain

accessible information on foliage type and orientation that could play a role in supporting sen-

sory tasks such as landmark identification and contour following in echolocating bats.

Introduction

Many bat species perform demanding sensing tasks, such as the detection, localization, and

classification of prey and obstacles in dense vegetation based on information provided by

highly developed biosonar systems [1, 2]. Compared with bat biosonar, engineered sonar sys-

tems used on unmanned aerial vehicles are heavier and bulkier yet they cannot deal with com-

plex targets such as vegetation in forest. For example, navigation based on sonar and other
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sensors has enabled a blimp to avoid large obstacles, e.g., vertical plates about one meter tall

[3], with errors as large as 0.5 m [4]. In contrast to this, bats have been shown to discriminate

target range difference between 1 and 3 cm [5].

Vegetation is a prominent feature in the habitat of many echolocating bat species. When

capturing prey, echoes from a highly structured background can pose a problem because they

can obscure prey echoes and hence reduce hunting success [6]. However, certain vegetation

echoes have been shown to provide cues for the identification of flowers with nectar [7] and

for the position of fruit in the final localization stage [8].

Similarly, echoes returned from a distributed cloud of scatterers may make it difficult to

locate the nearest obstacle or find a passageway through the scatterers. However, foliage echoes

could also provide valuable information for navigation by supporting the identification of

landmarks [2, 9–11]. It has been shown that Natterer’s bats learn to distinguish conifers from

broad-leaved trees [12].

Although vegetation echoes are obviously important to the function of bat biosonar, previ-

ous studies have either been limited to a small sample of different foliage types [9, 13–15] or

have used a model based on point scatterers [14] that cannot capture the influence of leaf size

and orientation on the echoes. In current work, we propose a computational model for foliage

echoes that can account for the distribution, size, and orientation of the leaves. Since it has

been shown that branches typically contribute little to foliage echoes [16], the ability of the

proposed model to capture an extended set of leaf properties should give research into the

opportunities and challenges for biosonar that are posed by foliage echoes. The goal of this

work is to provide a new powerful tool for creating large ensembles of realistic echoes to

mimic different biosonar sensing scenarios that are involved in foliage echoes.

To achieve this goal in a parsimonious fashion, our model uses only three parameters

related to the expected values of leaf density, size, and orientation. We demonstrate the utility

of this approach by estimating all of these parameters from the model echoes. This allows an

assessment of whether all three parameters influence the echo waveforms and could hence

potentially impact the operation of bat biosonar systems in foliage—be it as information-

bearing or nuisance signals.

Materials and methods

Model

To arrive at a parsimonious model for the generation of foliage echoes, the following simplify-

ing assumptions have been made in the work reported here:

First, the foliages consisted solely of isolated reflecting facets (“leaves”), i.e., the model did

not include any other plant parts such as branches or trunks. Second, multi-path transmission

and shading between leaves was ignored. Third, all individual leaf shapes were approximated

by acoustically hard, flat, circular discs that are completely characterized by their radius, posi-

tion, and orientation in space. Fourth, leaves were distributed uniformly in the foliage whereas

their distribution in real foliages could be inhomogeneous, e.g., due to branching patterns.

Here, all leaves are distributed uniformly inside a rectangular box positioned one meter away

from the sonar along the direction of the sonar’s aim. The values of the other two parameters

were independently identically distributed Gaussian random variables. To further simplify the

model, it was assumed that the standard deviation for the Gaussian distribution of the leaf

radii was tied to the mean. It was taken to be one tenth of the mean. In this way, leaves that

were larger on average also varied more in size. The standard deviation of the orientation

angle of the leaf was fixed at a value of 5˚. Under these assumptions, the simplified model

foliages can be described by three parameters: the mean leaf radius r, leaf density ρ (number of
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leaves per cubic meter) and mean leaf orientation α (Fig 1). The angle to describe leaf orienta-

tion was chosen as the angle between the surface normal of the leaf and the pointing direction

of the sonar.

For plane waves incident on an acoustically hard circular disc at an angle z with the surface

normal, the scattered field, Vs, is given in the far field as

Vs �
eikd

kd
S; ð1Þ

Fig 1. Parameters of the proposed foliage model. A) Expected value of the leaf radius r. The radii of all leaves are drawn

independently from Gaussian distribution with mean r and standard deviation r
10

. Ten leaves are shown each for mean radii that equal

5, 15, and 20 mm, respectively. B) Leaf density ρ. Orthogonal projections on the xy-plane of a cubic volume (1 m3) filled with 5, 10, and

20 leaves are shown, respectively. The frame represents the borders of the cubic volume. C) Orientations in a leaf sample around

mean orientation angles (α) of 0˚, 45˚, and 90˚, respectively. The orientation angle is defined as the angle between leaf normal and the

direction the sonar is aimed in, orientations are drawn from Gaussian distribution with mean α and a fixed standard deviation of 5˚.

https://doi.org/10.1371/journal.pone.0182824.g001

Foliage echo model

PLOS ONE | https://doi.org/10.1371/journal.pone.0182824 August 17, 2017 3 / 18

https://doi.org/10.1371/journal.pone.0182824.g001
https://doi.org/10.1371/journal.pone.0182824


where d is the distance between sonar and disc, k is the wave number, and S is the far field coef-

ficient. The far field coefficient S can be expressed as an infinite sum of spheroidal wave func-

tions as follows [17]:

S ¼ 2i
X1

m¼0

X1

n¼m

�m

~N mn

Rð1Þ0mn ð� ikr; i0Þ
Rð3Þ

0

mn ð� ikr; i0Þ
Smnð� ikr; coszÞSmnð� ikr; ZÞ cosm�; ð2Þ

where r is the radius of the disc, k ¼ 2p

l
the wave number, Smn(−ikr,η) are oblate spheroidal

angle functions of the first kind, of order m, and degree n, Rð1Þ0mn ð� ikr; i0Þ is the derivative of the

oblate radial functions of the first kind, of order m, and degree n, Rð3Þ0mn ð� ikr; i0Þ is the derivative

of the oblate radial functions of the third kind, order m, and degree n, �m is the Neumann sym-

bol, (η,ξ,φ) is the position of observation point in oblate spheroidal coordinates, and ~N mn is a

normalization constant.

To evaluate the scattered field of discs with different radii over the frequency range of inter-

est here (60 to 80 kHz, modeled after the second/strongest harmonic in the biosonar pulses of

the greater horseshoe bat, Rhinolophus ferrumequinum [18]), the following procedure was

used: For each value of kr, the numerical values of the far-field coefficient S (Eq 2) were

Fig 2. Approximation to the scattering beampattern of a disc. A) evaluation of the truncated infinite series for the leaf

beampattern coefficient (Eq 2) and its approximation using a cosine function; solid line: series evaluation; dashed line: cosine fit (acos

(bθ0)). The result from the infinite series and the cosine approximation are shown as a function of incident angle θ0 (0˚ to 90˚) for the

case of kr = 14, where k is wave number and r is the leaf radius. B) and C) Fitting curves used to determine the amplitude a and

angular frequency b of the cosine fit as a function of kr. Open circles: parameter values determined from evaluating a truncated

version of the infinite series; solid lines: curve fitted to the data points marked with the open circles.

https://doi.org/10.1371/journal.pone.0182824.g002
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calculated for 1000 evenly spaced values of incident angle between 0˚ to 90˚ (Fig 2A) by

numerical evaluation of a truncated version of the series in Eq 2 [19]. The series coefficients

decay exponentially and were truncated based on a magnitude threshold [19]. Since calculating

the scattered field of a single disc in this way takes several days on a standard work station, a

more time-efficient approximation of the numerical solution with cosine functions was used

to obtain all the scattered field values for the different disc diameters and incident angles. The

cosine function used for this approximation was of the form acos(bθ), where the amplitude a
and the angular frequency b were used as fitting parameters. A nonlinear least squares method

based on a trust-region-reflective algorithm [20] was used to accomplish this fit. These fits

resulted in data sets containing values for the parameters a and b for each value of the product

kr (Fig 2B and 2C). In order to be able to arrive at values for the parameter a and b for any

value of kr without much computational cost, power functions were fitted to the relationships

between the parameters and kr. This fit was carried out using the same method as described

above. The fitting functions used were a krÞ ¼ 1

2
krÞ2 þ 0:7
��

(i.e., a second order polynomial),

and b(kr) = 0.4(kr)−0.9 + 1, respectively (Fig 2B and 2C).

The shape of the bat biosonar beampattern was approximated by the product of two Gaus-

sians, one a function of azimuth and the another a function of elevation. The sonar was

assumed to be monostatic, i.e., emitter and receiver were in the exactly same position which can

be justified since the small sizes of bat heads (a few centimeters diameter at most) will not result

in a substantial parallax when looking at targets at a distance of one meter or more. The stan-

dard deviations of the Gaussian functions used to model the beampattern in azimuth and in ele-

vation were fixed at the same value of 17.2˚ corresponding to a -3 dB beamwidth of

approximately 30˚. The beampatterns’ direction of maximum gain was aligned with the normal

to one of the surfaces of the rectangular domain in which the leaves were distributed (Fig 3).

The boundaries of the cuboid-shaped spatial domain over which discs (leaves) were ran-

domly placed to be included in the calculation of the echoes were determined based on the

expected maximum gain for the respective position. Positions for which losses due to beam-

gain and spreading amounted to a drop of more than -80 dB in amplitude were not included

(Fig 4). This reasoning was based on the dynamic range of the sonar in greater horseshoe bats

for which an emission level of around 100 dB SPL in a distance of 10 cm [21] and a hearing

threshold around 10 dB SPL [22] have been reported and the assumption that the target

strength of the leaves typically does not exceed -10 dB substantially (the target strength of a

disk with 4 cm diameter at a frequency of 75 kHz).

Fig 3. Biosonar beampattern model. A) distribution of beam gain amplitude over direction (-3 dB beamwidth 30˚); B) distribution of sonar

gains in the xz-plane showing directionality gains and spreading losses; C) total (emission and reception) sonar gain mapped on a cluster of

leaves representing leaves in a foliage. The axis of maximum beamgain of the sonar is aligned with the +x direction. Leaves are uniformly

distributed. Beamgain amplitudes are normalized and encoded by gray scale.

https://doi.org/10.1371/journal.pone.0182824.g003
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The distance between sonar and leaf domain was set to 1 m in order to ensure that the far-

field assumption in the calculation of leaf beampattern is valid. The far-field distance for emis-

sions from greater horseshoe bats with call frequency 83 kHz and noseleaf width 8.1 mm [23]

would be 3.2 cm. For the ears, an ear length of about 2.2 cm would results in a transition to the

far-field at approximately 24 cm [24].

The sonar pulse was assumed to have a power spectrum that was flat between 60-80 kHz.

To acquire the output signal which was an impulse response of ensonified leaves in the model,

the frequency domain signal of each leaf in 60-80 kHz range was first calculated with the sonar

beampattern and the approximated leaf beampattern according to the leaf’s position and ori-

entation relative to the sonar. Responses at other frequencies were set to zero. Then the fre-

quency responses of all leaves were superpositioned. Finally, the inverse Fourier transform was

applied to obtain the time domain signal.

Estimation of foliage parameters

Lasso regression was used to estimate the values of the foliage parameters from the resulting

echoes. Hence, the parameter estimates were linear combinations of the weighted echo fea-

tures. Finding the weights for the best-trained model was accomplished by minimizing the

sum of the parameter estimation errors in a least-square sense over the observations subject to

a constraint on the sum of the weight values. The sum of the absolute values was limited to a

maximum value. This maximum value, called a “tuning parameter” can be used to control

Fig 4. Determination of the foliage domain covered by the computations. Iso-gain contour of a sonar

beam cross-section for a sound pressure level of 20 dB SPL assuming a source level of 100 dB SPL at 10 cm

distance. Emission and reception losses were both considered in these calculations. The Boundaries of the

foliage domain cuboid in the xy-plane (solid-line rectangle) were positioned to contain the entire 20 dB SPL

iso-gain surface and were rounded up to the next integer multiple of 2 m. The distance between sonar and the

cuboid was set to 1 m to ensure the far-field assumption made in the calculation of the scattering from leaves

was valid.

https://doi.org/10.1371/journal.pone.0182824.g004
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number of features used. The best value for the tuning parameter was determined by virtue of

a cross validation approach [25].

A total of 40 features were extracted from each echo for the purpose of estimating the

underlying parameters of the foliage model (Fig 5). One group of these parameters contained

measures of the distribution of the envelope magnitude values taken over the entire echo,

since both of the three parameters would contribute to envelope magnitudes. Similarly, mea-

sures of how the peaks in the echo amplitude were distributed in time over the entire echo

were used as a basis for estimating the foliage model parameters, which are more related to leaf

density and may help estimation by isolating the impact of density from that of the other two

parameters on echoes. The remaining features were measures derived from the distribution of

envelope magnitudes within ten time windows of even length that spanned the entire duration

of the echo.

Fig 5. Part of the statistical echo features. A) Echo envelope evenly divided into 10 time intervals. B) [0.1, 0.3, 0.5, 0.7, 0.9, 0.95,

0.99, 0.999] quantiles of the amplitude above a threshold (one tenth of the maximum value in the last time window, i.e., 90% to 100%).

C) Example of a time interval longer than 0.02 ms in zoomed-in view of the envelope. The time intervals are time difference of two

adjacent points with values larger than the threshold mentioned above. Find all time intervals and keep the ones longer than 0.02 ms.

D) [0.95, 0.99, 0.999] quantiles of the time intervals longer than 0.02 ms. All figure are derived from the same single example echo.

https://doi.org/10.1371/journal.pone.0182824.g005
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For features derived from the echo envelope amplitudes, a threshold of one tenth of the

maximum envelope magnitude in the last time window was set to exclude features associated

with very small magnitude values from these calculations. The following features were derived

from the magnitudes of the envelope of the entire signal: area under the envelope, quantiles

(0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99, 0.999) of magnitude values that were larger than the magni-

tude threshold, central moments (2nd to 5th) of the above-threshold magnitude values,

the same four central moments for time intervals longer than a 20 μs threshold. The time-

differences were measured between neighboring points in the signal envelope that were higher

than the threshold, and a set of quantiles (0.95, 0.99, 0.999) of those selected time intervals.

The quantiles were used to describe the shape of the probability density function (pdf) of those

magnitudes. The 2nd central moment is the variance and the scaled version of third central

moment is skewness, a measure of the lopsidedness of the distribution. The scaled version of

fourth central moment is kurtosis and serves as a measure of the heaviness of the tail of the dis-

tribution. Features calculated within the 10 time windows were: the number of magnitude val-

ues larger than the threshold in each window and mean value of the magnitudes above the

threshold in each window.

Cross validation was used to find the tuning parameter and avoid overfitting. It was carried

out using 80% of the echoes. This cross-validation echo data set was divided into 10 subsets of

equal size. One subset was excluded and the lasso model was fitted to the remaining nine sub-

sets of the echoes. Then the model was tested on the excluded subset. The process was repeated

10 times in total where each time a different subset was excluded. The estimation errors made

over all these 10 tests were summed and used to determine the value of tuning parameter that

resulted in the minimum error.

With this cross validation followed by the lasso regression itself, foliage parameter estimates

were carried out for the following three scenarios: (i) estimation of a single unknown foliage

parameter with the other two parameters fixed, (ii) estimation of one foliage parameter with

the second parameter fixed and the third parameter left to assume unknown and variable val-

ues, and (iii) estimation of one parameter with the other two parameters remaining unknown

and subject to change.

In all these estimation scenarios, the following values were used for the known/fixed param-

eters: leaf density 100/m3, mean orientation angle 7˚, and mean leaf radius 15 mm. Parameters

left unknown were drawn randomly from the values in the following sets in each echo: leaf

density [20, 100, 200, 300, 500]/m3, mean orientation angle [0, 20, 40, 60, 80]˚, and mean leaf

radius [7, 10, 13, 17] mm. Parameters to be estimated were left to take any integer within the

following intervals: leaf density [20, 500]m3, mean orientation angle [0, 90]˚, and mean leaf

radius [5, 20]mm. For the estimation of a single unknown parameter, 100 echoes each were

generated for 100 different parameter combinations. As described above, 80 of these echoes

were used for training and the remaining ones were used to test the lasso model. For the esti-

mation of parameters in other situations, 500 echoes were generated from 100 parameter com-

binations with 5 echoes from each. Among those echoes 400 were used in training, and the

remaining 100 echoes were used in testing.

Field echo recordings

The impulse responses from real trees were recorded for comparison with the simulated ech-

oes. Recording of the echoes in the field was carried out using a biomimetic sonar head. The

sonar head used a single electrostatic ultrasonic loudspeaker (Series 600 open face ultrasonic

sensor, SensComp, Inc., Livonia, MI, USA) with a two-sided -3 dB beamwidth of 10˚ at

50 kHz. A power amplifier (AA-301HS, A.A. Lab Systems Ltd. Ramat-Gan, Israel) was used to

Foliage echo model
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drive the loudspeaker. Two MEMS capacitive microphones (SPU0410LR5H, Knowles Elec-

tronics, LLC. Itasca, IL USA) mounted on pre-amplifier boards (Momimic, Dodotronic,

Rome, Italy) were used for signal reception. An A/D and D/A conversion board (NI-6351,

National Instruments Corp., Austin, TX USA) was used in the setup and provided 16-bit reso-

lution and 500 kHz sampling rate for digital-to-analog and analog-to-digital conversion. The

sonar head was mounted on a tripod, the height of which above ground was adjusted accord-

ing to different trees to let the transmitted signal hit the foliage at an approximately normal

incident angle. The emitted signal consisted of a 5-ms-long linearly modulated chirp covering

a frequency band from 20 to 100 kHz. The experiments were done on Virginia Tech’s campus,

and no endangered or protected species were involved. No specific permissions were required.

Comparison of simulation results with field recordings

The echoes of two different tree species were recorded for comparison to the simulated echoes:

Japanese maple (Acer palmatum) and coniferous tree, arborvitae (Thuja occidentalis). Echoes

were obtained from one tree per species. 400 echoes (200 per microphone) were collected per

viewing angle with a total of 5 viewing angles for each tree. 30 leaf samples [26] were collected

from 4 branches at different heights for Japanese maple. The mean leaf area over 30 leaves was

obtained by calculating the area of each leaf after scanning it and counting the dark (green)

pixels. The equivalent leaf radius that produced the same area for a circular disk was used to

determine the mean leaf radius of the model, which was 1.46 cm. Mean orientation angle and

density were decided based on observation. The foliage of Japanese maple consisted of dense

leaves with mean orientation angle about 45˚, and thus the density was set to 5000/m3. The

arborvitae had foliage with forms of flat sprays with scale-like leaves; in the model, 1 mm, 45˚,

and 10000/m3 were used to represent its mean leaf radius, orientation angle, and leaf density,

respectively. The measured echoes were first filtered with passband 20–110 kHz, then cross-

correlated with emitted signal to acquire the impulse response, and filtered again with pass-

band 60–80 kHz to match the frequency range in simulation.

In the simulation that were designed to mimic the measured tree foliages, the length of the

foliage domain along the sonar’s line of sight was set to match the pulse duration observed in

the field recordings. The distance between the sonar head and nearest leaf was determined

from the first point in time where the echo amplitudes clearly exceeded the noise amplitudes.

The same distance was then used in the respective simulations. The -3 dB sonar beamwidth for

these simulations was set to 10˚ to match the beamwidth of the experimental setup.

For a quantitative comparison between the simulated and the measured foliage echoes,

each echo was divided into three time windows of equal length. In each of these windows, a

histogram estimate for the probability density function (pdf) of the echo amplitudes was

obtained. The difference between pdf estimates for simulated and measured echoes was quan-

tified using the Bhattacharyya distance [27]. The values of the Bhattacharyya distance range

from zero to infinity. The smaller the distance is, the better two pdfs match each other. In

order to provide a reference for judging these difference, the differences obtained for simulated

versus measured pdfs were compared to the differences found within the simulated and mea-

sured data sets.

Results

Comparison of real echoes and simulation

The waveforms of the measured and simulated echoes were found to be qualitatively very simi-

lar to each other for the two tree species/specimens studied (Fig 6). This impression was con-

firmed by quantitative comparisons of the first-order probability density functions obtained

Foliage echo model
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for the signal amplitudes. The Bhattacharyya distances used for this purpose were fairly similar

for comparisons within the simulated and measured echoes on the one hand and comparisons

between these two data groups on the other. For example, in the central time windows of the

echoes from the arborvitae, the average Bhattacharyya distance between pdfs of simulated

Fig 6. Comparison between examples of simulated and measured echoes. A-B) Simulated echoes: A)

with parameters similar to the Japanese maple specimen: mean leaf radius 1.46 cm, density 5000/m3, and

mean orientation angle 45˚. B) with parameters similar to the arborvitae specimen: mean leaf radius 0.1 cm,

density 10000/m3, and mean orientation angle 45˚. C-D) echoes measured in the field: C) Japanese maple,

D) arborvitae. All echo amplitudes were normalized to their respective maximum.

https://doi.org/10.1371/journal.pone.0182824.g006
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echoes was 0.03 (±0.02 standard deviation, N = 5) that between pdfs of measured echoes was

0.04 (±0.02 standard deviation, N = 5), and that between simulated and measured echoes was

0.03 (±0.02 standard deviation, N = 5, Fig 7).

Time-varying echo properties

The most visible time-variant property of the echoes (simulated or measured) was a decay in

echo amplitude with increasing time due to geometric attenuation. That was reflected by

amplitude probability density functions with decreasing spread over time (Fig 7). However,

after the effects of the geometric spreading losses were removed from the echoes, the resulting

amplitudes remained time-variant but with a reverse dependence where the spread of the

amplitude probability functions tended to increase with time (Figs 8 and 9). This remaining

non-stationary behavior of the echoes was quantified using the Bhattacharyya distance as a

Fig 7. Comparison of probability density functions for the amplitudes of simulated and measured echoes. A) simulated echo

produced by a model with parameters adjusted to mimic arborvitae. B) echo from the same species measured in the field. The

simulated and measured echoes were segmented into three time windows of equal length, the probability density functions for the

amplitudes in each segment are shown in C), D), and E). Solid lines: simulated echoes; dashed lines: measured echoes.

https://doi.org/10.1371/journal.pone.0182824.g007
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difference measure for probability density functions associated with different times during the

echoes. This analysis provided evidence that the time-variant behavior of the probability den-

sity functions was linked to the properties of the model foliages: For example, among all the

Bhattacharyya distances obtained between probability density functions obtained for different

time windows positioned within the central 80% of the echo durations, the 95%-percentile

of the differences increased by 40% (from 0.1 to 0.14) as the leaf density was increased from

20/m3 to 500/m3. Hence, in this case, the 5% largest differences between the probability density

functions increased as the model foliages (mean leaf radius: 5mm, mean leaf orientation: 90˚)

became denser. Likewise, the Bhattacharyya distances were also found to depend on leaf orien-

tation: As the average leaf orientation was changed from 0˚ to 90˚, the 95%-percentile of the

Bhattacharyya distance was reduced by 50% from 0.24 to 0.12. Hence, the time variance was

greater when the leaves were oriented with respect to the sonar’s light of sight.

Parameter estimation

It was found that accurate estimation of a single unknown foliage parameter was readily

achievable with the lasso regression method employed (Fig 10). For all three parameters of the

model, the estimates were highly correlated to the actual values (r2 values: 0.99, 0.98, and 0.98

for leaf density, mean leaf orientation, and mean leaf radius, respectively). For the estimation

of one foliage parameter where one of the other two parameters is known and the other

remains unknown, all six possible scenarios yielded correlations between the true parameters

and the estimates that were lower than those obtained for single unknown parameters with

Fig 8. Example of time-varying echo and its probability density functions in three different windows. A) simulated echo

waveform with envelope (black) computed without inclusion of spreading losses. B), C), and D) probability density function for the

three time windows shown in A).

https://doi.org/10.1371/journal.pone.0182824.g008
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most r2 values falling between 0.5 and 0.6 (Fig 11). An exception was the estimation of leaf

radius with known average orientation and unknown leaf density, where an r2 value of 0.9 was

reached (Fig 11E). Finally, estimation of one parameter was attempted with the other two

parameters unknown, these estimates were poorly correlated with the actual parameters and

hence did not provide much useful information of foliage features.

Discussion

The novelty of the foliage model presented here lies in the use of discs to approximate the

acoustic scattering behavior of the leaves. This introduces two additional parameters, leaf size

and leaf orientation, that are not needed in models based on omnidirectional point scatterers

Fig 9. Time-varying nature of the foliage echoes. Logarithm of the probability density (20 log10(PD)) of the echo envelope

amplitude as a function of time. The data set used for each plot contains 100 echoes each of which was normalized to the the

maximum root-mean-square level within the respective data set. A-J) probability density functions for different points in the foliage

models feature space (center).

https://doi.org/10.1371/journal.pone.0182824.g009
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[14]. While addition of these parameters makes the model more complicated, both of these

foliage parameters could be of importance to the sensory ecology of bats: Being able to estimate

the average size of the leaves in a foliage could help bats to identify the type (e.g., the species)

of trees or bushes they encounter. The ability to tell the type of a foliage from the echoes could,

in turn, support the recognition of individual trees or bushes that may serve as landmarks for

navigation. Similarly, the ability to identify foliage types could help the bats to find their food if

Fig 10. Estimation of a single model parameter with the other two parameters fixed and known. Estimates of A) leaf

density ρ, B) mean leaf radius r, and C) mean leaf orientation α. Whenever a parameter was assumed to be fixed at a known

value, leaf density, mean leaf radius, and mean leaf orientation were set to 100/m3, 1.5 cm, and 7˚, respectively. The coefficient of

determination is indicated in the bottom right corner for each estimation.

https://doi.org/10.1371/journal.pone.0182824.g010

Fig 11. Estimates of a single model parameters with one known and one unknown parameter. A) estimates of leaf density ρ
with mean leaf radius r fixed, B) estimates of leaf density ρwith average leaf orientation α fixed, C) estimates of leaf radius r with leaf

density fixed, D) estimates of average leaf orientation αwith leaf radius r fixed, E) estimates of leaf radius r with average leaf

orientation α fixed, F) estimates of average leaf orientation αwith leaf density ρ fixed. Whenever a parameter was fixed to a known

value, 100/m3, 1.5 cm, and 7˚ were used for leaf density, mean leaf radius, and mean leaf orientation, respectively. Whenever a

parameter was left unknown and free to change, it was selected randomly from the values in the following sets for each echo: leaf

density [20, 100, 200, 300, 500]/m3, mean orientation angle [0, 20, 40, 60, 80]˚, and mean leaf radius [7, 10, 13, 17] mm. The

coefficient of determination is indicated in the bottom right corner for each estimation.

https://doi.org/10.1371/journal.pone.0182824.g011
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certain foliage types are more likely associated with the presence of food [7, 8] than others.

Leaf orientation could play an important role in guiding the bats’ flight path in close proximity

to foliage [28], e.g., when the animals are following the contour of a vegetation edge. Since the

leaf normals in a foliage are likely to be oriented towards the surface of the foliage, being able

to tell the average direction of the leaf surface normals could be a convenient way to determine

the orientation of a foliage contour and control the direction of a flight path that follows the

contour without collision.

The results presented here demonstrate that estimation of foliage parameters (leaf density,

average leaf size and orientation) from the echo waveforms is possible using echo features that

could also be accessible to bats in a similar form. However, with the method used here (lasso

regression), highly accurate estimation was only possible for a single unknown parameter. Esti-

mation of two unknown parameters yielded results that could still be useful, but provided a

much lower accuracy than was the case for a single parameter. Since there is no reason to

believe that present results constitute an upper bound on the achievable performance, it

remains possible that bats may be able to perform vastly better than the current pilot results.

But even if this is not the case, the level of estimator performance demonstrated here could

be very helpful to bats in densely vegetated habitats. For example, a bat may have sufficient

a priori knowledge about the leaf density and average leaf size in the foliage of its habitat. A

bat armed with such accurate a priori information would be able to get precise estimates of

average leaf orientation that it could use to follow foliage contours within a known habitat. For

landmark identification in an uncertain location, bats may be able to determine the orientation

of the foliage surface and hence the average orientation of the leaf normals through other

means, e.g., by looking at the foliage surface from different directions. Once the average orien-

tation of the leaves is known, the animals could use this a priori information to obtain esti-

mates for leaf density and average leaf size to identify a known landmark tree or bush by its

foliage type.

Spreading losses for ultrasonic waves traveling in a three-dimensional medium impose

strong time-variant signatures onto echoes that originate from a foliage where the reflectors

(leaves) are spaced over a wide range of distances from the sonar. However, these effects do

not reveal much about the target other than the range at which a certain component of the tar-

get’s impulse response has originated. However, the same information is already available

from the time of flight in a much more reliable fashion since echo amplitude depends on trans-

mission losses as well as target strength whereas time of flight depends only on target range.

Hence, the effects of spreading losses on an echo are probably not a prime information-bearing

echo features by themselves. The time-variant effects that were found in the model echoes

studied here after spreading losses were removed could be more informative than the spread-

ing losses since they were found to depend on all three foliage parameters. No information is

available in the literature at the time of writing as to whether bats would be able to sense differ-

ent time-variant behaviors within an echo waveform. It has been shown, however, that bats

can distinguish smooth and rough echo waveforms [12]. Detecting time-variant changes in an

echo waveform could possibly be handled through mechanisms that are similar to detecting

the ups and downs in a rough waveform.

In the current work, echoes were simulated within a 20 kHz frequency band that is similar

to the strongest harmonic of greater horseshoe bats. This is much narrower than the 115 kHz

bandwidth that has been previously used for the classification of vegetation echoes [14, 15].

The results obtained here hence demonstrate that even bat species with fairly “narrow-band”

biosonar signals could already have access to detailed information about complex vegetation

environments without the need for the high degree of precision that large pulse bandwidths

can convey [14, 29].
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The simulation model studied here has been simplified by neglecting properties of natural

foliages such as variable leaf geometries, acoustic shading of one leaf by another, multipath

sound propagation across multiple leaves, and inhomogeneities in the spatial distribution of

the leaves. It remains to be seen to which extent these factors could effect the characteristics of

foliage echoes. Previous findings suggest that adding clusters to the spatial leaf distribution

improves the goodness of fit between real data and simulation [14], but a full investigation of

the role of leaf inhomogeneity still needs to be undertaken. Similarly, it should be investigated

if alternatives to the parameter estimation approach used here suffer from the same limitation

on the number of parameters that can be estimated simultaneously or if it would be possible to

arrive at accurate estimates for all parameters of an unknown foliage. Sequential estimation

could be a candidate methods for achieving this, since it has been demonstrated to add to per-

formance in bioinspired classification of foliage echoes [30]. Bats could even control their

motions to enhance the encoding of sensory information on the foliage [31]. If indeed all three

foliage parameters considered here could be estimated without prior knowledge, it would give

bats many more opportunities to master the demanding sensory task associated with naviga-

tion in complex natural environments.
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