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Abstract: Much progress has been made toward deciphering RHO GTPase functions, and many
studies have convincingly demonstrated that altered signal transduction through RHO GTPases
is a recurring theme in the progression of human malignancies. It seems that 20 canonical RHO
GTPases are likely regulated by three GDIs, 85 GEFs, and 66 GAPs, and eventually interact with
>70 downstream effectors. A recurring theme is the challenge in understanding the molecular
determinants of the specificity of these four classes of interacting proteins that, irrespective of
their functions, bind to common sites on the surface of RHO GTPases. Identified and structurally
verified hotspots as functional determinants specific to RHO GTPase regulation by GDIs, GEFs, and
GAPs as well as signaling through effectors are presented, and challenges and future perspectives
are discussed.
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1. Introduction

The RHO (RAS homolog) family is an integral part of the RAS superfamily of guanine
nucleotide-binding proteins. RHO family proteins are crucial for several reasons: (i) ap-
proximately 1% of the human genome encodes proteins that either regulate or are regulated
by direct interaction with RHO proteins; (ii) they control almost all fundamental cellular
processes in eukaryotes including morphogenesis, polarity, movement, cell division, gene
expression, and cytoskeleton reorganization [1]; and (iii) they are associated with a series
of human diseases (Figure 1) [2].

The RHO family of proteins functions as molecular switches in the cell and cycle
between being in a GDP-bound, inactive state and a GTP-bound, active state [3]. Invaluable
insights have been gained by structural and biochemical studies of RHO GTPases and their
complexes with interacting partners thus far, increasing our understanding of both how the
switch mechanism of the RHO GTPases is regulated and how a RHO GTPase can interact
with four classes of structurally and functionally unrelated protein families (Figure 1) [3].
The cellular regulation of this cycle involves guanine nucleotide exchange factors (GEFs),
which accelerate intrinsic GDP/GTP exchange, and GTPase-activating proteins (GAPs),
which stimulate intrinsic GTP hydrolysis activity [4]. The formation of the active GTP-
bound state of the GTPase is accompanied by a conformational change in two regions
(known as switch I and II), which provides a platform for the selective interaction with
structurally and functionally diverse proteins (the so-called downstream effectors; Table 1)
that initiate a network of cytoplasmic and nuclear signaling cascades [5,6]. A prerequisite
of RHO protein function is membrane association, which is achieved by isoprenylation, a
posttranslational modification. In this respect, RHO proteins are regulated by a third control
mechanism that directs their membrane targeting to specific subcellular sites. Specifically,
guanine nucleotide dissociation inhibitors (GDIs) bind selectively to prenylated RHO
proteins and control their cycle between the cytosol and membrane. Activation of RHO
proteins results in their association with effector molecules that subsequently activate
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a wide variety of downstream signaling cascades, thereby regulating many important
physiological and pathophysiological processes in eukaryotic cells [7].

Figure 1. Molecular principles of RHO GTPase regulation and signaling. Most RHO GTPases (20 canonical human
members) act as molecular switches by cycling between a GDP-bound, inactive state and a GTP-bound, active state. They
interact specifically with four structurally and functionally unrelated classes of proteins: (A) In resting cells, guanine
nucleotide dissociation inhibitors (GDIs; 4 human members) sequester RHO in the cytoplasm, away from the membrane,
by binding to the lipid anchor and thus creating an inactivated cytosolic pool; (B) in stimulated cells, different classes
of membrane receptors activate guanine nucleotide exchange factors (GEFs; 85 human members: 74 DBL and 11 DOCK
family proteins), which in turn activate RHO by accelerating the intrinsic exchange of GDP for GTP and switch ON
signal transduction; (C) active GTP-bound RHO interacts through the GTPase-binding domain (GBD) with and activates
downstream targets (effectors; >70 human members) to cause a variety of intracellular pathways, which control a multitude
of biochemical processes involved in the regulation of different biological (dys)functions; (D) GTPase-activating proteins
(GAPs; 66 human members) negatively regulate RHO by stimulating its slow intrinsic GTP hydrolysis activity and switch
OFF signal transduction. Notably, all RHO-interacting proteins recognize and bind RHO at consensus-binding sites called
switch I and II.

The molecular mechanisms of RHO GTPase regulation have been well characterized,
but our understanding of the signal transduction to downstream targets and, most notably,
the autoinhibitory mechanisms of GEFs, GAPs, and effectors remain unclear. Very impor-
tant and challenging, the elucidation of these critical control mechanisms will open new
directions for the design of additional therapeutic interventions.

Signaling by these GTPases is controlled by other mechanisms including post-translational
modifications such as phosphorylation, ubiquitylation, sumoylation, and acetylation (see for
more details [8,9]).



Cells 2021, 10, 1831 3 of 24

Table 1. RHO GTPases, potential effectors and their functions in mammalian cells.

RHO GTPases Effector Proteins Function Functions and Effects References

RHOA

ROCK I/II Ser /Thr kinase Actin myosin contraction,
Stress fiber formation [10,11]

Citron kinase Ser /Thr kinase Cytokinesis [12]

MBS Phosphatase subunit MLC inactivation [13]

DIA 1/2 Formin-like proteins Actin polymerization [10]

RHOB Integrin β1 Cell surface receptor Cell adhesion and migration [14]

RHOC FMNL3 Formin like proteins Migration, Invasion [15]

RHOH Kaiso Transcription factor TCR activation [16]

RAC1

PAK1/2/3 * Ser /Thr kinase JNK activation, Actin
filament stabilization [17]

MLK 2/3 * Ser /Thr kinase JNK activation [18,19]

WAVE Scaffold Actin organization [20]

p70 S6 kinase * Ser /Thr kinase Translation regulation [21]

IQGAP1/2 * Scaffold Actin/cell-cell contacts [22,23]

MEKK1/4 * Ser /Thr kinase JNK activation [24]

POR1 Scaffold Actin organization [25]

p67phox* Scaffold ROS generation [26]

PI3 kinase Lipid kinase PIP3 levels [27]

DAG kinase Lipid kinase PA levels [28,29]

PLCβ2 * Lipase DAG and IP3 levels [30]

RAC1B p120ctn Catenin Cellular transformation [31]

RAC2 LFA-1 Cell surface receptor B cell adhesion [32]

RAC3 GIT1 ARF GAP and scaffold Regulation of cell adhesion
and differentiation [33]

RHOG Kinectin Kinesin receptor Microtubule dependent
transport [34]

CDC42

N-WASP Scaffold Actin organization [35]

PAK4 Ser/Thr kinase Actin organization [36]

MRCKα/β Ser/Thr kinase Actin organization [37]

TCL GIT-PIX complex Scaffold Stabilization of focal
adhesion [38,39]

RHOD Plexin A1/B1 Semaphorin co-receptor Growth cone formation [40]

RIF DIA 1/2 Formin-like proteins Actin organization [40,41]

RND1 Stathmin2 Neuronal growth
associated proteins

Microtubule
depolymerization, Neurite

extension
[42]

RND2 Rapostlin Formin-binding protein Neurite branching [43]

RND3
Socius Scaffold Loss of stress fibers [44]

ROCKI Ser/Thr kinase Actomyosin contractility [45,46]

* Proteins shown with an asterisk are shared effectors for both RAC1 and CDC42.
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2. The RHO Family and the Molecular Switch Mechanism

Members of the RHO family have emerged as key regulatory molecules that couple
changes in the extracellular environment to intracellular signal transduction pathways. To
date, 20 canonical members of the RHO family have been identified in humans and can
be categorized into distinct subfamilies based on their sequence homology: RHO (RHOA,
RHOB, and RHOC); RAC (RAC1, RAC1B, RAC2, RAC3, and RHOG); CDC42 (CDC42,
G25K, TC10, TCL, WRCH1, and WRCH2); RHOD (RHOD, RIF); RND (RND1, RND2, and
RND3); and RHOH [47].

RHO family proteins are approximately 21–25 kDa in size. They typically contain a
conserved GDP-/GTP-binding domain, called the G domain, and a C-terminal hypervari-
able region (HVR) ending with a consensus sequence known as CAAX (C is cysteine, A
is any aliphatic amino acid, and X is any amino acid) (Figure 2). The G domain consists
of five conserved sequence motifs (G1 to G5) that are involved in nucleotide binding and
hydrolysis [48]. In the cycle between the inactive and active states, at least two regions
of the protein, switch I (G2) and switch II (G3), undergo structural rearrangement and
transmit an “OFF” to “ON” signal [3]. Subcellular localization, which is known to be
critical for the biological activity of RHO proteins, is achieved through a series of posttrans-
lational modifications at a cysteine residue in the CAAX motif including isoprenylation
(geranylgeranyl or farnesyl), endoproteolysis, and carboxyl methylation [49].

Figure 2. Domains, signature motifs, and post-translational modification of RHO GTPases. RHO
GTPases contain a highly conserved G domain, which is responsible for GDP/GTP binding and GTP
hydrolysis. Switch I and switch II regions are the consensus binding sites for GEFs, GAPs, GDIs, and
effectors, and undergo conformational changes upon the nucleotide exchange and hydrolysis [3]. rest
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of captionAll members of the RHO family contain conserved glycine 12 (G) and glutamine 61 (Q;
RAC1 numbering), except for the RND proteins, which contain, among other deviations, other
residues at these positions. This is why RND proteins constantly remain in the GTP bound state [50].
Other signatures are, for example, a 19-amino acid insertion next to the switch II region in RAC1B
with drastic biochemical consequences [51], and glutamic acids (E) in CDC42 crucial for a selective
WASP interaction [52]. Some members have amino acid insertion outside the G domain (yellow boxes)
with yet unknown properties. The N-terminal insertion in WRCH1 contains proline-rich motifs
responsible for interaction with SH3-contining adaptor proteins [53]. Most members have comparable
biochemical properties such as nucleotide binding, exchange, and hydrolysis. In contrast to most
members, which end up under resting conditions in an inactive GDP-bound state, RAC1B, RHOD,
and RIF cumulate in the GTP-bound state due to a faster intrinsic nucleotide exchange reaction
(kdis) compared to the intrinsic GTP hydrolysis reaction (kcat) [54]. The C-terminal hypervariable
region (HVR) contains the terminal CAAX box, which undergoes posttranslational modification
by geranylgeranylation (GG) or alternatively farnesylation (F) in the case of RHOB and the RND
proteins at the conserved cysteine (green). Additional modification by a palmitoyl (P) moiety has been
reported for RHOB, and the CDC42-related proteins TC10, TCL, and WRCH1. These modifications
lead to the membrane anchorage of the members, a process that is stabilized and potentiated through
variable numbers of positively charged arginine and lysine residues (+).

Once an isoprenoid moiety is added to CAAX, a RHO protein is translocated to
the endoplasmic reticulum, where RCE1 cleaves the AAX tripeptide tail, and then, RHO
undergoes carboxymethylation by ICMT [55] RHO proteins can also be phosphorylated,
which can affect their association with their regulators or effectors or influence their
membrane stability [56–58].

A characteristic region of RHO family GTPases is the insert helix (amino acids 124–136,
RHOA numbering), which may play a role in effector activation and downstream pro-
cesses [59].

Although the majority of the RHO family proteins are remarkably inefficient GTP-
hydrolyzing enzymes, in quiescent cells, they accumulate in an inactive state because GTP
hydrolysis by RHO proteins is, on average, two orders of magnitude faster than GDP/GTP
exchange [47]. These different intrinsic activities provide the basis for a two-state molecular
switch mechanism, which greatly depends on the regulatory functions of GEFs and GAPs.
Eleven of the 20 RHO family members possess classical molecular switches, namely, RHOA,
RHOB, RHOC, RAC1, RAC2, RAC3, RHOG, CDC42, G25K, TC10, and TCL [47].

Atypical RHO family members including RND1, RND2, RND3, RAC1B, RHOH,
WRCH1, RHOD, and RIF have been proposed to accumulate in the GTP-bound form in
cells [47]. RND1, RND2, RND3, and RHOH constitute a completely distinct group of
proteins within the RHO family (Figure 2) [60], as they do not share several essential amino
acids including Gly-12 (RAC1 numbering) in the G1 motif (a phosphate-binding loop or
P-loop) and Gln-61 in the G3 motif or switch II region, which are critical in GTP hydrolysis.
Thus, they can be considered GTPase-deficient RHO-related GTP-binding proteins [61].
RHOD and RIF are involved in the regulation of actin dynamics [41] and exhibit much
faster nucleotide exchange than GTP hydrolysis. WRCH1, a CDC42-like protein that has
been reported to be a fast-cycling protein, resembles RAC1B, RHOD, and RIF in this regard
(Figure 2) [47]. These atypical members do not possess the classical switch mechanism and,
therefore, may be regulated through other mechanisms.

3. Regulation of RHO Family GTPases
3.1. Guanine Nucleotide Dissociation Inhibitors (GDIs)

Despite the vast number of RHOGEFs and RHOGAPs, only three GDIs exist in
the human genome. The RHOGDI family includes ubiquitously expressed GDI1 (or
RHOGDIα) [62]; GDI2 (GDIβ, LY-GDI or D4-GDI), mainly in hematopoietic tissue [63];
and GDI3 (or GDIγ), which is usually expressed in human cerebral, lung, and pancreatic
tissue [64]. An N-terminal extension that anchors GDI3 to the membrane of Golgi vesicles
distinguishes this isoform from the others [65].
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Several studies in recent decades have provided information about the structure and
function of GDIs and proposed that they act as shuttles for RHO GTPase [8,66–68]. The
shuttling process is initiated by the release of RHO GTPases from donor membranes, the
formation of inhibitory cytosolic GDI-RHO GTPase complexes, and the delivery of RHO
GTPases to the membranes of subcellular compartments [66,67].

It has been demonstrated that the isoprenylation process in cells can be regulated by
GDIs [69]. GDI mediates the release of RHO GTPases from the membrane, maintains them
in an inactivated state, and safeguards them against degradation or nonspecific activation
by RHOGEFs [25,29,30]. Different structural studies have revealed two sites of GDI and
RHO GTPase interaction [70–74]. First, an N-terminal regulatory arm of GDI binds to
the switch region of RHO GTPases and inhibits GDP dissociation and GTP hydrolysis.
Second, the N-terminus of GDI attracts the positively charged RHO hypervariable region,
which is engaged with negatively charged phospholipids of the membrane and initiates
the insertion of the geranylgeranyl moiety on the RHO GTPases into a hydrophobic pocket
in the GDI molecule, leading to membrane release [75].

3.2. Guanine Nucleotide Exchange Factors (GEFs)

GEFs are able to selectively bind to their respective RHO proteins and accelerate the
exchange of tightly bound GDP for GTP [8]. Typically, GEFs profoundly reduce the affinity
of RHO proteins for GDP, leading to its displacement from GDP and subsequent association
with GTP [76,77]. This reaction involves several stages including an intermediate state in
which the GEF is in the complex with the nucleotide-free RHO protein. This intermediate
does not accumulate in the cell and rapidly dissociates because of the high intracellular GTP
concentration, leading to the formation of the active RHO-GTP complex. The main principle
driving this mechanism is based on the binding affinity of nucleotide-free RHO protein
being significantly greater for GTP than for GEF proteins [76,78]. Cellular activation of
RHO proteins and their cellular signaling can be selectively uncoupled from GEFs through
the overexpression of dominant-negative mutants of RHO proteins (e.g., threonine 19 in
RHOA is replaced with asparagine) [79]. Dominant-negative mutants form a tight complex
with their cognate GEFs, preventing them from activating endogenous RHO proteins.
RHOGEFs are classified into two distinct families: DBL homology (DH) domain-containing
proteins, and dedicator of cytokinesis (DOCK) proteins [80,81].

3.2.1. DBL Family GEFs

RHOGEFs of the diffuse B-cell lymphoma (DBL) family directly activate the proteins
of the RHO family [82]. The prototype of this GEF family is the DBL protein, which
was isolated as an oncogenic product from diffuse B-cell lymphoma cells in an oncogene
screen [83] and was later reported to act on CDC42 [84]. Human DBL family proteins have
recently been grouped into functionally distinct categories based on both their catalytic
efficiencies and their sequence–structure relationship [47]. Members of the DBL family are
characterized by a unique DBL homology (DH) domain [85–88].

The DH domain is a highly efficient catalytic machine [80] that is able to accelerate
the nucleotide exchange of RHO proteins by as much as 107-fold. The DH domain is often
followed by a pleckstrin homology (PH) domain, indicating its essential and conserved
function. A model for PH domain-assisted nucleotide exchange has been proposed for
some GEFs such as DBL, DBS, and TRIO [80]. Thus, the PH domain serves multiple roles in
signaling events by anchoring GEFs to the membrane (via phosphoinositides) and directing
them toward their respective GTPase partners, which are on the membrane [80].

Through a search for DH domain-containing proteins in the human genome, 74 DBL
proteins have been identified (Figure 3) [47]. Interestingly, nine of these DBL proteins lack
the C-terminal tandem PH domain, and three of these proteins contain a membrane bending
and tubulating BAR (BIN/amphiphysin/RVS) domain, and seven of 20 investigated DBL
proteins do not exhibit any GEF activity (Figure 3) [47]. In addition to the DH-PH tandem
motif, DBL family proteins are highly diverse and contain additional domains with different
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functions (Figure 3) including SH2, SH3, CH, RGS, PDZ, and/or IQ domains, which enable
their interaction with other proteins; BAR, PH FYVE, C1, and C2 domains, which enable
their interaction with membrane lipids; and other functional domains such as Ser/Thr
kinase, RASGEF, RHOGAP, and RANGEF [82]. These additional domains have been
implicated in autoregulation, subcellular localization, and connection to upstream signaling
molecules [40,49,50]. Spatiotemporal regulation of DBL proteins has been suggested as a
mechanism that specifically initiates the activation of substrate RHO proteins and controls
a broad spectrum of normal and pathological cellular functions [89]. Thus, it is evident
that members of the DBL protein family are attractive therapeutic targets for a variety of
diseases [90,91].

Figure 3. Domain organization of DBL family proteins. The DBL family RHOGEFs are mostly multimodular proteins and
have a number of functional domains that may mediate cross talk between RHO proteins and other signaling pathways. DH
domains are almost always found with a PH domain in the C-terminus. Some DBL proteins contain two DH–PH cassettes,
while some DBL proteins lack tandem PH domains. Functional domains, in addition to the catalytic DH domain (green),
are probably involved in lipid and membrane binding (blue), protein interactions (bright green), and enzymatic activities
(red and orange). A scale of amino acid numbers in increments of 200 is shown at the bottom. Underlined proteins do not
exhibit activity under cell-free conditions [47].
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3.2.2. Structural and Functional Characteristics of the DH domain

The DH domain is the signature of DBL family proteins. The catalytic guanine
nucleotide exchange activity of DBL family proteins is realized entirely within the DH
domain, which is not only sufficient for catalytic activity but also critical for substrate
specificity [47,92]. The catalytic DH domain consists of approximately 200 residues, and
as determined by x-ray and NMR analyses of the DH domain in several DBL proteins, it
is composed of a unique extended bundle of 10–15 alpha helices [93]. This helical fold
is mainly composed of three conserved regions, CR1, CR2, and CR3, each of which is
10–30 residues long and forms separate alpha helices that are packed together [45,53].
The CR1 and CR3 regions are solvent exposed until complexed with RHO proteins [47].
Except for these three conserved regions (CR1, CR2, and CR3) in DH domains, DBL family
members share little homology with each other [87].

3.2.3. The Tandem PH Domain in DBL Proteins

In the majority of DBL family proteins, the catalytic DH domain is followed by a PH
domain consisting of approximately 100 residues (Figure 3), and even though the identity
of the PH domain among members of the DBL family is less than 20%, the PH-domain
containing DBL proteins share a similar three-dimensional structure with two orthogonal
antiparallel β-sheets and a folded C-terminal α-helix that cover one end [94,95]. The
PH domain was originally identified in a number of cytoplasmic signaling proteins that
displayed homology with a region repeated in pleckstrin [96,97]. The DH-PH tandem is
a signature motif of the DBL family, indicating that the PH domain has an essential and
conserved function [85,88]. The tandem PH domain can act as a “membrane-targeting
device” due to its ability to bind phosphoinositides [98]. It can also bind directly to RHO
proteins and potentiate the DH-catalyzed nucleotide exchange reaction [92,93]. In contrast,
the PH domains have been shown to bind and inhibit the activity of the DH domain [99,100].
In addition to its membrane-targeting properties, emerging evidence suggests that the
PH domain may also play important regulatory roles by serving as a protein–protein
interaction module [101].

3.2.4. A Plethora of DBL Family Proteins

It is evident that DBL family proteins are more abundant and varied in cells than RHO
family proteins. To date, 74 DBL proteins have been reported in humans, and they are
classified into different subfamilies: 46 DBL proteins are monospecific for RHO-, RAC-, and
CDC42-selective proteins, five are bispecific for RHO- and CDC42-selective proteins, and
six are oligospecific for all three RHO protein subgroups [47]. Since there are many more
DBL proteins and many of them can activate more than one RHO protein, the activation of
RHO proteins catalyzed by DBL family proteins constitutes a level of regulation in which
the signaling pathways can converge or diverge toward one or more RHO proteins [7].
This multifunctionality suggests that at least one representative of each DBL subfamily is
expressed in all mammalian cells, but they may act at distinct subcellular sites.

3.3. DOCK Family of RHOGEFs

The 11 members of the DOCK family can be categorized into four subfamilies: DOCK-
A, DOCK-B, DOCK-C, and DOCK-D [81,102]. DOCK GEFs have two conserved domains:
lipid-binding DOCK homology region 1 (DHR-1), which facilitates DOCK localization
to membrane compartments, and catalytic DOCK homology region 2 (DHR-2), which
induces the GDP-GTP exchange reaction [81,102–104]. It has been proposed that DOCK
GEFs activate RAC1 and CDC42 proteins, but not other RHO proteins [105,106].

DOCK proteins orchestrate important processes in brain development including
neuron, microglial, and Schwann cell development and functions [102,107]. DOCK2 and
DOCK8 play significant roles in immune responses such as the chemotactic responses
of T cells and B cells, ROS production in neutrophils, and migration of mature dendritic
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cells [81]. Li et al. demonstrated that DOCK1 forms a complex with ELMO1, RAC1, RAC2,
and Gαi2, which initiates actin polymerization in breast cancer cells [108].

DOCK2 has been indicated to increase amyloid beta plaque formation, which makes
this protein a potential Alzheimer’s therapeutic target [109,110]. Janssen et al. showed that
in T cells, DOCK8 can form a complex with WASP and ARP2/3 and link TCR to the actin
cytoskeleton to form a synapse for T cell responses [111].

Overall, DOCK GEFs play pivotal roles in different biological processes that can be
dependent or independent of their GEF activity.

3.4. GTPase-Activating Proteins (GAPs)

Hydrolysis of bound GTP is the timing mechanism that terminates signal transduction
of RHO family proteins and enables their return to an inactive, GDP-bound state [87]. The
intrinsic GTPase reaction is usually slow but can be stimulated to accelerate by several
orders of magnitude through interaction with RHO-specific GAPs [112,113]. The RHOGAP
family is identified by the presence of a conserved catalytic GAP domain that is sufficient
for engaging RHO proteins and mediating accelerated catalysis [114,115]. The GAP domain
inserts a conserved arginine residue, termed an “arginine finger”, into the GTP-binding
site of the cognate RHO protein to stabilize the transition state and catalyze the GTPase
reaction [74,76,77]. This mechanism is similar to that of other small GTP-binding proteins
including RAS, RAB, and ARF, although the sequence and folding of the respective GAP
families differ from other GTP-binding proteins [115,116]. Masking the catalytic arginine
finger is an elegant mechanism for the inhibition of GAP activity. This action has also
been recently discovered in the tumor suppressor protein DLC1, an RHOGAP, which is
competitively and selectively inhibited by the SH3 domain in p120RASGAP [117,118].

The first RHOGAP discovered, p50RHOGAP, was identified through a biochemical
analysis of human spleen cell extracts in the presence of recombinant RHOA [119]. The ma-
jority of RHOGAP family members typically harbor several other functional domains and
motifs that are implicated in tight regulation and membrane targeting (Figure 4) [74,82,83].
Numerous mechanisms have been shown to affect the specificity and catalytic activity of
RHOGAPs (e.g., intramolecular autoinhibition [120], posttranslational modification [121],
and regulation by interaction with lipid membranes [122] and proteins [118]).

RHOGAP insensitivity has been frequently analyzed through the substitution of
either amino acid that is critical for GTP hydrolysis by RHO proteins (e.g., Gly14 or
Gln63 in RHOA), and these mutations generate proteins known as constitutively active
mutants [123,124]. In other mutants, the catalytic arginine residue of the GAP domain
is replaced with an alanine residue [113,124]. The latter approach is, in principle, very
useful under cell-free conditions but not optimal in cells because an Arg-to-Ala mutant may
provide a readout similar to that of the wild-type protein as it interferes with downstream
signaling by competing with effector(s) for binding to RHO proteins. These RHOGAP
mutants are able to bind persistently to their target protein, sequestering the target, which
most likely leads to a readout similar to that of activated wild-type RHOGAP. Therefore,
it has recently been suggested that mutating critical “binding determinants”, particularly
Lys319 and Arg323 (p50 numbering), may be a better strategy than substituting the catalytic
arginine [114]. Charge reversal of these residues most likely leads to loss of RHOGAP
association with its substrate RHO protein and thus abrogates the activity of the GAP
domain. This outcome renders mutagenesis not only a tool for determining the specificity
of RHOGAPs, but also for investigating GAP domain-independent function(s) of the
RHOGAPs.
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Figure 4. Domain organization of the RHOGAP family proteins (adapted from Amin et al., 2016 [114]).
RHOGAPs are mostly multimodular proteins and have a number of functional domains that may
mediate cross talk between RHO proteins and other signaling pathways. Functional domains, in
addition to the catalytic GAP domain (red), are probably involved in lipid and membrane binding
(blue), protein interactions (bright green), and enzymatic activities (red and orange). A scale of amino
acid numbers in increments of 200 is shown at the bottom. Underlined proteins are GAP-like proteins
with no RHOGAP activity [114].
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3.4.1. RHOGAP Family Proteins

The GTPase reaction is of great medical significance, since any disruption of this reac-
tion such as that caused by inhibitory mutations in genes encoding GAP proteins results
in persistent downstream signaling. The discovery that GAPs are required for GTPase
downregulation was made on the basis that microinjection of recombinant GTP-bound
RAS into living cells results in faster GTP hydrolysis than is realized in vitro [125]. The
first discovered RHOGAP, p50RHOGAP, was identified by biochemical analysis of human
spleen cell extracts with recombinant RHOA [119], and this discovery led to the identifica-
tion of other RHOGAP-containing proteins such as chimaerin and BCR, whose amino acid
sequences are related to p50RHOGAP [126]. Since then, more than 66 RHOGAP-containing
proteins have been identified in humans [114,127] The RHOGAP family is identified by
the presence of a conserved catalytic GAP domain that is sufficient for RHOGAP inter-
action with RHO proteins and, in most cases, stimulation of the intrinsic GTP hydrolysis
reaction of RHO GTPases [115]. In addition to their signature RHOGAP domain, most
RHOGAP family members frequently harbor several other functional domains (Figure 4).
The majority of these domains can be classified into the following three major groups:
(i) lipid- and membrane-binding domains; (ii) peptide- and protein-interacting domains;
and (iii) catalytic domains with enzymatic activities. The most widespread domains are
PH, CC, P, SRC homology 3, and BAR/F-BAR (Figure 4). These domains are implicated
in regulation, membrane targeting, localization, and potential phosphorylation sites and
indicate the complexity of the regulation of GTPase activity. Thirteen GAPs lack any
additional putative domains but contain highly variable regions in their N- and C-termini
(Figure 4). It is possible that these regions consist of motifs that have not yet been identified,
and these regions may contribute to their specific function in the cell.

3.4.2. Structural and Functional Characteristics of the RHOGAP Domain

The GAP domain of the RHOGAP family consists of approximately 190 amino acids
and shares high sequence homology within the family. Although the RHOGAP domain
shares no similarities to RASGAP family members at the amino acid level, RHOGAPs and
RASGAPs resemble each other in their tertiary structure [128,129]. Comparative structural
analysis of the RHOGAP domain with other GAPs of RAS subfamilies has suggested that
GAP domains in RAS and RHO family proteins are evolutionarily related [128,130] and
that the catalytic domains of RHOGAPs share a core structural fold. The RHOGAP domain
is made up of seven α-helices. The functional characteristic of the RHOGAP domain is a
pair of conserved basic residues: catalytic arginine (the arginine finger) and lysine (Arg282
and Lys319 in p50RHOGAP numbering) [114,131].

3.4.3. The Mechanism by Which the GAP Domain Mediates GTP Hydrolysis

Crystallographic studies of RHOGAP domains in complex with CDC42 bound to GppNHp,
RHOA/CDC42 bound to GDP·AlF4 [76,77,95] and RHOA bound to GDP·MgF3 [132] have
provided insights into the catalytic mechanism of GTP hydrolysis upon stimulation. The
GTPase reaction, as part of the switch mechanism, leads to changes in the conformation of
the GTPase, especially in flexible and mobile loops known as switch regions. RHOGAP
interacts with the switch I and II regions [3,133] and the P-loop of the RHO protein. The
GAP domain accelerates the intrinsic GTP hydrolysis by RHO proteins in two ways. First,
it directly contributes to catalysis by inserting catalytic arginine in the GAP domain into
the active site of the RHO protein. This establishes contacts with the main-chain carbonyl
of Gly12 (RAC1 numbering) and helps stabilize the GTP-hydrolysis transition state [134].
Second, this interaction stabilizes the negative charges formed during the transition state
of GTP hydrolysis and positions the catalytic glutamine residue (Gln61 RAC1 numbering)
of the RHO protein to enable its coordination with nucleophilic water molecules [129,135].
RHOGAP also stabilizes the switch regions of the RHO protein by interacting with residues
associated with its intrinsic GTPase activity [113]. ARHGAP36, CNTD1, DEP1, DEP2,
FAM13B, INPP5P [136], and OCRL1 lack an arginine finger, which makes them catalytically
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inactive (Figure 4) [114]. ARHGAP36 is involved in GLI transcription factor activation, but
this function proceeds independent of its GAP domain. CNTD1 lacks RHOGAP activity
and acts as an ARF6 GAP. DEP1 and DEP2 coordinate cell cycle progression and interfere
with RHOA action and signaling even though they lack RHOGAP activity. OCRL1 has
been shown to interact with GTP-bound RAC1 without stimulating hydrolysis. p85α and
p85β (85-kDa regulatory subunits of phosphoinositide 3-kinases) are also RHOGAP-like
proteins (Figure 4), as they do not show any detectable GAP activity toward different RHO
proteins [28]. A prerequisite of GAP function is that the GAP domain position its catalytic
residue Arg282 (p50 numbering); therefore, GAPs include a number of amino acids that
are critical for binding and stabilizing the protein complex. Both p85 isoforms lack most of
binding determinants (e.g., Arg323, Asn391, Val394, and Pro398) as well as the conserved
amino acids around the arginine finger [114].

3.4.4. Overabundance and Diversity

Using database searches, 66 distinct RHOGAP domain-containing proteins were found
to be encoded in the human genome, whereas the number of RHO family proteins that
need to be regulated by GAPs was 18 (excluding constitutively active RHO proteins). The
overabundance of RHOGAPs implies that they must be tightly regulated in the cell to
prevent RHO proteins from being accidentally turned off. Of the 66 RHOGAPs, 57 pro-
teins have a common catalytic domain capable of terminating RHO protein signaling by
stimulating the slow intrinsic GTP hydrolysis (GTPase) reaction (Figure 4). Investigation
of the sequence-structure-function relationship between RHOGAPs and RHO proteins
by combining in vitro data with in silico data has revealed that the RHOGAP domain
itself is nonselective, and in some cases, it is rather inefficient under cell-free conditions.
This finding suggests that other domains in RHOGAPs confer substrate specificity and
fine-tunes their catalytic efficiency in cells [114].

3.4.5. Regulation and GAP Proteins Functions

RHOGAPs are widely expressed, which makes their apparent redundancy question-
able. Therefore, cells must regulate RHOGAPs very tightly to prevent unwanted events that
switch off signaling. To ensure stringent regulatory control, RHOGAPs are modulated at
different levels, indicating that regions outside the RHOGAP domain most likely determine
the specificity of RHOGAPs (Figure 4). Numerous mechanisms have been shown to affect
the catalytic activity and substrate specificity of RHOGAPs (e.g., autoinhibition (GRAF and
OPHN1) [120]); posttranslational regulation such as phosphorylation (p190GAP and Mgc-
RACGAP) [121]; lipid binding via PH or C2 domains [122]; protein–protein interactions
(DLC1/p120RASGAP) [117,118] and subcellular distribution through specific colocaliza-
tion of RHOGAPs with RHO proteins at the membrane, for example, with a scaffolding
protein (Figure 4) [137].

4. Downstream Effectors of RHO GTPases

The ability of RHO GTPases to control a wide range of intracellular signaling pathways
is attributed to their association with their cellular targets: effector proteins (Figure 5,
Table 1). In contrast to regulators that interact with RHO GTPases to modulate their switch
function, effectors require GTPases to be in a specific conformation to realize their own
intrinsic function. To date, more than 70 potential effectors have been identified for RHOA,
RAC1, and CDC42 [58].
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Figure 5. Regulation of actin-based motility by RHOA, RAC1, and CDC42. Activated CDC42, RAC,
and RHO bind to and specifically activate their downstream effectors, which are either kinases
(e.g., ROCK, PAK, and PI5K) or scaffolding proteins (e.g., DIA, WASP, IRSp53, and IQGAP). These
effector proteins activate diverse signaling pathways with distinct effects on the actin cytoskeleton
and cellular morphology. An important aspect of cell motility is the equilibrium between the myosin
light chain (MLC) and phosphorylated MLC, which is tightly regulated.

The effector proteins are either kinases or scaffolding proteins (Figure 5, Table 1). Ki-
nases form an important class of RHO effectors and result in downstream phosphorylation
cascades. Different RHO-associated serine/threonine kinases such as PAK (p21-activated
kinase), ROCK (RHO-associated coiled-coil kinase), CRIK (citron kinase), and PKN (protein
kinase novel) interact with and are regulated by their partner GTPases [138–140]. Another
group of effectors comprise scaffolding proteins, which probably form a framework for sig-
naling cascades, especially through filamentous actin dynamics. IQ motif-containing
GTPase-activating protein 1 (IQGAP1) [141], mammalian homolog of Drosophila di-
aphanous 1 (DIA1), Wiskott-Aldrich syndrome protein (WASP), and Rhotekin (RTKN) are
the most extensively investigated effectors in this regard and facilitate complex formation
in cells [142].

4.1. Structural Characteristics of RHO GTPase-effector Interactions

The crystal structures of the GTPase-binding domains (GBDs) of PKN and RHO
kinase (ROCK) in complex with RHOA revealed that the domains, as predicted from
their primary structure, form α-helical coiled coils that are arranged in an antiparallel
and parallel fashion, respectively [143,144]. A 13-residue left-handed coiled coil in the
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C-terminal portion of the ROCK-GBD, which is considered the minimal sequence required
for RHO-interacting motif activity, binds exclusively to the switch and α2 regions of RHOA.
In contrast, the RHOA-PKN complex has two possible contact sites on RHOA [143]: contact
site 1 consists of the α1, β2/β3, and α5 regions of RHOA, whereas contact site 2 overlaps
remarkably well with the ROCK-binding site. The structures of CDC42 in complex with
effector proteins containing a CDC42/RAC-interactive binding (CRIB) motif such as PAK1
and WASP, which have been determined mostly by NMR spectroscopy due to their high
flexibility [145–149], have shown that the GBD in this class of effectors makes extensive
contact with the surface of RHO GTPases. Specifically, GBD binds through its β-hairpin
and C-terminal α-helix to the α1, switch I, and II regions and wraps around the α5 and β2
regions of the GTPase with its extended N-terminus, which encompasses the CRIB motif.
The basic region of WASP, immediately upstream of the CRIB motif, has been shown to
generate favorable electrostatic steering forces to unique glutamate residues in CDC42
(Glu49, Glu171, and Glu178) that control the accelerated WASP-CDC42 association reaction
(Figure 2) [52,150]. This process is a prerequisite for WASP activation and a critical step in
the temporal regulation and integration of WASP-mediated cellular responses (Figure 5).

Two other effectors, arfaptin and p67phox, have novel structures and contact sites
on the GTPase [151,152]. Arfaptin forms an elongated crescent-shaped dimer with three
helix coiled-coils that makes contact with the switches I and II and α2 regions of RAC1,
regardless of its nucleotide-bound state [152], and structurally mimics the DH domain of
Tiam1 [153]. p67phox has an α-helical domain that consists of four tetratricopeptide repeat
(TPR) motifs, which bind α1, the N-terminal residues of switch I, and the G3 and G5 loops,
but not the switch II region or the principal parts of switch I [151]. It has been proposed
that the switch regions might be the contact sites for a third protein that is associated with
the Rac1-GTP-p67phox complex [154,155].

The mechanism of effector activation of the GTPase–effector complex structures men-
tioned thus far have not been clarified; however, intramolecular autoinhibition and expo-
sure of their functional domains are known to be required. A common feature of effector
complexes is that, with the exception of p67phox, they all make intensive contact with
the switch/α2 regions of RHO GTPases, which indicates that this region probably serves
as the platform for the GTP-dependent recognition of effectors. Two invariant leucine
residues (Leu69 and Leu72), which form crucial hydrophobic contacts with almost all
effector domains, have been proposed as essential elements for the CDC42/RAC-mediated
activation of CRIB-containing effectors [148]. A different activation mechanism has been
implicated for the RHO-specific effectors PKN and ROCK, with other domains that bind
cooperatively to sites outside the switch regions of RHOA [156].

4.2. RHO GTPase-Mediated Effector Signaling

The fact that effectors commonly contact distinct residues within the highly conserved
switch I and II regions of RHO GTPases [3,5] strongly suggests that other domains bind
cooperatively to sites outside the switch regions [3,156]. This possibility might explain the
cellular specificity of RHO GTPase–effector interactions. Pioneering experiments by Alan
Hall and colleagues showed that the reorganization of the actin cytoskeleton is regulated by
proteins in the RHO family including CDC42, RAC1, and RHOA (Figure 5) [157]. CDC42
and RAC1 activation, in turn, activates the ARP2/3 complex indirectly via WASP and
WAVE to induce branched actin filament networks and the formation of tight bundles
of parallel filaments that form the core in filopodia and the formation of a network of
diagonally oriented actin filaments that give rise to thin sheets of lamellipodia. RHOA
activation leads to the activation of ROCK and DIA and the organization of actomyosin
bundles into stress fibers as well as the formation of focal adhesions [1,5]. Coordination of
the distinct roles of these GTPases is crucial for regulating cell migration, as demonstrated
by wound closure in a fibroblast monolayer: CDC42 regulates cell polarity, RAC1 regulates
the protrusion of lamellipodia at the leading edge, and RHO regulates the turnover of
highly organized structures termed focal adhesions (reviewed in [7,158–165]).
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Moreover, RHO GTPases control signal transduction pathways that influence gene
expression including the serum response factor (SRF), nuclear factor κB (NFκB) transcrip-
tion factor, c-JUN N-terminal kinase (JNK), and p38 mitogen-activated protein kinase
pathways [19,166]. It has been reported that several enzyme activities can be altered by
RHO GTPases. RAC1 can bind directly to p67phox, a component of the NADPH oxidase
complex, and activate NADPH oxidase activity to generate reactive oxygen species (ROS)
(Table 1) [167]. The BCR gene produces a 160 kDa product called p160bcr, which encom-
passes several distinct domains. p160 exhibited GAP activity toward RAC1, RAC2, and
CDC42 GTPases. An early study has shown that BCR regulates RAC-mediated superoxide
production by the NADPH-oxidase system of leukocytes [168].

5. Conclusions

Abnormal activation of RHO proteins has been shown to play a crucial role in cancer,
infectious and cognitive disorders, and cardiovascular diseases. However, several studies
must be performed to gain understanding into the complexity of RHO protein signaling.
(i) The RHO family comprises 20 signaling proteins, of which only RHOA, RAC1, and
CDC42 have been comprehensively studied thus far. The functions of the less-characterized
members of this protein family await detailed investigation. (ii) Despite intensive research
over the past two decades, the mechanisms by which RHOGDIs associate and extract
RHO proteins from the membrane and the factors displacing the RHO protein from the
complex with RHOGDI remain to be elucidated. (iii) A tremendous number of 20 RHO-
regulating proteins (85 GEFs and 66 GAPs) exist in the human genome. How these
regulators selectively recognize their RHO protein targets is not well understood, and the
majority of GEFs and GAPs in humans remain uncharacterized. (iv) GDIs, GEFs, GAPs,
and effectors, despite their structural diversity, share consensus binding sites within the
switch I and II regions [3]. However, all these RHO-binding partners require contact with
other regions, not their shared binding region, to realize their specificity for different RHO
proteins. (v) A major challenge ahead, which has not been fully addressed thus far, will be
gaining an understanding of the spatial temporal regulation of RHO GTPase activity and
the interaction of RHO proteins with distinct downstream effectors. (vi) Most GEFs and
GAPs need to be regulated and their activation is generally achieved through the release
of autoinhibitory elements [92,120]. With a few exceptions [4], the operating principles
of these autoregulatory mechanisms remain obscure. (vii) A better understanding of
the specificity and the mode of action of the regulatory proteins as well as the selective
recruitment and activation of effectors to specific subcellular sites is not only fundamentally
important for understanding many aspects of RHO biology, but is also the master key to
unlocking the identity of key targets useful in developing drugs against a variety of diseases
caused by aberrant RHO protein functions. This regards the spatiotemporal features whose
understanding is afflicted with major conceptual shortcomings. Future models should
consider both the emerging principle of biomolecular condensates (or non-membrane-
bound organelles) that are assembled in liquid-liquid phase separation [169,170] and the
modulating principle of accessory proteins [171–173], which appears to safeguard the
strength, efficiency, and specificity of signal transduction.
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Abbreviations

ABD APC binding domain
ACK1 Activated CDC42 kinase 1
AlF4 Tetrafluoroaluminate
ANK Ankyrin-repeat
ARP2/3 Actin related protein 2/3
ASH ASPM-SPD-2-Hydin
BAR BIN–Amphiphysin–RVS
BCR Breakpoint cluster region
BRCT BRCA1 C-terminal domain
C1 DAG-binding domain
C2 Calcium/lipid-binding domain
CC Coiled-coil
CDC25 Catalytic RASGEF domain
CDC42 Cell division control protein 42
CH Calponin homology
CIP4 CDC42 interacting protein
CNTD1 Cyclin N-terminal domain-containing protein
CYFIP1/2 Cytoplasmic FMR-1 interacting protein 1/2
DAG kinase Diacyglycerol kinase
DAG Diacylglycerol
DBL Diffuse B-cell lymphoma
DEP Dishevelled, Egl-10 and Pleckstrin domain
DH DBL homology
DIA Diaphanous-related formin
DLC1 Deleted in liver Cancer
EH1 EPS15 homology
F-BAR Extended Fes-CIP4 homology (FCH)-BAR
Far Farnesyl moiety
FERM 4.1 protein/ezrin/radixin/moesin
FF Conserved phenylalanines
FMNL3 Formin-like protein 3
FYVE FAB1/YOTB/VAC1/EEA1
GAPs GTPase activating proteins
GDIs Guanine nucleotide dissociation inhibitors
GDP Guanosine-5′-diphosphate
GEFs Guanine nucleotide exchange factors
GG Geranylgeranyl moiety
GIT G protein-coupled receptor kinase-interactor 1
GppNHp Guanosine-5′- [(β, γ)-imido] triphosphate, Trisodium salt
GTP Guanosine-5′-triphosphate
GTPase GTP-binding and hydrolyzing domain
GTPase Guanine triphosphatase
HVR Hypervariable region
ICMT Isoprenylcystein carboxyl methyltransferase
IP3 Inositol triphosphate
IPP5 Inositol polyphosphate 5-phosphatase
IQ Isoleucine-glutamine-rich
IQGAP IQ motif-containing GTPase activating proteins
IRSp53 Insulin receptor substrate 53 kDa
kDa Kilodalton
LFA-1 Leukocyte function associated molecule 1 alpha
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lgC2 Immunoglobulin C-2 Type
LIMK LIM domain kinase
MBS Myosin binding subunit
MEKK Mitogen Activated Protein kinase kinase kinase
MgF3 Magnesium fluoride
MLC Myosin light chain
MLCK Myosin light chain kinase
MLCP Myosin light chain phosphatase
MLK Mixed lineage kinase
MRCK Myotonic dystrophy kinase related- CDC42 binding Kinase
MT Microtubule
MYSc Myosin head domain
MyTH4 Myosin tail homology 4
OCRL1 Lowe oculocerebrorenal syndrome protein
OPHN1 Oligophrenin
P Proline-rich
PA Phosphatidic acid
PAK p21 activated kinase
P Palmitoyl moiety
PAR6 Partitioning defective 6 homolog
PBR Polybasic region
PDZ PSD95/DLG/ZO-1
PEST Proline-glutamic acid-serine-threonine-rich
PH Pleckstrin homology
PI3 kinase Phosphatidylinositol 3-kinase
PI4P5K Phosphatidylinositol 4, phosphate 5 kinase
PIP2 Phosphatidylinositol 4,5 biphosphate
PIP3 Phosphatidylinosiltol-3,4,5-triphosphate
PIX p21-activated protein kinase exchange factor
PLC Phospholipase C
POR1 Partner of RAC1
RA RAS association domain
RAC RAS-related C3 botulinum toxin substrate
RALBD RAL-binding domain
RBD RAS-binding domain
Rce1 RAS converting enzyme
REM RAS exchanger motif
RGS Regulator of G protein signaling
RHO RAS homolog
ROCK RHO-associated protein kinase
S_TKc Serine/Threonine protein kinase catalytic domain
SAM Sterile alpha motif
SEC14 Phosphoinositide binding
SH SRC homology
SH2 SRC homology 2
SH3 SRC homology 3
SPEC Spectrin repeat
StART Steroidogenic acute regulatory protein-related lipid transfer
TCR T cell receptor
VPS9 Vacuolar protein sorting-associated 9
WASP Wiskott-Aldrich Syndrome Protein
WAVE WASP family verprolin homologous protein
WW Conserved tryptophans
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