
Journal of Vision (2021) 21(4):3, 1–16 1

Curvilinear features are important for animate/inanimate
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The current experiment investigated the extent to which
perceptual categorization of animacy (i.e., the ability to
discriminate animate and inanimate objects) is
facilitated by image-based features that distinguish the
two object categories. We show that, with nominal
training, naïve macaques could classify a trial-unique set
of 1000 novel images with high accuracy. To test
whether image-based features that naturally differ
between animate and inanimate objects, such as
curvilinear and rectilinear information, contribute to the
monkeys’ accuracy, we created synthetic images using
an algorithm that distorted the global shape of the
original animate/inanimate images while maintaining
their intermediate features (Portilla & Simoncelli, 2000).
Performance on the synthesized images was significantly
above chance and was predicted by the amount of
curvilinear information in the images. Our results
demonstrate that, without training, macaques can use
an intermediate image feature, curvilinearity, to
facilitate their categorization of animate and inanimate
objects.

Introduction

Primates can recognize objects with remarkable speed
and accuracy—an ability that is crucial for avoiding
predators, identifying food sources, and otherwise
surviving in their natural habitat. Although seemingly
effortless, decades of research in visual neuroscience
and computer vision have shown that the ability to
extract an object from a visual scene and categorize it
is far from trivial (e.g., Pinto et al., 2008). The primate
brain is equipped to deal with this computational
problem by exploiting a vast array of features to classify
objects into categories. Some distinctions are made
based on knowledge or experience with the object,
such as how it can be used (Bovet & Vauclair, 1998;
Träuble & Pauen, 2007), whether it is threatening (Lipp,
2006; LoBue & DeLoache, 2011), or what contexts it is
often found in (Blake et al., 2007; Kalénine et al., 2009;
Kalénine et al., 2014), whereas others are determined
based on the appearance of the object alone, by using
its visual features such as color, size, global shape, and
texture, etc.
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The relative contribution of knowledge- and
image-based information to object categorization
varies across situations due to a number of factors.
A crucial factor is the extent to which image-based
features are predictive of a meaningful category or
object class—a reasonable prerequisite for a visual
system to rely on visual cues for object classification.
Furthermore, the category or object class itself might
influence the relative contribution of image information
and prior experience needed to perform categorization.
A long-standing line of research in evolutionary
psychology has suggested that the primate visual system
is highly tuned for the detection and recognition of
animacy (Meyerhoff et al., 2014; Calvillo & Hawkins,
2016; Nairne et al., 2017; Long et al., 2019), even as
early as 3 months old (Rakison, 2003; Heron-Delaney
et al., 2011; Opfer & Gelman, 2011). A number of
biological processes and key image feature differences
have been proposed to explain how this discriminative
ability might emerge so early in development. For
example, some researchers have argued that innate
processing biases interact with crude image-based
biological templates to produce a sensitivity to faces
from birth (Chiara et al., 2008; Sugita, 2008). Others
have argued for a greater emphasis on the role of
experience, through which persistent social exposure to
faces early in life leads to a preference for face stimuli
via more domain-general neural mechanisms (Srihasam
et al., 2014; Livingstone et al., 2017). Yet another line of
research has shown that human infants might develop
concepts of animacy based on differences between
biological and nonbiological motion (Mandler, 1992;
Simion et al., 2008).

That the animate-inanimate distinction might
be special to our visual system, and that these two
categories differentially covary with a number of image
features, suggests a plausible mechanism by which the
primate visual system evolved to exploit image feature
covariances to make animate-inanimate categorization
judgments. One such feature is curvilinearity, or the
extent to which the image of an object is composed of
curved lines and textures. Animate objects tend to be
more curvilinear than inanimate objects (Kurbat, 1997;
Levin et al., 2001).

A recent study by Zachariou et al. (2018)
demonstrated that, when deprived of global shape
cues, humans were able to categorize animate and
inanimate objects using just curvilinear information.
Further, curvilinear information was positively
correlated with performance on images of animate
objects and negatively correlated with performance
on inanimate objects. Given the lack of object shape
information in the stimuli used and the lack of
relationship between subjects’ confidence ratings and
their accuracy, it appears that this categorization
ability is driven by an implicit, primarily bottom-up
process.

If the human visual system can implicitly rely on
curvilinear information to perform animate-inanimate
categorization, it is possible that this may be a property
of the primate visual system more broadly. To test
this hypothesis, the current study sought to establish
the contribution of image-based information to
animate-inanimate categorization in a nonhuman
primate, the rhesus macaque, by (1) testing the ability
of macaques to categorize a large trial-unique set
of animate and inanimate intact images that were
unfamiliar to them, and (2) testing whether the
macaques could use curvilinearity, without training, to
categorize the objects when global shape information
was removed.

Materials and methods

Subjects

Three male rhesus macaques (5–8 kg) were used
in two behavioral experiments. All experimental
procedures were approved by the National Institute of
Mental Health Animal Care and Use Committee.

Visual stimuli

The first experiment included 500 images of animate
objects and 500 images of inanimate objects, which
were downloaded from open-source repositories on
the internet. The animate images were comprised of
mammals, birds, fish, reptiles, and insects (Figure 1a).
The inanimate images included human-made objects,
such as tools, vehicles, buildings, various household
items, and natural objects, such as rocks and flowers
(Figure 1b). All object images were digitally processed
(see Supplementary Materials for a detailed description
of this process) to match size, background, mean
luminance, and root-mean-square (RMS) contrast. All
images were resized to 200 × 200 pixels.

For the second experiment, we used an algorithm,
described in detail in Portilla and Simoncelli (2000), to
generate synthesized images of animate and inanimate
objects (Figures 1c, 1d) that abolished the global shape
of the original images but maintained their intermediate
visual features (see Supplementary Materials). One
thousand synthesized images were generated using the
testing set of 500 animate and 500 inanimate intact
images used in experiment 1.

Experimental procedures

The monkeys sat in a primate chair inside a
darkened, sound-attenuated testing chamber. They
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Figure 1. Examples of stimuli: (a) animate images; (b) inanimate images; (c) synthesized animate images; and (d) synthesized
inanimate images.

were positioned 57 cm from a computer monitor
(Samsung 2233RZ; Wang & Nikolic, 2011) subtending
40 degrees × 30 degrees of visual angle. The design and
control of task timing and visual stimulus presentation
were executed with networked computers running
custom written (Real-time Experimentation and
Control, REX; Hays et al., 1982) and commercially
available (Presentation, Neurobehavioral Systems)
software.

Training for experiment 1

Monkeys were initially trained to grasp and release
a touch sensitive bar to earn water rewards. After this
initial shaping, a red/green color discrimination task
was introduced. Red/green trials began with a bar press,
and 100 ms later a small red target square (0.5 degrees)
was presented at the center of the display (over-laying
a white noise background). Animals were required to
continue grasping the touch bar until the color of the
target square changed from red to green, this occurred
randomly between 500 and 1500 ms after bar touch.
Rewards were delivered if the bar was released between
200 and 1000 ms after the color change; releases
occurring either before or after this epoch were counted
as errors. All correct responses were followed by visual
feedback (the target square color changed to blue) after
bar release and reward was delivered between 200 and
400 ms after visual feedback. There was a 2 second
inter-trial interval (ITI), regardless of the outcome of
the previous trial.

After each monkey reached criterion in the
red/green task (2 consecutive days with >85% correct
performance), a visual categorization task was

introduced. Each trial began when the animal grasped
the touch bar. Next, an image (14 degrees × 14 degrees)
appeared at the center of the screen, followed by a
red cue over the center of the image. When the image
presented was animate, the monkey had to release the
bar before the red cue turned green to receive a liquid
reward. When it was an inanimate trial, the monkey
had to continue to hold the bar until the red cue turned
green and then release the bar to receive a liquid reward
(Figure 2). The red cue was displayed on the screen for
1 to 3 seconds before turning green in inanimate trials.
If the monkey released the bar during the red target
and an inanimate image was presented, no reward was
delivered, and the image was displayed on the screen
for a 4 to 6 second time out. If the monkey did not
release the bar during the inanimate image presentation
within 1000 ms after the red target turned green, no
reward was delivered and there was a 3 second time
out.

If an equal drop size was used as reward for both
conditions, monkeys would tend to favor a release
on red because of the delay discounting effect when
waiting for green. Therefore, the number of reward
drops delivered for correct responses to red or green
was adjusted during the training phase to reduce the
bias in responding to each category for each animal. As
such, the drop ratio for correct animate versus correct
inanimate trials was 1 to 7 for monkey 1 (M1), 1 to 6 for
monkey 2 (M2), and 1 to 9 for monkey 3 (M3). Each
monkey was trained on a repeated set of 20 animate
and 20 inanimate images for several days until their
choice accuracy reached above 85% accuracy for 2
consecutive days. The categorization accuracy in the
last training day was 98% for M1, 96% for M2, and 88%
for M3.
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Figure 2. Experimental procedure. Each trial began when the animal grasped the touch bar. An image appeared at the center of the
screen, followed by a red cue over the center of the image. When the image presented was animate, the monkey had to release the
bar within 1 to 3 seconds of the appearance of the red cue to receive a liquid reward. When it was an inanimate trial, the monkey had
to continue to hold the bar until the red cue turned to green (between 1 and 3 seconds after red cue onset) and then release the bar
during the green cue to receive a liquid reward.

Testing for experiments 1 and 2

During the testing phase of experiment 1, monkeys
were tested on trial-unique sets of 100 novel animate
and 100 novel inanimate intact images for 3 (M1) or
5 days (M2 and M3). After the third testing day on
classifying intact images into animate and inanimate
categories, M1 reached an accuracy of 91%. Due to this
clear demonstration of high performance categorizing
intact images, we stopped testing M1 on intact images
and moved onto testing classification of synthesized
images. Crucially, the training images were never
shown in the testing sets, and on each testing day,
monkeys were presented with a new set of unfamiliar
images. Immediately after experiment 1, monkeys were
moved to experiment 2, in which they were tested on
trial-unique sets of 100 synthesized animate and 100
synthesized inanimate images (see Figures 1c, 1d) for 5
days (M1, M2, and M3).

Classification analyses

The statistical significance of classification accuracy
was evaluated for each monkey individually using a
permutation test. For each monkey, we created a vector
comprised of his responses on each trial (animate or
inanimate), which we labeled as Vr, and an additional
vector comprised of values representing the actual
category of a trial (animate or inanimate), which we
labeled as Vc. We then shuffled both the order of Vr and
Vc. Then, for each row of the vectors, if the value in Vr
matched that of Vc, we labeled that trial as correct and
if not, as incorrect. Using this method, we calculated
the overall accuracy (percentage correct irrespective
of category), the accuracy for the animate category
(percentage of animate trials correctly classified), and

the accuracy for the inanimate category (percentage
of inanimate trials correctly classified). The shuffling
procedure was repeated 10,000 times for each monkey
and for each permutation, we recorded these 3 accuracy
values. At the end of the 10,000 permutations, each
monkey had its own chance distributions (with 10,000
data points each), representing overall accuracy. Using
these chance distributions, we evaluated the significance
of each monkey’s actual mean classification accuracy.
The permutation test was run for each monkey for each
experiment separately.

Reaction time

Because the experiments used an asymmetric
design, monkeys had more time to make a decision
on inanimate trials, and less time on animate trials.
As such, analysis of reaction time would not yield
useful information on how monkeys performed the
task. Therefore, reaction time was not analyzed and
presented here.

Quantifying the amount of curvilinear and
rectilinear information of the stimuli

We calculated the amount of curvilinear and
rectilinear information present in each image using
a method presented previously in Yue et al. (2014),
Zachariou et al. (2018), and Yue et al. (2020).

After normalizing the mean luminance and RMS
contrast of the stimuli, we calculated the amount of
curvilinear and rectilinear information present in each
image using curved Gabor filters developed by Krüger
et al. (2001): these curved Gabor filters are a product
of a rotated complex harmonic wave function and a
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two-dimensional bent and rotated Gaussian function.
It is formulated as follows:

B
⇀

b (x, y) = r
⇀

b ∗ G
⇀

b (x, y) ∗
(
F

⇀

b (x, y) − DC
⇀

b
)

where F
⇀

b is the rotated complex harmonic wave
function, G

⇀

b is the two-dimensional bent and rotated
Gaussian function, and a vector

⇀

b includes three
variables: frequency, orientation, and level of curvature.
The bank of the curved Gabor filters is composed of
120 individual curved Gabor filters, including three
spatial scales (frequency), eight orientations, and five
levels of curvature. Each stimulus image was resized
to 256 × 256 pixels and processed using local input
divisive normalization (Pinto et al., 2008). The images
were then convolved with the bank of curved Gabor
filters, which produced 120 (3 × 8 × 5) curved Gabor
coefficients, each presented as an image. Each curved
Gabor coefficient image, including both the complex
and real components, represented the result from a
curved Gabor filter with a unique combination of a
spatial scale, an orientation, and a level of curvature.
The magnitudes of each curved Gabor coefficient image
on each pixel were calculated as the square root of
the sum of squared coefficients of complex and real
components. Then, the largest magnitude across all 120
curved Gabor coefficient images was extracted for each
pixel to create a peak curved Gabor coefficient image.
This step eliminated responses produced by nonoptimal
curved Gabor filters, so that the peak curved Gabor
coefficient image represented the optimal curved Gabor
filter response to an image across scales, orientations,
and levels of curvature.

The same procedure was repeated using the bank
of rectilinear Gabor filters, composed of 3 spatial
scales and 8 orientations, to generate 24 rectilinear
Gabor coefficient images. Next, the largest magnitude
across all 24 rectilinear Gabor coefficient images was
extracted for each pixel to generate a peak rectilinear
Gabor coefficient image. Then, the magnitude in the
peak curved Gabor coefficient image was set to zero
at a pixel if its magnitude was smaller than that in
the peak rectilinear Gabor coefficient image in that
pixel. The procedure went through all pixels to create
a curved Gabor coefficient image with no rectilinear
features represented, which we called a unique curved
Gabor coefficient image. Finally, a curvilinear value
of the stimulus image was produced by averaging the
unique curved Gabor coefficient image across all pixels.
The degree of curvature of our filters was essentially
formalized by the result of a second polynomial
function in two dimensions. In this framework, the
sharpest tight curve would not break up to become
a rectilinear corner and the shallowest curve would

approach a straight line, but not become a straight line
as long as the coefficient of the second-degree term was
non-zero.

Thus, at the end of this process, each image was
assigned a curvilinear value. For each condition, a
curvilinear value was produced by averaging all eight
curvilinear values of the eight images in each condition.
This curvilinear value represented the amount of
curvature in that condition across scales, orientations,
and levels of curvature. Similarly, the rectilinear values
of each image were averaged to produce a rectilinear
value for each condition, representing the residual
intermediate feature information that was not captured
by curvature information.

Predicting categorical membership of images
using curvilinear and rectilinear information

We performed a logistic regression of curvilinear and
rectilinear values on the image category. This logistic
regression model allowed us to calculate a likelihood
of an image belonging to the animate category with
a given set of curvilinear and rectilinear values. With
this procedure, we created an animacy probability map
across curvilinear and rectilinear space to establish the
relationship between image category membership and
curvilinear and rectilinear values and plotted the raw
values for all of the images as black circles (animate)
and white crosses (inanimate) on top of the probability
map.

To further illustrate the consistency in the
relationship of curvilinear and rectilinear values with
image categories between the raw data and logistic
regression data, we created a map from the raw
data using the following linear interpolation method
procedure. Each image was represented as a point in
three-dimensional space: category membership (1 or 0),
curvilinear values, and rectilinear values. The categorical
membership values between any two adjacent points
in curvilinear and rectilinear space were linearly
interpolated to fill the empty space between those two
points and create a smooth surface plot. This process
was repeated for all points. The categorical membership
values between the raw data points are not meaningful
but help illustrate the distribution of animate and
inanimate images within the curvilinear and rectilinear
space and its similarity to the logistic regression model
results.

Logistic regression of monkeys’ performance
with trial numbers

As the monkeys were rewarded when they correctly
performed the categorization in the testing phase of
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experiments 1 and 2, their averaged performance likely
resulted from both the use of features they learned
from the training images to categorize animate and
inanimate images and continuous learning during the
testing phase. To determine the contribution of these
two factors to the overall performance, we conducted
a logistic regression on each monkey’s performance
using trial number as a regressor. Specifically, we
regressed the monkey’s response for each trial (either
right or wrong) with the trial number, in which the
trial number was treated as a continuous variable.
The trials in which monkeys failed to respond were
excluded from the analysis. In this model, a significantly
positive non-zero intercept means that the ratio of
performing right over wrong is substantially larger
than 1, indicating that a monkey performed the task
significantly above the chance at the beginning of
the experiment. A significantly larger than zero slope
means their performance continuously improved as the
experiment proceeded.

Performance consistency analysis across
monkeys

To assess the similarity of performance across the
three monkeys, we assessed performance consistency
for both experiment 1 and 2 with a Cronbach alpha
test. First, all images sorted in ascending order of
curvilinear values were grouped into 10 bins with an
approximately equal number of images in each bin.
Then, the categorization accuracy was calculated for
each bin, which generated 10 categorization accuracies
for a monkey. The same procedure was repeated for each
monkey separately. We then used those categorization
accuracies per monkey to compute the Cronbach
alpha to evaluate the performance consistency across
monkeys. Ten bins were chosen to contain enough trials
within each bin to get reliable accuracy.

For experiment 1, the data analyzed were collected
on day 1 to day 3 for M1, day 2 to day 5 for M2, and
day 1 to day 5 for M3. To compare the performance
consistency across monkeys, we used the data collected
only on day 2 and day 3 in which the same sets of visual
stimuli were presented to all monkeys. For experiment
2, we used data collected from all 5 days because all
monkeys were examined over the whole testing phase.

Logistic regression of monkeys’ performance
with curvilinear and rectilinear values of visual
stimuli

To determine whether and the extent to which
the amount of intermediate image features (such
as curvilinearity and rectilinearity) presented
in experiments 1 and 2 contribute to monkeys’

performance, we conducted a logistic regression of
monkeys’ performance (right or wrong) with the
curvilinear and rectilinear values of our visual stimuli
(Yue et al., 2014; Zachariou et al., 2018). The trials in
which monkeys failed to respond were excluded from
the analysis.

The analysis was conducted at the group level to
increase the signal-to-noise ratio using MATLAB
(MathWorks, Inc.) with the following procedure.
First, the performance from the three monkeys
was concatenated to create a group response. Then
curvilinear and rectilinear values for each stimulus
were entered into the logistic regression model as two
independent regressors. We included stimulus type
(animate or inanimate) as a categorical variable in the
logistic regression model to examine the interaction
between the amount of intermediate image features
and stimulus type on the monkeys’ performance. As
raw responses from each monkey were used, curvilinear
and rectilinear values of a stimulus that more than one
monkey responded to appeared more than once in the
regression model.

To determine the contribution of the amount
of intermediate visual features to the monkeys’
performance, we fitted a logistic regression to raw
responses, instead of average response accuracies per
stimulus in a linear regression, for two reasons: (1) to
avoid overestimating the influence of stimuli that only
one monkey responded to, and (2) to avoid creating
artificially continuous responses with averaging,
because responses were discrete.

Deep convolutional neural network training and
correlation analysis

The deep convolutional neural network (DCNN),
AlexNet (Krizhevsky et al., 2012), was imported into
MATLAB, and pretrained on the ImageNet database
(Deng et al., 2009). All pretrained weights in the
first 22 layers were kept the same, whereas the last
3 layers—fully connected layer, SoftMax layer, and
classification layer—were trained to classify each
intact image into animate or inanimate categories. The
training was conducted on the 500 intact animate and
500 intact inanimate images used in experiment 1,
using the stochastic gradient descent with momentum
optimizer, minimum batch size 64, maximum epochs 20,
and an initial learning rate of 10−4. After 300 iterations,
the neural network performance converged on an
accuracy of 99.9%. Then, the trained neural network
was tested to classify the same 1000 synthesized
images used in experiment 2 into either the animate or
inanimate category.

As the images that the monkeys skipped varied
across individuals, it was not possible to conduct a
correlation analysis of the monkeys’ group performance
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with DCNN performance at the individual image
level. Thus, to compute the correlation of the DCNN
classification accuracies and the monkeys’ response
accuracies to the synthesized images in experiment
2, we arranged the responses of the DCNN and each
monkey according to the ascending order of curvilinear
values of the synthesized images presented in each trial.
The ordered responses were then grouped into 40 bins.
The monkeys’ accuracies used for the correlation
analysis were averaged across all three animals. Next,
the response accuracy for each bin was calculated for
the DCNN and monkeys, resulting in 2 sets of 40 data
points. The significance of the correlation was assessed
by a permutation test (10,000 iterations).

Results

Experiment 1: Intact images

1) Overall classification accuracy for individual
monkeys

During the testing phase of experiment 1, in which
novel intact images were used for the categorization
task, each image was presented only once regardless
of the monkeys’ responses. This eliminated the option
of memorizing test images to perform the task. Across
5 days of testing, all monkeys performed the task
significantly above chance (overall accuracy for M1 =
80.88%, p < 0.0001; M2 = 78.38%, p < 0.0001; and M3
= 76.95%, p < 0.0001). The statistical significance was
determined by permutation test (see Methods). The
overall response rate was 99.64% for M1, 73.43% for
M2, and 98.86% for M3.

M2 performed significantly above chance level
(50%) on the last day of training, with an accuracy
of 96% (p < 0.001, permutation test). Meanwhile, his
performance on the first half of day 1 testing was below
chance (accuracy: 38.75%, p < 0.0001, permutation
test) as shown in Supplementary Figure S1. This large
drift in performance from training to the first day’s
testing, which was not observed in the other two
monkeys, might be explained by a strategy in which M2
memorized the small number of the training images
instead of learning a rule to perform the task during
the training phase. Thus, in the first day of testing, M2
was learning the categorization task. After eliminating
data from this day, overall performance was 85.64% (p
< 0.001), and overall response rate was 73.3%. Unless
stated otherwise, subsequent analyses used M2’s testing
data from day 2 to day 5 only. Data from all 5 days of
testing are included in Supplementary Figure S2.

The data show that monkeys were able to successfully
classify intact images that they had no previous
experience with into animate and inanimate object

categories, suggesting that image-based features
distinguishing the two categories played a significant
role in the monkeys’ categorization performance.

2) Generalization and learning effect for individual
monkeys

Because monkeys were given a liquid reward
whenever they categorized images correctly in the
testing phase, their overall performance could have
resulted from continuously learning to categorize
testing images as animate and inanimate due to reward
feedback. In other words, significantly above-chance
performance in the testing phase may not have captured
the full picture of the monkeys’ complex processing.
Their performance could have more to do with this
continuous feedback than with generalizing visual
features learned during the training set to categorize the
testing images. To separate the effect of generalization
from the effect of learning during the testing phase,
we performed a logistic regression (see Methods)
on a single-trial basis to quantify the generalization
as the intercept and learning as the slope of the
regression model. We anticipated that, if there were a
generalization effect, then the intercept of the logistic
regression model would be significantly greater than
zero, and if there were a learning effect, then the slope
of the regression model would be significantly greater
than zero.

Monkeys were able to use the information they
learned during training to perform the categorization
task on unfamiliar images at the onset of the testing
phase, as shown in Table 1, where the intercept of
the logistic regression is shown to be significantly
above chance for all three monkeys. The slope of
the logistic regression was positive and significantly
different from zero in all monkeys, indicating that
performance improved as testing progressed. All three
monkeys’ performances were significantly associated
with trial number, as shown in Figure 3 and Table 1
(for M1: χ2 [595] = 58.545, p = 1.98 × 10−14; M2: χ2

[584] = 18.361, p = 1.828 × 10−5; and M3: χ2 [986]
= 13.252, p = 2.72 × 10−4), further indicating that
monkeys continued to learn during the testing phase,
improving their performance even though each image
was presented only once.

Taken together, the significantly above-chance
performance and significant generalization effect in
categorizing the intact novel images suggests that all
three monkeys learned to distinguish between the two
categories during the training phase (M1 and M3) or
after the first day of testing (M2), by generalizing the
features learned from the small set of training images to
the unfamiliar images in the larger testing set.

As the experiment used an asymmetric design,
the performance improvement across trials could be
driven by learning that occurred for either the animate
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Logistic regression

Monkeys Intercept Slope

M1 0.359 (p = 2.4 × 10−2) 2.951 × 10−2 (p = 5.241 × 10−13)
M2 1.086 (p = 2.921 × 10−9) 1.94 × 10−2 (p = 2.746 × 10−5)
M3 0.809 (p = 1.211 × 10−10) 6.368 × 10−3 (p = 2.969 × 10−3)

Table 1. Logistic regression results from experiment 1.

Figure 3. The logistic regression results of experiment 1 for M1
(top), M2 (middle), and M3 (bottom). The x-axis represents the
number of response trials (trials without responses were
removed), and the y-axis represents the monkey’s response
accuracy. As M2’s response rate was 73%, only 584 trials
remained. The monkeys’ responses for each trial are shown as
blue dots, which appears as a blue line because of the large
number of trials. The red line represents the predicted response
probability produced from the logistic regression analysis. The
black dotted line represents the response accuracy of a moving
average of 20 trials, which is for illustration purposes only and
not used for calculating logistic regression. The intercepts of the
regression lines for all 3 monkeys were larger than 0.5,
indicating that all 3 monkeys were able to generalize from the
training set to the testing set. The regression line increased
along with the trial number, suggesting that monkeys continued
to learn during the testing phase to improve their performance.
M1 was tested only for 3 days; therefore, it has only 600 trials.
M2 was tested for 5 days, but data from the first day were
removed from the logistic regression due to significantly below
chance categorization that likely resulted from a memorization
strategy used during the training period.

or inanimate category, or both. By investigating the
underlying cause of the performance improvement
across categories during the testing phase, we can better
understand the learning dynamics between categories
across trials. Therefore, we re-ran the above logistic
regression by adding stimulus category as an additional
categorical regressor to examine the possible interaction
between category and trial number. As before, we found
a significant intercept of the logistic regression model
for all monkeys (M1: beta = 0.737, p = 5.832 × 10−4;
M2: beta = 0.813, p =1.134 × 10−3; and M3: beta =
0.376, p = 0.0247), as well as significant coefficients
for the trial number (M1: beta = 0.0042, p = 1.091 ×
10−14; M2: beta = 0.00123, p = 0.0378; and M3: beta =
0.00103, p = 1.887 × 10−5), which suggests significant
generalization and learning effects. There was also
a significant interaction between trial number and
category for M1 (beta = −0.00327, p = 5.463 × 10−4)
and M3 (beta = −0.00121, p = 7.358 × 10−4). These
results suggest that the difference in categorization
accuracy between animate and inanimate categories
decreased significantly as testing progressed, implying
that a greater learning effect occurred for animate
than for inanimate trials. However, we did not observe
a significant interaction between category and trial
number for M2 (beta = 0.00142, p = 0.1334).

3) Contribution of curvilinear and rectilinear features
to monkeys’ performance at the group level

We aimed to understand the extent to which the
amount of intermediate image features, specifically
curvilinear and rectilinear features (see Methods),
present in the images in experiment 1 contributed to the
monkeys’ performance on the categorization task. To
answer this question, we conducted a logistic regression
analysis of curvilinear and rectilinear values with the
monkeys’ performance, which was performed at the
group level to increase the signal-to-noise ratio (see
Methods).

We found that the amount of intermediate image
features in the intact images significantly predicted
the monkeys’ performance (main effect: χ2 [2159] =
107.4, p = 1.450 × 10−21), suggesting that the amount
of intermediate image features might assist them in
categorizing intact images into animate and inanimate
groups. Furthermore, we found that curvilinear values
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Figure 4. Functional relationship between the amount of
curvilinear information present in visual stimuli and monkeys’
performance across stimulus category in experiment 1. The
x-axis represents the curvilinear values of the stimuli. The y-axis
represents the response probability of the monkeys’
performance. The solid lines represent the response probability
to visual stimuli calculated with the logistic regression model
that was created using the monkeys’ group raw response. The
dotted lines represent a moving average of 60 trials, which is
for illustration purposes only and was not used for fitting the
logistic regression model. The red line represents the response
probability resulting from the logistics regression fit for the
animate trials. The black line represents the response
probability resulting from the logistics regression fit for the
inanimate trials.

of intact images significantly predicted the monkeys’
performance (beta = 0.974, p = 0.031), but rectilinear
values did not (beta = −0.4817, p = 0.272). There was
a significant interaction between the curvilinear values
and the stimulus category (beta = −2.21, p = 1.118
× 10−4), indicating that curvilinear values predicted
the monkeys’ performance in animate trials differently
than on inanimate trials. Figure 4 shows the functional
relationship between curvilinear values and the
monkeys’ performance across animate and inanimate
trials, which was produced from the logistic regression
model. As the amount of curvilinear information in an
image increased, the monkeys’ performance increased
for animate images and decreased for inanimate images.
The relationship with rectilinear values is shown in
Supplementary Figure S3.

These results suggest that, in addition to recognizing
local or global features that they had learned during
daily training, the monkeys may have used the amount
of curvilinear image features present in the stimuli to
categorize objects into animate and inanimate groups.

It is possible that the significance of the contribution
of intermediate image features to categorization
accuracy observed in the group analysis is mainly
caused by the performance of one monkey. We re-ran
the above logistic regression by incorporating animals
in the model as an additional categorical regressor to
address this concern. In the model, M1 was encoded
as the reference category compared with M2 and M3.

We found (1) a significant contribution of intermediate
image features to the monkeys’ performance (χ2 [2157]
= 125.0, p = 8.150 × 10−24); (2) that curvilinear values
of intact images significantly predicted the monkeys’
performance (beta = 1.029, p = 0.024), but rectilinear
values did not (beta = −0.508, p = 0.251); and (3) a
significant interaction between the curvilinear values
and the stimulus category (beta = −2.256, p = 8.960
× 10−5). Furthermore, categorical coefficients of M2
and M3 in the logistic regression model were not
significant (for M2: beta = 0.250, p = 0.067; for M3:
beta = −0.242, p = 0.060), suggesting that the effects
of intermediate visual features on categorization were
consistent across animals.

We computed the Cronbach’s alpha (see Methods) to
further evaluate response consistency across monkeys.
The Cronbach’s alpha was 0.809, which suggests that
categorization performance was reliable across monkeys
in experiment 1.

4) Predicting stimulus category with curvilinear and
rectilinear values

It is of great interest to understand whether
categorical membership of an image can be predicted
by the images’ curvilinear and/or rectilinear values
calculated with the current method. As such, we ran a
logistic regression of curvilinear and rectilinear values
of intact images on the stimulus category to examine
whether and the extent to which those measures could
be used to determine the stimulus category. We found
that both curvilinear and rectilinear values significantly
predicted stimulus category (main effect: χ2 [997] =
104, p = 3.3 × 10−23; for curvilinear values: beta =
2.893, p = 6.538 × 10−14; for rectilinear values: beta =
−3.204, p = 3.501 × 10−18). This result suggests that
the likelihood of an image being animate increases
significantly as curvilinear values increase, and the
likelihood of images being inanimate increases with
increased rectilinear values, as clearly demonstrated
in Figure 5. In the curvilinear and rectilinear space
(Figure 5), an image’s categorical membership could be
readily determined along the diagonal, especially when
the values are less than 1 in the raw data.

We found that animate objects had larger curvilinear
values than inanimate objects, on average, in our
image set (t(499) = 3.659, p = 2.721 × 10−4), which is
consistent with results from previous studies (Kurbat,
1997; Levin et al., 2001) showing that animate objects
have more curved features. By contrast, animate objects
have smaller rectilinear values than inanimate objects
(t(499) = −6.168, p = 1.177 × 10−9).

Experiment 2: Synthesized images

1) Overall classification accuracy for individual
monkeys
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Figure 5. Distribution of curvilinear and rectilinear values of visual stimuli and relationship with stimulus category in experiment 1. (A)
The distribution of rectilinear values of images for animate (red) and inanimate category (blue). (B) The relationship between the raw
curvilinear and rectilinear values of the stimuli and their category captured by the logistic regression. Each data point represents an
image and its corresponding raw curvilinear and rectilinear values, with black circles denoting the animate images and white crosses
representing the inanimate images. All 500 images of each category were plotted. Not all data points are easily visible due to a high
degree of overlap of the images with curvilinear and rectilinear values between 0 and 1. The colors of the plot represent the
probability of the images belonging to the animate (warm colors) or inanimate categories (cool colors) as predicted by logistic
regression. Both curvilinear and rectilinear values significantly predicted stimulus category (main effect: χ2 [997] = 104, p = 3.3 ×
10−23; for curvilinear values: beta = 2.893, p = 6.538 × 10−14; for rectilinear values: beta = −3.204, p = 3.501 × 10−18). (C) Linearly
interpolated relationship between the curvilinear and rectilinear values of the stimuli and their category membership (see Methods).
The warm colors represent the animate category and cool colors represent the inanimate category. The x-axis and y-axis represent
the curvilinear and rectilinear values of stimuli. (D) The distribution of curvilinear values of images for animate (red) and inanimate
category (blue).

The monkeys were never trained to categorize
the synthesized images presented in experiment 2.
Furthermore, the synthesized images were each shown
only once, regardless of the monkeys’ responses. All
three monkeys performed the categorization task
significantly above chance (overall accuracy for M1,
64.48% [chance: 50.01%], p < 0.0001; M2, 59.10%
[chance: 49.83%], p < 0.0001; and M3, 60.27% [chance:
49.99%], p < 0.0001). The overall response rate was
99.6% for M1, 92.7% for M2, and 85.1% for M3.
Although the overall classification accuracies were
lower than those for the intact images in experiment
1, the significant above-chance performances suggest
that the image features distinguishing the two groups

of synthesized images provided sufficient information
for monkeys to classify the images into the two
categories.

2) Generalization and learning effect for individual
monkeys

To provide a parallel analysis to the one performed
in experiment 1, we ran a logistic regression to evaluate
if the monkeys’ overall accuracies for categorizing
the synthesized images resulting from generalizing
visual features learned from the intact images to
the synthesized images and/or continuous learning
(Figure 6). We found that the intercept, but not the
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Logistic regression

Monkeys Intercept Slope

M1 0.533 (p = 2.038 × 10−6) 9.095 × 10−5 (p = 0.521)
M2 0.313 (p = 1.480 × 10−2) 1.150 × 10−3 (p = 0.606)
M3 0.428 (p = 4.816 × 10−3) –1.930 × 10−5 (p = 0.919)

Table 2. Logistic regression result of Experiment 2.

Figure 6. The logistic regression results of experiment 2 for M1
(top), M2 (middle), and M3 (bottom). Axes are the same as
those used in Figure 3. As shown in Table 2, all three monkeys
showed significant generalization but no learning effects. These
results suggest that the monkeys used some image features
distinguishing intact animate images from intact inanimate
images to categorize the synthesized images as animate or
inanimate.

slope, of the logistic regression model was significant
for all three monkeys, as shown in Table 2. Performance
was not significantly determined by test trial number for
any monkeys (for M1: χ2 [994] = 0.365, p = 0.546; M2:
χ2 [925] = 0.340, p = 0.560; andM3: χ2 [849] = 0.032, p
= 0.859), indicating that the monkeys’ performance did
not improve as testing progressed. These results reveal
that, at the onset of experiment 2, all three monkeys
used information they learned on the categorization
task in experiment 1 to classify the synthesized images
as animate and inanimate objects.

3) Contribution of curvilinear and rectilinear features
to monkeys’ performance at the group level

To examine the extent to which the amount of
intermediate visual features contributed to the monkeys’

performance in experiment 2, we used the same testing
procedure as experiment 1 but with synthesized images.

We found a significant main effect of the amount
of curvilinear and rectilinear image features on the
monkeys’ performance (χ2 [2768] = 177.160, p = 2.160
× 10−36). Furthermore, both curvilinear and rectilinear
values of synthesized images significantly predicted
the monkeys’ performance (curvilinear: beta = 1.617,
p = 2.615 × 10−7; and rectilinear: beta = −1.257, p
= 5.865 × 10−4). However, the data suggested that
the amount of curvilinear image features present in
the synthesized images played a more dominant role
than the amount of rectilinear image features. To test
this hypothesis, we performed a regression Wald test
to examine whether the curvilinear coefficient was
significantly different from the rectilinear coefficient.
The curvilinear coefficient was significantly larger than
the rectilinear coefficient (Wald test: χ2 [1]= 19.938, p=
7.994 × 10−6), indicating that the amount of curvilinear
image features present in the synthesized images was
more informative for the categorization task than the
amount of rectilinear image features. As such, the
following analysis of interaction between the amount
of intermediate image features and stimulus category
was focused on the contribution of the amount of
curvilinear image features on the monkeys’ performance
across stimulus categories. Results from the analysis of
the interaction effect between the amount of rectilinear
image features with stimulus category are shown in
Supplementary Figure S4.

We observed a significant interaction between the
curvilinear values of stimuli and stimulus category
(beta = −4.040, p = 1.672 × 10−20). The monkeys’
performance on synthesized images increased when
curvilinear values increased in the animate trials but
decreased in the inanimate trials (Figure 7); similar to
what we observed in experiment 1 (Figure 4). These
data indicate that the more curvilinear information
present in an animate image, the more likely it was to be
categorized correctly, whereas the opposite is true for
inanimate images.

We conducted the second logistic regression by
incorporating animals in the model as an additional
categorical regressor to determine whether the
contribution of intermediate image features to
categorization accuracy observed in the group
analysis (Figure 7) was biased by one of the monkeys’
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Figure 7. Functional relationship between amount of curvilinear
information present in the visual stimuli and monkey’s group
performance across stimulus category in experiment 2. The
x-axis represents the curvilinear values of visual stimuli. The
y-axis represents the response probability of the monkeys’
performance. The solid lines represent the response probability
to visual stimuli calculated with the logistic regression model
that was created using the monkeys’ group raw response. The
dotted lines represent a moving average of 60 trials, which is
for illustration purposes only. The red line represents the
response probability resulting from the logistics regression fit
for the animate trials. The black line represents the response
probability resulting from the logistics regression fit for the
inanimate trials.

performance. We found (1) a significant contribution
of intermediate image features to the monkeys’
performance (χ2 [2766] = 145.00, p = 3.860 ×
10−28); (2) that curvilinear values of texturized images
significantly predicted the monkeys’ performance (beta
= 2.149, p = 1.069 × 10−9), as did rectilinear values
(beta = −1.036, p = 6.912 × 10−3); (3) a significant
interaction between the curvilinear values and the
stimulus category (beta = −4.737, p = 6.875 × 10−24),
as well as rectilinear values and stimulus category (beta
= 3.384, p = 1.529 × 10−11); and (4) that the categorical
coefficients of M2 and M3 in the logistic regression
model were insignificant (for M2: beta = −0.0086, p =
0.931; for M3: beta = −0.142, p = 0.116), suggesting
that the effects of intermediate visual features on
categorization were consistent across animals. The
Cronbach’s alpha (see Methods) was 0.737, which
indicates that categorization performance was reliable
across monkeys in experiment 2.

4) Predicting stimulus category with curvilinear and
rectilinear values

The algorithm used to create synthesized images
removed the global shape information. It was unclear
whether (1) synthesized images’ curvilinear and
rectilinear values significantly predict their categorical
membership, and (2) if these values were significantly
different across categories as we observed for the intact
images used in experiment 1. To address the first

question, we ran a logistic regression of curvilinear and
rectilinear values of synthesized images on the stimulus
category. Consistent with what we found in experiment
1, both curvilinear and rectilinear values significantly
predicted stimulus category (main effect: χ2 [997] =
77.1, p = 1.77 × 10−17; for curvilinear values: beta =
2.438, p = 3.772 × 10−10; for rectilinear values: beta =
−3.568, p = 2.139 × 10−14). The relationship between
curvilinear and rectilinear values of synthesized
images with the stimulus category in experiment 2
(Figure 8) is similar to what we observed in experiment
1 (Figure 5), suggesting that the likelihood of an image
being animate increases significantly as the increase of
curvilinear values.

To address the second question, we ran paired
independent t-tests. Animate objects had larger
curvilinear values (t(499) = 2.285, p = 0.026), and
smaller rectilinear values than inanimate objects (t(499)
= −8.794, p = 1.172 × 10−17) in our set of synthesized
images. The amount of intermediate image features
between categories is significantly different in both
experiments 1 and 2, which confirms that the algorithm
preserved some intermediate image features while
eliminating the global shape information of intact
images.

5) Correlation of the monkeys’ performance with
DCNN performance at the group level

Because monkeys were never trained to classify
synthesized images into animate and inanimate
categories, the possibility remained that monkeys
categorized the images into two groups using differences
between synthesized images that were entirely unrelated
to the animate and inanimate category but happened
to coincide with the two categories in the set of testing
images used. As such, we used the DCNN to address
this concern (see Methods). The network was trained
to classify the 1000 intact images used in experiment 1
into animate and inanimate categories and then tested
on the categorization task with the 1000 synthesized
images used in experiment 2 (see Methods). We found
a significant positive correlation of the DCNN’s
categorization performance with the monkeys’ group
performance (r = 0.739, p = 5.0502 × 10−8; Figure 9),
suggesting that the monkeys performed the animate
versus inanimate categorization in experiment 2, when
the global form in the images was distorted beyond
recognition. These data provided further evidence
that the monkeys used image features distinguishing
intact animate and inanimate images to categorize the
synthesized images.

Furthermore, we completed a χ2 test for each
monkey individually to investigate whether a monkey’s
responses to stimuli were independent of DCNN
responses at the individual image level (nonresponsive
trials were excluded from the analysis). We found
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Figure 8. Distribution of curvilinear and rectilinear values of visual stimuli and relationship with stimulus category in experiment 2.
(A) The distribution of rectilinear values of images for animate (red) and inanimate category (blue). (B) The relationship between the
raw curvilinear and rectilinear values of the stimuli and their category captured by the logistic regression. Each data point represents
an image and its corresponding raw curvilinear and rectilinear values, with black circles denoting the animate images and white
crosses representing the inanimate images. All of 500 images of each category were plotted. Not all data points are easily visible due
to a high degree of overlap of the images with curvilinear and rectilinear values between 0 and 1. The colors of the plot represent the
probability of the images belonging to the animate (warm colors) or inanimate categories (cool colors) as predicted by logistic
regression. Both curvilinear and rectilinear values of synthesized images significantly predicted the stimulus category (main effect: χ2

[997] = 77.1, p = 1.77 × 10−17; for curvilinear values: beta = 2.438, p = 3.772 × 10−10; for rectilinear values: beta = −3.568, p =
2.139 × 10−14). (C) Linearly interpolated relationship between the curvilinear and rectilinear values of the stimuli and their category
membership (see Methods). The warm colors represent the animate category and cool colors represent the inanimate category. The
x-axis and y-axis represent the curvilinear and rectilinear values of stimuli, respectively. (D) The distribution of curvilinear values of
images for animate (red) and inanimate category (blue).

significant χ2 results for all monkeys: χ2 = 24.762, p =
6.488 × 10−7 for M1, χ2 = 5.697, p = 0.017 for M2,
and χ2 = 28.848, p = 7.878 × 10−8 for M3, indicating
that monkeys performed similarly to DCNN at the
individual image level.

Discussion

This study investigated the contributions of both
training and image-based features to the perceptual
categorization of animacy. In experiment 1, we found
that naïve monkeys trained to categorize a small set
of animate and inanimate images classified a large

set of unfamiliar images into animate and inanimate
categories with high accuracy. In experiment 2,
we tested whether image-based features that differ
between the two object categories in the statistics of
natural environments (i.e., curvilinear and rectilinear
information; Kurbat, 1997; Levin et al., 2001; Perrinet &
Bednar, 2015; Long et al., 2017; Zachariou et al., 2018),
determined the monkeys’ classification accuracy. We
created sets of synthetic animate and inanimate images
using an algorithm that significantly distorted the
global shape of the original images while maintaining
the original images’ intermediate features (Portilla &
Simoncelli, 2000). The monkeys’ classification accuracy
on these synthesized images was still significantly above
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Figure 9. Correlation of monkeys’ response accuracies with
DCNN classification accuracies. To compute the correlation of
the DCNN classification accuracies and monkeys’ response
accuracies to the synthesized images, we arranged the
responses of the DCNN and each monkey according to the
ascending order of curvilinear values of the synthesized images.
The monkeys’ accuracies used for the correlation analysis were
averaged across all three animals. The ordered responses were
then grouped into 40 bins. Next, the response accuracy for each
bin was calculated for the DCNN and monkeys separately,
resulting in 2 sets of 40 data points. Each red dot represents the
classification accuracy for each bin. We observed a significant
correlation between monkeys’ response accuracies and DCNN
classification accuracies (r = 0.739, p = 5.0502 × 10−8),
indicating that the monkeys performed the animate versus
inanimate categorization.

chance and correlated with the amount of curvilinear
information present in the stimuli. These data indicate
that image-based features, in this case curvilinearity,
can be used to distinguish animate from inanimate
objects in the absence of global shape information
without prior training.

As monkeys raised in the laboratory have limited
experiences with objects that humans are otherwise
familiar with, they are ideal candidates to study the
contribution of experiences and image-based features
to the emergence of perceptual categorization (e.g.,
Arcaro & Livingstone, 2017). Our results show that
monkeys performed an animacy categorization task
with intact images significantly above chance at the very
beginning of the test phase of experiment 1, suggesting
that monkeys used what they had learned during
training to classify novel images of objects, with which
they had no previous experience, into animate and
inanimate categories. Further, the curvilinear values of
intact images had a significant interaction with stimulus
category, and significantly predicted the monkeys’

performance. These findings indicate that image-based
features that are predictive of each category provide
substantial information that monkeys can use to
distinguish the two categories with little training. In
other words, experience interacting with objects may
not be the only origin of behavioral categorization of
animacy in monkeys.

To confirm this, using the synthesized images in
experiment 2, we eliminated local features (faces,
ears, etc.) that monkeys might have been familiar
with and could have used to classify the images into
animate and inanimate categories. We found that the
monkeys were able to perform the categorization of the
synthesized images significantly above chance, which
indicates that the image-based features were sufficient
for perceptual categorization. It is worth noting
that human participants also classified synthesized
images similar to those used in this experiment into
animate and inanimate categories with significant
above-chance accuracy (Long et al., 2017; Zachariou
et al., 2018). Although humans and monkeys do not
share the collective experience of what and how objects
are encountered in daily life, they perform similarly
when classifying synthesized images into animate and
inanimate categories (Figure 6, Figure 3 in Zachariou
et al., 2018), which suggests that image-based feature
differences could play a critical role in the emergence
of perceptual categorization abilities across species.
Together, our findings provide strong evidence in
support of the hypothesis that perceptual categorization
can emerge from image-based features that are
predictive of each category in the natural statistics of
the visual environment.

Recent functional magnetic resonance imagery
(fMRI) studies (Long et al., 2018; Yue et al., 2020)
have shown that visual cortical areas selective for
curvilinear features encompass animate-processing
visual areas, whereas those selective for rectilinear
features encompass inanimate-processing visual
areas. These results provide neural evidence to
support the current finding that the processing of
image-based features, such as curvilinearity, interacts
with the representation of animate and inanimate
categories.

Overall, monkeys categorized the intact object
images with significantly greater accuracy than the
synthesized images. However, for synthesized images
with high curvilinear values (in the range of 1.4–1.6),
the monkeys’ classification accuracy for the animate
category could reach above 80%, which is comparable
to the classification accuracy for intact images
(Figure 7). This illustrates that monkeys could achieve
high accuracy when synthesized images with extreme
curvilinear values were used as stimuli. Thus, the overall
difference in classification accuracy between the intact
and synthesized images does not argue against the idea
that image-based features play a significant role in
determining perceptual categorization.
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The primate visual system takes significant time to
fully mature postnatally (Ellemberg et al., 1999; Kovacs
et al., 1999; Gilmore et al., 2018). During development,
young infants view the world as consisting not of
coherent objects but instead visual pieces that move
in unpredicted ways (Hyvärinen et al., 2014). In such
a fragmented visual world, differentiating animate
from inanimate objects would be challenging. Infants
who can differentiate animate from inanimate objects
would have a better chance to avoid being harmed by
animals to survive than those who cannot. Through
natural selection, our brains may have evolved the
capacity to differentiate animate and inanimate objects
quite quickly, first based on sensory information that
represents visual statistics of the natural environment.
Experience with objects would play a significant role
in later life to further differentiate categories. Our data
provide evidence to support this hypothesis by showing
that monkeys (as well as humans; Zachariou et al.,
2018) are able to classify into animate and inanimate
categories synthesized images that: (1) neither species
had experience with, and (2) have similar statistics as
the natural original images, with significantly above
chance accuracy by using the degree of curvilinearity
in the images. This hypothesis raises many interesting
questions. For what other object categories and with
which image features is the primate brain biased to use
image-based differences for perceptual categorization,
and under what conditions? The answers to such
questions are critical to understanding the functional
and anatomic organization of the primate visual
system.

Keywords: categorization, animate, curvilinearity,
animacy, curvature patches
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