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Large enzyme families such as the groups of zinc-dependent alcohol dehydrogenases
(ADHs), long chain alcohol oxidases (AOxs) or amine dehydrogenases (AmDHs) with,
sometimes, more than one million sequences in the non-redundant protein database and
hundreds of experimentally characterized enzymes are excellent cases for protein
engineering efforts aimed at refining and modifying substrate specificity. Yet, the
backside of this wealth of information is that it becomes technically difficult to rationally
select optimal sequence targets as well as sequence positions for mutagenesis studies. In
all three cases, we approach the problem by starting with a group of experimentally well
studied family members (including those with available 3D structures) and creating a
structure-guided multiple sequence alignment and a modified phylogenetic tree (aka
binding site tree) based just on a selection of potential substrate binding residue
positions derived from experimental information (not from the full-length sequence
alignment). Hereupon, the remaining, mostly uncharacterized enzyme sequences can
be mapped; as a trend, sequence grouping in the tree branches follows substrate
specificity. We show that this information can be used in the target selection for
protein engineering work to narrow down to single suitable sequences and just a few
relevant candidate positions for directed evolution towards activity for desired organic
compound substrates. We also demonstrate how to find the closest thermophile example
in the dataset if the engineering is aimed at achieving most robust enzymes.
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INTRODUCTION

Biocatalysis has gained importance both through methodological
advances like enzyme engineering and directed evolution of
enzymes towards new substrates (Arnold, 2019) as well as
trends towards green chemical manufacturing (Dunn, 2012).
Several large enzyme families are prominent candidates for
biotechnology applications including enzyme engineering for
certain substrate specificities because of the wide range of
organic chemistry transformations that can be supported with
them. Zinc-dependent alcohol dehydrogenases (ADHs; enzyme
classification EC 1.1.1.1), long chain alcohol oxidases (AOxs;
enzyme classification 1.1.3.20) and amino dehydrogenases
(AmDHs, enzyme classification 1.4.1.20) are popular examples.

For example, zinc-dependent ADHs are part of a very large
family of enzymes (enzyme classification 1.1.1.*) catalyzing the
reversible oxidation of diverse alcohols to aldehydes or ketones
with the associated reduction of nicotinamide adenine
dinucleotide (NAD+) or chemically similar co-factors. The
degree of substrate specificity varies to the extent that even
non-catalytic examples are known. Whereas some ADHs
process just a narrow compound list, others have a large
hydrophobic pocket that can handle a wide variety of small
molecules but also much larger hydroxylated hydrophobic
chains, cyclical or steroidal molecules such as bile alcohols,
retinol, derivatives of epinephrine, serotonin, dopamine and
leukotriene catabolism (Petruszko, 1979; Riveros-Rosas et al.,
1997; Hoog et al., 2003; Riveros-Rosas et al., 2003; Persson
et al., 2008). Even aldehyde oxidation to acids by dismutation
is possible in some cases (Henehan and Oppenheimer, 1993).
ADHs are extremely widespread; they have been identified in
organisms ranging from prokaryotes to higher eukaryotes and
have been studied for decades, in particular, the ones belonging to
Saccharomyces cerevisiae (de Smidt et al., 2008), due to their
importance and historical impact in fermentation.

The advantages of enzymatic synthesis become especially
obvious in the case of region- and stereo-selective organic
chemistry targets as governing the reaction towards pure yield
is difficult and costly, if not practically impossible without
biotechnological methods (Wu et al., 2021). For example, ethyl
(R)-4-chloro-3-hydroxybutanoate ((R)-ECHB) is a chiral
molecule applicable for the synthesis of biologically important
compounds such as (R)-carnitine, (R)-4-hydroxy-2-pyrrolidone,
(R)-4-amino-3hydroxy-butyric acid, etc. It can be synthesized
with high yield and purity by using (S)-selective secondary
alcohol dehydrogenase produced by Candida parapsilosis
(CpSADH) overexpressed in a bacterial system (Yamamoto
et al., 1995; Yamamoto et al., 1999; Yamamoto et al., 2002). A
version of CpSADH with W296A mutation engineered from the
enantioselective form creates an ambidextrous enzyme that can
be widely used to oxidize alcohols and to feed them into cascade
reactions with co-factor recycling, for example for the production
of enantiopure amines (Tian and Li, 2020).

Similarly, the wealth of available protein sequences
representing long chain alcohol oxidases (AOXs) and amine
dehydrogenases (AmDHs) make them as attractive for
substrate- and product-specific engineering as ADHs. Alcohol

oxidases (alcohol:O2 oxidoreductases; EC 1.1.3. x) carry a flavin
coenzyme and catalyze the oxidation of alcohols to carbonyl with
concomitant production of H2O2 (Goswami et al., 2013). These
enzyme are widely used in biosensors and for industrial
production of a wide range of carbonyl compounds (Thungon
et al., 2017).

AmDHs (EC 1.4.99.3) are associated with a tryptophan
tryptophylquinone (TTQ) cofactor and are known for the
interconversion of ketones (with participation of ammonia)
and enantiomerically pure amines (Knaus et al., 2017).
Enzyme engineering of AmDHs for bio-catalytic chiral amine
synthesis is widely described in the literature (Kohls et al., 2014;
Tseliou et al., 2019a; Tseliou et al., 2019b).

At the start of such an enzyme engineering project, several
candidate genes encoding a protein with substrate specificity close
to the desired one need to be selected from the sequence
databases. In addition, requirements with regard to enzyme
thermostability (sourcing from thermophile organisms),
optimal pH or salt concentration, etc. might be further
constraints. If the selection has to be made from a pool of
many thousands or millions of potentially suitable sequences
as in the case of ADHs, AOxs or AmDHs, this is a daunting task.

In this work, we suggest a methodology that can shrink the set
of candidate enzyme sequences to manually manageable sets and,
yet, retain the optimal targets with high likelihood. The main idea
exploits the fact that substrate specificity is not so much
determined by the total sequence of the enzyme but, to a large
extent, only by the residues that make up the surface of the
catalytic and binding cavities. These binding site residues
ultimately play the main role in determining the enzymes’
substrate specificity and they are the preferred sites for
directed evolution or site-directed mutations in the enzyme
engineering process. Once the list and the identities of these
residues are known, the total sequence set can then be sub-
clustered with regard to similarities among this residue list. The
tools for constructing phylogenetic trees can be used for this
purpose; thus, enzymes with similar binding cavity surface will
tend to be grouped into the same branch of the tree.

Clearly, the trees obtained this way are just “binding cavity
similarity trees” or “binding site trees” and they do not necessarily
reflect the real evolution of the enzyme families. It is more an
approach towards sensible hypothesis construction and candidate
sequence selection. First, the associated bootstrap values will not
be informative given the short alignment is used for tree
construction. Second, as the introduction of an active site
requires only a few mutations and is much less expensive in
evolutionary terms than the change of a fold, the emergence of
active and binding sites with similar/identical specificity can
happen independently in different branches of the
evolutionary tree. Similarly, one and the same evolutionary
branch can develop a variety of specificities (for example, in
the case of the BindGPILA domain (Eisenhaber et al., 2018)).

In order to facilitate use of ADHs, AOxs and AmDHs for
biocatalysis of new substrates, we show exemplarily how to select
enzyme sequences most suited for engineering towards the new
target substrate. We start from a list of already characterized
enzymes belonging to these families and extract the set of residues
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known to be involved in substrate binding. Then, we classify all
sequence members of the respective enzyme family according to
their different substrate specificity. To achieve this, we apply
similarity tree-generating tools (applied onto key binding pocket
residues) used in phylogenetic studies together with a few other
bioinformatics methods.

METHODS

We describe the methodological approach in great detail for the
group of zinc-dependent alcohol dehydrogenases (ADHs). The
processing of protein sequences in the cases of AOxs and AmDHs
involves the same steps and tools (see below for further detail).

Seed Alignment for the Alcohol
Dehydrogenase Family
Four for each taxonomic group, well studied fungal (C.
parapsilosis) and human sequences with 3D structures
available (PDB (Burley et al., 2021) entries: 1U3U, 1U3V,
1U3W, 1U3T (Gibbons and Hurley, 2004), 3WLF, 3WLE,
3WNQ (Wang et al., 2014) and 4C4O (Man et al., 2014))
were selected for seeding the sequence family. These were
aligned with MAFFT using Linsi parameters (Katoh and
Standley, 2013) and manually curated in Jalview (Waterhouse
et al., 2009) for structural equivalency of aligned residues taking
into account information from structural alignment with
MUSTANG (Konagurthu et al., 2006) in YASARA (Krieger
and Vriend, 2014).

Alignment of Alcohol Dehydrogenases With
Known Substrates
263 ADH-related sequences were retrieved from UniProt
(UniProt Consortium, 2019) with filters for 1) enzyme
classification EC 1.1.1.*, 2) belonging to the zinc containing
alcohol dehydrogenase family, 3) protein sequence length
ranging from 250 to 600 residues and 4) annotation for
substrate catalytic activity with experimental evidence. The
length restriction was to ensure a good coverage of entries
with the domain architecture of CpSADH (Yamamoto et al.,
1999; Yang et al., 2014) that has been assigned to two Pfam
families (El-Gebali et al., 2019). These are PF08240 (alcohol
dehydrogenase GroES-like domain (ADH_N)) and PF00107
(Zinc-binding dehydrogenase (ADH_zinc_N)), respectively.
The length distribution among the sequences collected is
presented in Supplementary Figure S1 (see Supplementary
File S1). Additional 50 sequences were retrieved as above
without requiring catalytic evidence but with 3D structure
available in the PDB database. We ended up with a set of 280
sequences (there were 41 duplicates among the originally 313
found in the two searches plus the 8 seed sequences) retrieved
from the UniProt and PDB databases. The new sequences were
added to the seed alignment using MAFFT with Linsi parameters
(Katoh and Standley, 2013) and the profile alignment option
“--seed” which ensures the curated seed alignment made out of 8

sequences with 3D structures remains preserved. All sequence
accessions used are listed in Supplementary File S2.

Substrate Binding Pocket Residue-Based
Phylogenetic Tree for Alcohol
Dehydrogenases
We identified 21 positions with vicinity to substrates within 5 Å
in the 3D structure or literature reports for influence on substrate
specificity and extracted them from the full length alignment as a
21 site substrate binding pocket profile alignment. This subset
was then used to create a phylogenetic tree with MEGA7 (Kumar
et al., 2016; Kumar et al., 2018) in order to take into account the
relationship of these sequences with sole focus on the potential
substrate binding residues. The evolutionary history was inferred
by using the Maximum Likelihood method based on the JTT
matrix-based model (Jones et al., 1992). Initial tree(s) for the
heuristic search were obtained automatically by applying
Neighbor-Join and BioNJ algorithms to a matrix of pairwise
distances estimated using a JTT model, and then selecting the
topology with superior log likelihood value. A discrete Gamma
distribution was used to model evolutionary rate differences
among sites (5 categories (+G, parameter � 2.6014)). The
analysis involved 280 amino acid sequences. There was a total
of 21 positions in the final dataset.

Statistical Methods to Find Alcohol
Dehydrogenase Residues Involved in
Substrate Specificity
Further sequence analysis for the examples known to process
specific substrates (such as xylitol and L-iditol) included the usage
of the multi-Harmony server (Pirovano et al., 2006; Feenstra
et al., 2007; Brandt et al., 2010) that uses Sequence Harmony and
multi-Relief methods developed to support in the identification of
residues with functional specialization within sub-families of
proteins as well as Two Sample Logo (Vacic et al., 2006) for
additional graphical representation.

RESULTS

Non-Trivial Alignment of Residues in the
Vicinity of Substrate in the Sequences of
Zinc-Containing Alcohol Dehydrogenase
Sequences
Multiple sequence alignments in large protein families across
diverse taxonomic kingdoms such as ADHs are technically
difficult and often result in misalignments and excessive
insertion of gaps. In order to approach this problem, it is
crucial to build a reliable sequence alignment that will serve as
seed profile alignment for guiding the addition of new sequences
belonging to the protein family.

Therefore, few selected, very well studied sequences from C.
parapsilosis and human origin (Gibbons and Hurley, 2004; Wang
et al., 2014; Yamamoto et al., 1999) were analyzed and their
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alignment was manually curated based on the available structural
information (Figure 1). Ultimately, this manually curated and
structure-guided alignment is used to identify residues that could
play a critical role in substrate specificity of enzymatic reactions.

The identification of these positions included the distance
criterion to the ligand (having a heavy atom within 5 Å) and
literature information (Gibbons and Hurley, 2004; Wang et al.,
2014). Figure 2 summarizes them as sites from 1 to 21.

FIGURE 1 | Sequence alignment of selected sequences from zinc-containing ADHs. Manually curated seed alignment with originally eight sequences from PDB
entries 1U3U (1U3V has the same sequence within the range shown), 1U3W, 1U3T, 3WLF (3WLE has the same sequence within the range shown), 3WNQ (has an
alanine instead of a histidine at position 39 that is part of the set of 21 positions for the substrate binding site) and 4C4O (has an asparagine instead of a lysine at position
19 that is apparently not directly involved in substrate binding). The first sequence set belongs to human, while the second set of four is from C. parapsilosis. Three
columns are highlighted with red, blue and green boxes. The corresponding sequence positions are part of a loop region, which is structurally different in human and C.
parapsilosis enzymes. They are positions 12, 14 and 15 in Figure 2, respectively. Red asterisks label two residues that were reported in context with substrates’ stereo-
specificity (Wang et al., 2014).

FIGURE 2 | Twenty one sequence positions in close structural proximity to the substrate in zinc-dependent ADH structures. We provide descriptions of 21
sequence positions in the two ADH proteins with structures 1U3U and 3WLF that are in close proximity to the substrate and form the binding site. We refer to annotations
of binding site residues from (Wang et al., 2014). Red asterisks label two residues that were reported in context with substrates’ stereo-specificity (Wang et al., 2014).
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The zinc-containing ADH family illustrates one of the
scenarios where traditional sequence alignment methods are
sentenced to fail because the order of certain critical residues
in the sequence is not the same in all subgroups. The humanADH
sequences (exemplified by 1U3U) have an additional loop
between substrate-binding positions (between the red and blue
boxes in the alignment shown in Figure 1). This loop structure
(together with the equivalent segment of the respective C.
parapsilosis structure 3WLF that does not have this additional
loop) is displayed in Figure 3. The hinge residues L116, L141 and
F140 presented in red, green and blue, are in close proximity to
the enzyme substrate. However, these three residues overlap in
the structural alignment with F113, W116 and L119 from 3WLF
in a way that does not follow a linear sequence as in the primary
sequence alignment. Obviously, the loop allows the sequential
positions to swap in the structural alignment. Thus, F140 (blue),
from the human sequence, structurally overlaps with C.
parapsilosis L119 (green) instead of W116 (blue).

The core of our approach in this work is to focus on positions
that are structurally close to the substrate and to filter them out in
a sequence alignment. This insight can then be used to gauge
information from other sequences without structural
information. The manual curation of the ADH seed alignment
allows to include the information that certain columns/positions
(displayed in Figures 1–3) are relevant for subfamily specificity
analysis despite being structurally and functionally swapped in
some of them. Consequently, this curated seed alignment ensures
that these positions are preserved as columns; yet, the respective

sub-columns can be swapped in alternative versions of the
binding-pocket-only alignment.

Expansion of the Seed Alignment With
Further Well-Annotated Sequences From
UniProt
Once the seed alignment was created, we added sequences from
UniProt already annotated with substrates, catalytic activity and/
or 3D structures as described in Methods. We ended up with a
final alignment of 280 sequences belonging to the zinc-containing
alcohol dehydrogenase family. The final number of different
ADH reactions (unique EC numbers) that have been assigned
to this family and were simultaneously annotated to have catalytic
activity with experimental evidence in UniProt (UniProt
Consortium, 2019) was 40 (see EC number list in
Supplementary Table S1 in the Supplementary Material File
S1). When looking at all possible entries of this family in UniProt
(in total, 28,978 examples including both reviewed/un-reviewed
and without/with any status of experimental evidence), we found
55 unique reactions listed for them. Hence, only 72.7% of all
currently annotated reactions for this family include references to
experimental evidence.

From the final alignment, a substrate binding pocket profile
was extracted to consider only the 21 positions presented in
Figure 2. Then, a new substrate binding site tree (Figure 4) was
created based just on the reduced alignment. The purpose of this
tree was to establish the relationship of these sequences focused
on the potential substrate specificity. This approach is supported
by the fact that enzymes annotated under the same EC numbers
and, consequently, support the same reactions are clustered
together based on these 21 residues. With this tool in hands,
we can attempt to classify unannotated ADHs based on their
binding pocket properties.

Classification of Alcohol Dehydrogenase
Sequences With Xylitol and L-Iditol as
Substrates Based on Their Binding Pocket
Properties
To exemplify the utility of clustering sequences based on their
substrate binding pocket, we highlight the subtree branches with
the enzymes D-xylulose reductase with the substrate xylitol and
L-iditol 2-dehydrogenase with substrates L-iditol and xylitol
(Figures 5A,B). These substrates are both linear sugar alcohols
with xylitol being shorter by one carbon and hydroxyl group.

To identify residues that could be linked to the substrate
specificity, we took the 21 binding pocket alignment of the
sequences belonging to these two enzyme families in the
subtree and compared the two groups with Sequence
Harmony. This indicated a position with a preference for
methionine (M) in position 19 for the Xylitol family and
leucine (L) for the L-iditol family. Notably, both residues are
quite similar in side chain volume (166.7 Å3 versus 162.9 Å3

respectively; (Zamyatnin, 1972; Zamyatnin, 1984)); yet, leucine
is branched and methionine has the longer side chain. Showing
the position in an example structure of the enzyme in complex

FIGURE 3 | Sequence-structure relationship in the substrate binding
pocket of selected zinc-containing ADHs. Structural visualization of protein
sequence regions highlighted with boxes in Figure 1. The same colour code is
followed to indicate the difference observed with swapped positions
between structural and sequence alignments. We show both the overall 3D
structure (bottom) with the highlighted binding site as well as the loop with the
three residues discussed in magnification (upper part).
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with co-factor and ligand, one can see that the longer M residue
results in a tighter binding pocket and L leaving more space
(Figure 5C). This is consistent withM being the preferred residue
for the shorter ligand xylitol and L for the longer L-iditol. Thus,
the substrate binding pocket of L-iditol 2-dehydrogenase with L
provides more space and can more easily accept both long and
short substrates.

The binding pocket subtree from these enzymes (Figure 5B)
shows that there is not a clean split into phylogenetic groups
matching the enzyme codes but the M/L preference is statistically
significant (Z-score −4.02). Within the subtree, there is a further
division into the big groupwithM/L and a smaller subgroup that has
mostly M at position 19. For comparison, if we run the Sequence
Harmony analysis over the full sequence, we get a long list of 187
candidate positions (Z < −3) while the focus on the 21 binding
pocket residues made it easy to spot the two main candidates.

Identifying Relevant Binding Pocket
Positions for Mutations in (R,R)-Butanediol
Dehydrogenase From Bacillus Subtilis
Another example of identifying relevant positions based on
sequences found in the binding pocket that participate in
ligand binding is illustrated here for the enzyme (R,R)-
butanediol dehydrogenase from Bacillus subtilis (UniProt
O34788/BDHA_BACSU).

In the phylogenetic tree (Figure 4), this enzyme family is
neighbored by two other branches containing L-arabinitol 4-
dehydrogenases and ribitol 5-phosphate 2 dehydrogenases on
one hand and 2-deoxy-scyllo-inosamine dehydrogenases on the
other. A new sequence alignment was generated to account for
this set only. The sequence analysis suite Sequence Harmony
(Pirovano et al., 2006; Feenstra et al., 2007; Brandt et al., 2010)

FIGURE 4 | Substrate binding site tree based on substrate binding residues of ADHs with annotated EC and experimental evidence for catalytic activity. What looks
like a phylogenetic tree in this figure is actually a substrate binding site tree created with phylogenetic tree tools from the abbreviated alignment containing only designated
residues from the substrate binding pocket. The tree with the highest log likelihood (−3,973.88) is shown. Unique and identical EC numbers are labelled with same
colored dots next to the branch. Any enzyme annotated either as 1.1.1.1, 1.1.1.- or had more than one EC number associated with it was colored black and
considered promiscuous/unspecific. Enzyme groups with EC numbers having specific substrate annotation are highlighted with the respective dot color and labelled
with the substrate name. For EC number annotation, see Supplementary Table S1. The specific sub-branch used in the example for Figure 5 is colored red. For
several branches of the tree, we show the sequence logo (Vacic et al., 2006) for the binding site residues within the relevant sequence group. A linear, high-resolution
version of this tree with explicit EC number annotation of all branches is available as Supplementary Figure S3 in Supplementary Files S1, S3. For comparison, we
also provide the true phylogenetic tree of ADHs generated from the full-length alignment (see Supplementary Figure S4 in Supplementary Files S1, S4).
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was used to identify which positions would represent a significant
difference between the three highlighted branches. Figure 6A
summarizes the sequence positions for the three protein groups in
the branch for (R,R)-butane-2,3-diol dehydrogenase. Note that
the protein P39713/BDH2_YEAST in the same branch has been
annotated to catalyze the reaction (R)-acetoin + NAD (+) ≤>
diacetyl + NADH. Figure 6B shows the results of Sequence
Harmony, a tool that supports identification of the residues
that are different among the potential binding positions of the
three branches aligned.

Identification of Putative Thermophile
Organisms With Similar CpSADH
In biotechnology, usage of enzymes from extremophiles is often
preferred as they can execute their function despite of a harsher
handling. We note that the approach presented here can also be
useful to identify thermophile organisms that potentially harbor

enzymes catalyzing the reaction of interest. This opportunity is
exemplified here by using the CpSADH as reference if one is
interested in identifying possible thermostable alcohol
dehydrogenases (ADHs).

524 protein sequences from UniProt identified with the
domain architecture (with sequence domains PF08240 or
PF00107) and belonging to an organism identified as
thermophile (using the list of thermophile organisms provided
by Dr. Igor Berezovsky (Zeldovich et al., 2007; Ma et al., 2010))
were merged with the set of reviewed protein entries that were
retrieved from UniProtKB under the family annotation “zinc
containing alcohol dehydrogenase family”, EC:1.1.1.* with
catalytic activity and experimental evidence annotated. These,
together with a few reference PDB sequences, generated a list of
808 protein sequences. These were aligned with the MAFFT
algorithm (using Linsi parameters) (Katoh and Standley, 2013)
for a full-length sequence alignment (see below section “A”). For
generating the alignment of only the residues belonging to or

FIGURE 5 | Example of how to identify residues with functional specialization within sub-families of proteins: the D-xylulose reductase (EC 1.1.1.9) and L-iditol 2-
dehydrogenase (EC 1.1.1.14) cases. (A) Sequence alignment with positions from Figure 2 to include enzymes from EC 1.1.1.9 and 1.1.1.14 with experimental
verification as annotated in UniProt only. (B) Subtree from Figure 4 to consider branch with the two enzymes in question. The color coding of dots next to the branch
corresponds to the EC numbers. (C) Two Sample Logo (Vacic et al., 2006) and Structural representation of PDB ID 1PL6 with a modelled methionine in position 19
(from Figure 2) for visualization purpose.
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being close to the binding pocket, we used the MAFFT–add
option to add the unaligned sequences to our manually curated
alignment taking into account the structural position of some
relevant binding pocket residues (see below section “B”).

The reason for exploring these two alignment options is that
the curated alignment forces any of the other sequences to fit to it.
Given the complexity of loops and structural rearrangement, the
overall sequence alignment might be compromised in certain
situations. The idea of combining all these methods is to
ultimately come up with a few thermophile species that could
potentially be interesting to be explored further, taking into
account how they relate both at full sequence and binding
pocket levels.

A) Full sequence alignment option: The evolutionary analyses
were conducted in MEGA7 (Kumar et al., 2016). In addition
to two schemes of handling alignment gaps and missing/
ambiguous data (either excluding all sites with gaps or sites
with less than 95% coverage), two alternative methods were
used for tree construction–the neighbor-joining method
(Saitou and Nei, 1987) (see Supplementary Figures
S2A,B) and Maximum Likelihood method based on the
JTT matrix-based model (Jones et al., 1992) (see
Supplementary Figures S2C,D).

In all four scenarios (see trees in Supplementary Figures
S2A–D), the closest protein to CpSADH is ACM07214/

FIGURE 6 | Binding pocket positions for mutations in (R,R)-butanediol dehydrogenase fromBacillus subtilis. (A) Alignment of 21 sequence positions as in Figure 2
with (R,R)-butanediol dehydrogenases (BDHA_BACSU, BDH1_YEAST) and the additional probable diacetyl reductase [(R)-acetoin forming] 2 (BDH2_YEAST) having the
structure 3WLF as reference. (B) Results of Sequence Harmony scores and sites for suggested mutations highlighted with asterisk. Sequence Harmony scores were
coloured from green to red according to a gradient from smaller to bigger numbers, respectively; where red represents no significant difference observed for the
positions of the enzymes in the neighbouring branches, while green highlights the positions of interest. These are the most probable sites relevant for the enzyme
substrate specificity. (C) X-ray crystal structure 6IE0 (Wang et al., 2018) of the (2R, 3R)-butanediol dehydrogenase where the positions with a significant Sequence
Harmony score are highlighted in green (43, 60, 97, 118 and 291) and those with basically no significance are highlighted in red (37, 39, 70, 71, 152, 156). The zinc ion is
shown in yellow. Note that the red sites are the ones localized to the catalytic site and are conserved throughout, while the green ones are the ones likely interacting with
other parts of the substrate relevant for its specificity.
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WP_012643201 from Thermomicrobium roseum. When
alignment columns with gaps in some sequences were
included (this increases the number of positions with
phylogenetic signal), proteins from Thermobifida fusca and
Thermomonospora curvata consistently appear in the same
branch regardless of the tree-building method. With further
relaxation (after removing all alignment columns with gaps
occurring), additional sequences are hit in the search and

proteins from Alicyclobacillus acidocaldarius and, in one case,
Moorella thermoacetica can be found.

B) Alignment restricted to binding pocket residues: When
using the procedure described in the Methods section to
align new sequences to the manually curated sequences,
we still retrieve the species T. roseum, T. fusca and T.
curvata in the evolutionary analysis depending on the
tree-building method used (Supplementary Figures
S2E,F). Thus, the ADHs from these three thermophile
organisms are the closest to CpSADH. They (as listed in
Table 1) are recommended to be further experimentally
explored.

Long Chain Alcohol Oxidases
The workflow applied above to ADHs and some of their
subgroups is a quite general methodology and provides a
framework to classify candidate enzymes by their substrate
preferences as well as highlights the position and type of
residues directing substrate specificity. To show its

TABLE 1 | ADHs in thermophile organisms closest to CpSADH.

Organism Protein accession code

Thermomicrobium roseum WP_012643201.1
Thermomonospora curvata WP_012853139.1
Thermobifida fusca WP_011293194.1
Thermobifida fusca WP_011291920.1
Thermobifida fusca WP_016188671.1
Moorella thermoaceticaa WP_069588064.1
Alicyclobacillus acidocaldariusa WP_012811644.1

aOrganism not displayed in all versions of tree branches.

FIGURE 7 | Substrate binding site tree based on substrate binding residues of AOxs with annotated EC and experimental evidence for catalytic activity. What looks
like a phylogenetic tree in this figure is actually a substrate binding site tree created with phylogenetic tree tools from the abbreviated alignment containing only designated
residues from the substrate binding pocket. The tree’s branches are grouped according to the binding pocket description based on positions identified to be within 5 Å
to the inhibitor (ABL) of 1NAA (Hallberg et al., 2003). The same methodology described for the ADHs was applied using MEGA (Kumar et al., 2016). A discrete
Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter � 5.7490)). This analysis involved 62 amino acid
sequences. There were a total of 19 sequence positions (supposedly involved in substrate binding) in the final dataset. The color code corresponds to EC numbers. The
green triangle marks the query sequence. For EC number annotation, see Supplementary Table S1. We show the true phylogenetic tree derived from the full-length
alignmnents of AOxs as Supplementary Figure S5 in Supplementary Files S1, S5.Supplementary Figure S6 (in Supplementary Files S1, S6) is a high-resolution
version of Figure 7 with EC-number annotated branches.
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straightforward applicability, we show its application for the
enzyme family of long chain alcohol oxidases.

We started the reference sequence from Candida tropicalis
under the UniProt accession code Q9P8D9 (Vanhanen et al.,
2000) with the domain architecture assigned to two Pfam
families: PF00732 (GMC_oxred_N) and PF05199
(GMC_oxred_C), belonging to the glucose-methanol-choline
oxidoreductase family (GMC oxidoreductase).

Our UniProt search requiring proteins to belong to the GMC
oxidoreductase family and to be annotated to have catalytic
activity with experimental evidence retrieved additional 56
sequences. Because the reference sequence did not have a PDB
structure available, sequence search with tools such as BLASTP
(Altschul et al., 1997; Johnson et al., 2008) and HHpred
(Zimmermann et al., 2018) were used to identify similar
structures with the coordinates of a possible substrate resolved.
We found five suitable examples: 1KDG, 1NAA (Hallberg et al.,
2003), 4H7U (Tan et al., 2013), 5HSA (Koch et al., 2016), and
5OCI (Carro et al., 2017). We added sequences from all five
structures to the seed sequence alignment (our final dataset
increased to 61 proteins). All sequence accessions are listed in
Supplementary File S2.

1NAA, a cellobiose dehydrogenase flavoprotein, has the
coordinates of its inhibitor resolved (Hallberg et al., 2003).
Its active site is structurally similar to that of glucose and
cholesterol oxidases whose mechanism of oxidation is still
poorly understood (Hallberg et al., 2003). We identified 19
positions sites within 5 Å of its inhibitor ABL (278, 279, 282,
297, 310, 312, 562, 563, 584, 586, 590, 607, 609, 686, 687, 688,
689, 732, 733; numbering in accordance with 1NAA sequence)
potentially involved in interaction with the enzyme’s substrate.

At this point, we cannot say whether we identified all residues
relevant for substrate binding given the limited structural
information. Finally, we constructed a binding site tree
(Figure 7) derived from just from binding pocket positions
(see the true phylogenetic tree for comparison in
Supplementary Figure S5 in Supplementary Files S1, S5).
Satisfactorily, sequences with same EC numbers cluster, as a
trend, in the same branch and, thus, co-clustering
uncharacterized sequences can be assumed have the same or
similar substrate specificity.

Amino Dehydrogenases
We identified 66 members of the (Glu, Leu, Phe, Val)-
dehydrogenases family with catalytic activity annotated by
experimental evidence and with sequence lengths between
200 and 500 from the UniProt database. All sequence
accessions are listed in Supplementary File S2. The
exhaustive family search for AmDH sequences in the NR
database at NCBI using HMMER identified almost 26,000
candidates. We classified the enzymes with known activity in
a phylogenetic tree based on full length sequences and colored
and annotated them by their Enzyme Classification (EC) code
(see Supplementary Figure S7). Then, we analyzed the
reference 3D structure 1C1D (Brunhuber et al., 2000) from
the Protein Data Bank RSCB (Goodsell et al., 2020) and
literature sources (Ye et al., 2015). We then identified 20
positions (38, 39, 40, 63, 66, 67, 78, 114, 115, 116, 117, 118,
137, 149, 262, 288, 291, 292, 295, and 296 in chain A of 1CID; see
Figure 8) relevant for substrate binding and specificity.

After extracting the sub-alignment with only those
positions, we constructed a new phylogenetic tree. In this
classification based on the binding pocket residues, the
enzymes with known activity cluster, as trend, with those
having similar substrate specificity (see Figure 9). We find
that the different dehydrogenases are much better grouped in
branches of the phylogenetic tree with regard to substrate
specificity when just the binding pocket positions are
considered (and not the full sequences) and this can be
especially clearly seen for the phenylalanine/valine
dehydrogenases (as two branches for the tree from the full-
length alignment with the valine dehydrogenase branch in the
middle but as one branch in the tree from the binding pocket
sequence alignment).

DISCUSSION

It was not our goal to exhaustively classify the large enzyme
families (ADHs, AOXs, AmDHs) along substrate specificity but
rather to show how groups of sequences potentially useful for
subsequent enzyme engineering could be selected with quite
limited effort.

To facilitate the classification of large bodies of enzyme
sequences with regard to their potential substrates, we suggest
a tree-step procedure in this work. First, it is necessary to
understand what the residues that interact with the substrate
are. This information can be gathered from the scientific

FIGURE 8 | Binding pocket positions in the AmDH reference structure
1C1D.We show the 3D structure view of AmDH reference (chain A of the PDB
entry 1C1D) with ligands in magenta (substrate as sphere and co-factor as
stick representations). Side chain of residues within 5 Å of the binding
pocket are displayed in stick mode. Residues described as catalytic are
shown in blue (K78 and D118 (Vanhooke et al., 1999)), while positions (K66,
S149 and N262) described to play a role in enantioselectivity (Ye et al., 2015)
are shown in yellow.
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literature about the enzyme’s family, from annotations in
sequence databases or, most directly, from 3D structures of
the respective enzymes together with substrates, cofactors, etc.
if available. Clearly, diverse substrates processed by the same
family of enzymes (for example, larger or smaller ones) will have
different binding residue list. Surely, some binding site positions
might be more significant for specificity than others. We
recommend to include all residues that have a role at least for
some substrate types. Very often in practical applications, the
available information is incomplete in this regard and, as a trend,
the list of residues put together in this effort will be incomplete.
The list of binding site residue positions is also the first
recommendation for mutations to test in enzyme engineering
efforts.

In a second step, a group of sequences is gathered from the
protein sequence and literature databases that is annotated with
substrate specificity data. Together with the sequences from the
first step, the joint sequence set (after removal of potential
duplications) is used for the creation of a seed multiple
sequence alignment that emphasizes residues from various
sequences with equal role in substrate binding being put into
the same alignment column. At some stage, this process will
require manual interference beyond the automatism of alignment
programs, for example if the sequential order and 3D structural
role are conflicting as in the case of our ADH seed alignment.

The third step involves the creation of a “binding site tree”
or binding cavity similarity tree” when just the list of binding
site residues is used as input for phylogenetic tree-generating

FIGURE 9 | Substrate binding site tree based on substrate binding residues of AmDHs with annotated EC and experimental evidence for catalytic activity. What
looks like a phylogenetic tree in this figure is actually a substrate binding site tree created with phylogenetic tree tools from the abbreviated alignment containing only
designated residues from the substrate binding pocket. Evolutionary analyses were conducted in MEGA (Kumar et al., 2018). We present the results of molecular
phylogenetic analysis of the AmDH binding pocket by the Maximum Likelihood method. The evolutionary history was inferred by using the Maximum Likelihood
method and JTT matrix-based model (Jones et al., 1992). The tree with the highest log likelihood (-295.80) is shown. The percentage of trees in which the associated
taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms
to a matrix of pairwise distances estimated using the JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was
used tomodel evolutionary rate differences among sites (5 categories (+G, parameter � 2.0446)). The tree is drawn to scale, with branch lengths measured in the number
of substitutions per site. This analysis involved 66 amino acid sequences. There were a total of 20 positions in the final dataset. The color code corresponds to EC
numbers (yellow–valine dehydrogenases, red–phenylalanine dehydrogenases, violet–leucine dehydrogenases, all others–glutamate dehydrogenases). For comparison,
see Supplementary Figure S7 with the tree derived for the full-length sequence alignment (in Supplementary File S1).
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tools. It is expected that sequences with similar substrate
specificity will be grouped together in the same branch of
the tree. Any amount of non-annotated sequences can now be
mapped onto the tree with sequence similarity criteria (for
example by just expanding the multiple sequence alignment
used for tree construction with the constraint of preserving the
seed alignment) and, again, we presume that the new
sequences associated with a given branch will have the same
or very similar substrate specificity as the annotated sequences
located there.

Clearly, the procedure is only for predicting and hypothesizing
about substrate specificity of non-annotated sequences. The
method is not a panacea. If amino acid residue patterns show
clear trends within and between branches (the patterns reflect the
physics of the respective binding style), the predictions will be
more likely true. There are many caveats: On the one hand, the
information about possible substrates in the literature can be
incomplete, even erroneous and certain applicable compounds
might be missing in the tree’s annotation. On the other hand, the
sequences can represent promiscuous enzymes or even
enzymatically non-active binders. The ADH family as
described in the introduction is a pertinent illustration for all
these possibilities.

Since the “binding site” tree is constructed from only a
minor fraction (maybe, two dozens of positions) of the full-
length multiple sequence alignment of the enzyme family
(that, typically, encompasses a few hundred positions), there
should be no surprise if the binding site tree and the true
phylogenetic tree (generated from the full-length alignment)
do not share much similarity. Additionally, bootstrap values
and other statistical measures in the output for the “binding
site” tree might have diminished significance because of the
smallness of the number of involved alignment positions. All
this can be easily disregarded for the purpose of hypothesis
generation on substrate specificity for uncharacterized
sequences.

Yet, the reader will agree that, intriguingly, the “binding site”
tree and the true phylogenetic tree are surprisingly similar (see
Figure 4 and Supplementary Figure S4 for ADHs, Figure 7 and
Supplementary Figure S5 for AOXs, Figure 9 and Supplementary
Figure S7 for the AmDHs). That means that the few positions
involved in substrate binding and catalysis usually contain most of
the information that is otherwise contained in the full-length
multiple sequence alignment. Further, the appearance of the
same substrate specificity in disconnected branches of the
phylogenetic tree can and does happen (as it takes just a few
mutations compared with a large number of mutations necessary
for changes in the overall tertiary structural arrangements and
fitting) but, nevertheless, it is not a very frequent event. The
quantification of this evolutionary phenomenon would be an
interesting scientific task on its own. At the same time, analyses
of partial sequence alignments from selected branches of the
phylogenetic tree with different and equal substrate specificity,
with conflicting or re-occurring EC numbers can give hints about
additional residue positions that might have a role in determining
the suitable substrate compounds (and, thus, improve the “binding
site” tree).

CONCLUSION

Zinc-dependent alcohol dehydrogenases (ADHs), long chain
alcohol oxidases (AOxs) and amino dehydrogenases (AmDHs)
are large enzyme families with good potential for biocatalysis
applications through directed evolution towards new substrates
and reactions. By creating a tree based on the alignment of
potentially substrate binding sequence positions using a
combination of bioinformatics tools, we can systematically
classify these sequences (both characterized and uncharacterized
ones) relative to known substrates. As a trend, enzymes with
similar substrates will reside in the same branch of the tree. The
sequence subgroup identified in this manner becomes more
manageable and the most suitable, naturally occurring enzyme
and the most relevant sites for substrate specificity can then be
targeted for the intended engineering purpose.
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S2A-F, S3-S7) and Table S1 is available for this article.
Supplementary File S2 (aka "Table 1.XLSX") contains the
accession numbers of all sequence sets described in this
article in electronically readable format. Supplementary

Figures S3-S6 can also be accessed as high-resolution image
in Supplementary Files S3-S6 (aka "Data Sheet 2-5.PDF").
Additionally, a Supplementary File S7 “alignments” (a zipped
directory, aka "Data Sheet 6.ZIP") with fasta-formatted
alignments for the binding site positions of ADHs, AOxs and
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