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Epidemiological studies have shown not only a relationship between the intake of dietary lipids and an increased risk of developing
metastatic prostate cancer, but also the type of lipid intake that influences the risk of metastatic prostate cancer. The Omega-6 poly-
unsaturated fatty acid, Arachidonic acid, has been shown to enhance the proliferation of malignant prostate epithelial cells and
increase the risk of advanced prostate cancer. However, its role in potentiating the migration of cancer cells is unknown. Here we
show that arachidonic acid at concentrations p5mM is a potent stimulator of malignant epithelial cellular invasion, which is able to
restore invasion toward hydrocortisone-deprived adipocyte-free human bone marrow stroma completely. This observed invasion is
mediated by the arachidonic acid metabolite prostaglandin E2 and is inhibited by the Omega-3 poly-unsaturated fatty acids
eicosapentaenoic acid and docosahexaenoic acid at a ratio of 1 : 2 Omega-3 : Omega-6, and by the COX-2 inhibitor NS-398. These
results identify a mechanism by which arachidonic acid may potentiate the risk of metastatic migration and secondary implantation in
vivo, a risk which can be reduced with the uptake of Omega-3 poly-unsaturated fatty acids.
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Prostate cancer (CaP) is the second most common malignancy
prevalent in men worldwide, comprising 11.9% of all cancer cases
diagnosed in 2002. There is considerable geographic variation in
incidence, the disease being more common in the developed
countries (19%) than in developing countries (5.3%) (Parkin et al,
2005). Even within the developed countries there is considerable
variation in the rate of presentation, with the USA having the
highest age-standardised incidence (124.8/100 000) and Japan the
lowest (12.6/100 000). This is also reflected in the mortality rates,
whereby North America, Northern and Western Europe have high
age-standardised rates (15.8, 17.5 and 19.7/100 000, respectively) as
compared to Japan (5.7/100 000). Migrants from low- to high-risk
countries show a marked increase in risk, reaching levels of cancer
risk similar to that in resident populations (Haenszel, 1961;
Haenszel and Kurihara, 1968). Although the aetiology and
pathogenesis of CaP is unknown, various epidemiological studies
have shown a relationship between dietary lipids and development
of the disease (Snowdon et al, 1984; Giovannucci et al, 1993). Also
there is increasing evidence that it is not only the quantity of lipid
but the type of lipid intake that influences the risk of CaP. Omega-
6 poly-unsaturated fatty acids (o-6 PUFA) have been shown to
promote CaP, whereas Omega 3 (o-3) PUFA, from marine foods,
may inhibit oncogenesis (Norrish et al, 1999).

Prostate cancer has a predilection to metastasise to the
bone marrow stroma (BMS) of the axial skeleton. Men who
develop CaP bone metastases will almost invariably die from their
disease in the absence of an intercurrent illness, the median
time between clinical presentation with bone metastases and
death being 18 months (George, 1988). The mechanics of invasion
through the endothelium into the BMS is a complex and multi-
step process, which is only just beginning to be understood
with the utilisation of in vitro invasion chambers. These in vitro
models allow not only the study of the mechanism of endo-
thelial transmigration, but also the determination of specific
BMS attractants. The exact nature of the stimulatory mechanisms
which direct the PEC to the BMS are currently unknown although
some components have been identified. The CXCR4/SDF-1
signalling pathway is a potent stimulator of PEC invasion
(Taichman et al, 2002; Sun et al, 2003). However, in comparison
to human BMS, it forms only a small part of the overall stimulus
(Hart et al, 2005). The BMS is a lipid-laden environment, rich in
various lipids including the o-6 PUFA’s, linoleic acid (LA)
(4.170.84% to 15.372.9%) and arachidonic acid (AA) (2.570.9
to 9.5270.4%) (Sumida, 1965; Denizot et al, 1998; Denizot et al,
1999).

Studies of prostate epithelia have demonstrated the importance
of lipid/cellular interactions. Mamalakis et al (2002) showed that
relative to benign disease patients, the adipose tissue and prostatic
tissue of CaP patients had reduced levels of AA and the o-3 lipid
docosahexaenoic acid (DHA), and a reduced o-3 :o-6 PUFA ratio.
Adipocyte/epithelial cell interactions have been shown to induce
proliferation of prostate (Tokuda et al, 2003) and mammary
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(Rahimi et al, 1994) cancer cell lines and plays an important role in
normal breast development (Zangani et al, 1999).

Omega-6 PUFA’s, especially the LA metabolite AA, has been
associated with prostate cancer progression (Honn et al, 1994;
Norrish et al, 1999), stimulating proliferation and inhibiting
apoptosis (Ghosh, 2004). These effects are mediated by the
increase in the cyclooxygenase-2 (COX-2) product prostaglandin
E2 (PGE2) (Hughes-Fulford et al, 2005), and lipoxygenase (LOX)
products 5 and 12(S)-HETE (hydroxyeicosatetraenoic acid). 5-
hydroxyeicosatetraenoic acid has been shown to induce PC-3
proliferation (O’Flaherty et al, 2002) and loss of 5-LOX expression
in both DU145 and PC-3, by activation of the orphan nuclear
receptor RORa, has been shown to inhibit the proliferative effects
of both AA and LA (Moretti et al, 2004). 12(S)-hydroxyeicosate-
traenoic acid, does not induce PC-3 proliferation but induces
endothelial invasion (angiogenesis) leading to increased prolifera-
tion in vivo (Nie et al, 1998).

The stimulatory ability of AA can be blocked by the addition of
the o-3 PUFAs, eicosapentaenoic acid (EPA) and DHA. This may
be due to o-3 PUFA modifying the AA biosynthetically derived
prostaglandins and eicosanoids via competitive inhibition of the
COX and LOX pathways (Karmali et al, 1987). Rose (1997) showed
using malignant breast and PEC that both EPA and DHA not only
blocked AA synthesis from LA by competition for D4 desaturase
but also blocked prostaglandin and HETE synthesis from AA by
direct competition for COX and LOX enzymes.

Epidemiological data suggest that the dietary ratio of o-3 :o-6
PUFA is crucial in determining the risk of metastatic CaP. Here we
present for the first time in vitro data showing that AA is a key
attractant of metastatic PECs to human BMS and that this stimulus
can be blocked in a PGE2-dependent manner by the addition of
o-3 PUFAs.

MATERIALS AND METHODS

Materials

All Reagents were purchased from Sigma-Aldridge (Poole, UK)
except AA, 5-HETE and 12(S)-HETE, which were supplied by MP
Biochemicals UK (London, UK). All fatty acids were made up to
10 mg ml�1 in ethanol. All tissue culture medium and horse serum
was from Invitrogen (Paisley, UK) with the exception of foetal calf
serum (FCS) supplied by Labtech International Ltd (Uckfield, East
Sussex, UK). Tissue culture plastic, Matrigels Basement Mem-
brane Matrix and 8 mm cell culture inserts were from Becton
Dickinson Labware (NJ, USA). Iwaki quartz-based 35 mm Petri
dishes were supplied by Bibby Sterilin (Staffordshire, UK). Oil Red
O was obtained from VWR International Ltd (Leicestershire, UK).
The inhibitors NS-398 was from Alexis Corp and MirrIR slides
from Keveley Technologies (Ohio, USA).

Antibodies

Mouse anti-human pan cytokeratin, Nile Red and DAB tablets were
from Sigma-Aldridge (Poole, UK); rabbit anti mouse biotinylated
antibody from DAKO Ltd (Cambridge, UK) and Vectastain Elite
ABC kit from Vector Laboratories (CA, USA).

Cell culture

The PC-3 cell line (Kaighn et al, 1979) was cultured in Ham’s F12
(Sigma) and 7% FCS and grown at 371C in a humidified
atmosphere of 5% CO2 in air. Bone marrow stroma was cultured
from human ribs removed for access during routine renal surgery
after informed consent (ProMPT LREC 02/ST/122) and prepared
for tissue culture using the method of (Coutinho et al, 1993). The
cultures were grown at 331C in 5% CO2 in air for 4–5 weeks until
haemopoietically active areas were observed.

Co-culture experiments

Bone marrow stroma cultures were trypsinised and re-seeded into
Iwaki quartz-based 35 mm Petri dishes at the same cell density and
left to re-establish for 14 days. Bone marrow stroma media was
replaced with medium containing 500 PC-3 cells/dish. The co-
cultures were incubated for 48 h at 371C then fixed in 4%
paraformaldehyde.

Immunocytochemistry

After fixation co-cultures were permeabilsed using ice-cold
methanol, blocked with 10% rabbit serum followed by 0.3%
hydrogen peroxide. Co-cultures were incubated with mouse anti-
human pan cytokeratin at 1 : 200 followed by biotinylated rabbit
anti-mouse 1 : 400. A complex of avidin DH and biotinylated
horseradish peroxidase H was then added and developed with DAB
substrate. Adipocytes were stained by Oil Red O. Briefly, cultures
were rinsed in 60% isopropanol then incubated in a 0.5% Oil Red
O in 60% isopropanol solution for 10 min. Cultures were
differentiated for a few minutes in fresh 60% isopropanol then
rinsed with water.

Brightfield volumetric analysis

PC-3 and adipoctye cells stained with Oil Red O were analysed in
colour. Planes of focus were visualised utilising a Zeiss AxioVert
35 M with a C-Apochromat � 63 1.2NA water immersion objective
lens under brightfield illumination. A stepper motor (Ludl
electronics, NY, USA) was attached which permits fine control of
the focus (0.2 micron steps). Images were then accumulated into a
stack utilising ImageJ Image Analysis software (Rasband, 2005). A
depth of focus algorithm was applied to each colour component of
the volume, in greyscale, and the volume subsequently merged to
form a colour volume of data. The image was then viewed in Imaris
(Bitplane) and a cross sectional view of the data generated.

Fourier transform infrared microscopy

Prostate bone metastases paraffin-embedded sections, isolated
from consenting patients, were mounted on MirrIR slides and
deparaffinised with Citroclear followed by 20 min acetone treat-
ment before air drying. High-definition FTIR microspectroscopic
maps of 6.25mm pixel resolution of bone marrow tissue was
collected in rapid-scan mode using a Perkin Elmer Spotlight
spectrometer and a 16� 1 MCT linear array detector. Mid-IR
spectra within the wavenumber range 4000–748 cm�1 were
collected in reflection mode. The background scan was recorded
at 8 cm�1 spectral resolution with 75 scans, whereas the sample
scan was recorded at 8 cm�1 spectral resolution with 60 scans.
Fourier transform infrared microscopy spectral images were
processed with Spotlight version 1.0.1.

Invasion assay

PC-3 invasion was assessed using the method described by Hart
et al (2005). Briefly, Matrigel-coated cell culture inserts were
placed in a 24-well plate containing 1 ml of DMEM/0.1% fatty acid-
free BSA with either plain tissue culture plastic (TCP-negative
control), BMS (positive control) or escalating concentrations of
AA, DHA, EPA, 5-HETE, 12(S)-HETE, 15(S)-HETE and Prosta-
glandin E2 (PGE2). The COX-2 inhibitor NS-398 was added at 8 mM.
PC-3 cells, serum starved for 24 h in RPMI 1640 medium, were
seeded at 1� 105 per insert then incubated at 371C for 18 h after
which inserts were fixed and stained in 2% crystal violet and
counted according to manufacturer’s instructions using a grid
graticule.
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Uptake of AA in PC-3 cells using flow cytometry

PC-3 cells were serum starved for 24 h in RPMI 1640 medium,
trypsinised and placed in RPMI serum-free medium plus or minus
AA at 10 mM at a concentration of 2� 105 cells/ml. The cells were
incubated in these conditions at 371C in 5% CO2 in air for up to
180 min before fixing and staining with 5 mM Nile Red for 5 min.
Analysis was carried out using a FACS Vantage SE equipped with
an argon ion laser running at 200 mW 488 nm. Emission in the
560– 565 nm range yellow/gold was measured using linear
amplification. All cells were analysed within 30 min.

AA Uptake by PC-3 cells visualized using spinning disc
confocal microscopy

PC-3 cells were plated onto quartz-bottomed 35 mm petri dishes
and grown to semi confluence. Cells were then serum starved in
RPMI 1640 medium for 24 h before use. Before visualisation on the
microscope, the media was exchanged for RPMI serum-free media
(without phenol red) and 5 mM Nile Red. Cells were visualised on a
PerkinElmer Ultraview situated on a Zeiss Axiovert 200 M with a
full environmental chamber and heated objective set at 371C. Nile
Red was excited using the 488 nM laser and the cells photographed
every 5 min for 2 h in the z-axis and combined to give a continuous
sequence.

Statistics

All values are presented as mean7s.e.m. All assays were compared
by use of the two-tailed Student’s t-test. A threshold of significance
was set at Po0.05.

RESULTS

Localisation of malignant PEC to BMS adipocytes and lipid
uptake

Tokuda et al (2003) showed that human PECs interact with
adipocytes in vitro with a resultant increase in proliferation and
differentiation of the PECs. We therefore analysed human prostate
bone metastases chemometrically using Fourier transform infrared
microscopy (FTIR), to determine whether PECs associate with
lipid-rich regions within the BMS in vivo. Figure 1 shows serial
sections of a human prostate bone metastasis stained with
haematoxylin and eosin or examined chemometrically by FTIR.
The spectral maps show the localisations of protein and lipid
signals within the tissue, with blue representing the lowest signal
and red the highest. The intensity distribution of the lipid
hydrocarbon signal (using the n-band region between 3007 and
2978 cm�1) demonstrates a strong lipid signal associated with/
around the prostate bone metastasis suggesting either lipid uptake
by the PECs or an association with lipid-rich regions within the
BMS. It has also been observed in our previous studies of PECs co-
cultured in human long-term bone marrow cultures (Lang et al,
1997; Lang et al, 1998; Scott et al, 2000; Hart et al, 2002; Hart et al,
2005) malignant human PECs formed colonies in close proximity
to adipocytes (unpublished finding).

We therefore hypothesised that malignant PECs may migrate
towards adipocytes and utilise the lipids that they contained. To
test this hypothesis, the PEC line PC-3 was seeded on to confluent
long-term human BMS (Figure 2A–D) or primary prostate stroma
(Figure 2E and F). PC-3 cells and lipid droplets were then
visualised by staining with anti pan-cytokeratin, developed with
DAB, and Oil Red O, respectively. Figure 2A and B illustrates that
PC-3 cells migrate towards and form colonies around lipid-rich
areas. High-resolution brightfield microscopy of PC-3 cells
surrounding/in close proximity to lipid droplets shows that PC-3
cells take up lipids from the surrounding area of BMS (Figure 2C

and D). This observation was confirmed using brightfield
volumetric analysis of the PC-3/BMS co-culture. Figure 2D shows
a de-convolved image of a PC-3 cell dual stained with anti pan-
cytokeratin and Oil Red O with Z plane data collected at 0.2mM

steps. Along both the x and y axis are orthogonal planes of data
bisecting a lipid droplet, confirming its location within the PC-3
cell.

Within the prostate stroma, which lacks lipid centres, the PC-3
cells do not congregate, appear as isolated cells within the stroma
and do not have Oil Red O-stained lipid droplets within the
cytoplasm (Figure 2E and F).

Uptake of AA by PC-3 cells in vitro

Hughes-Fulford et al (2005) showed that in the presence of an
albumin carrier, uptake of AA by PC-3 cells could be detected after
2.5 h. To determine the rate of lipid uptake from their environment
in the absence of carrier, we conducted a series of monoculture
experiments with 10 mM albumin-free AA. Figure 3A I and II show
adipocytes and PC-3 cells in the presence of AA, stained with 5 mM

Nile Red and visualised by fluorescent microscopy. The adipocytes
are densely packed with yellow-staining lipid droplets. These are
also observed in the PC-3 cells, although at a much lower
frequency. This observation was confirmed by confocal imaging
(Figure 3A III), and the internalisation and localisation of the lipid
droplets was verified by 3D confocal microscopy (Figure 3A IV).
Utilisation of a fluorescent lipid stain enabled the uptake of AA by
PC-3 cells to be monitored over time (Figure 3B). PC-3 cells were
incubated with 10 mM AA, fixed and stained with 5 mM Nile Red at
different time points. The number of cells and the amount of AA
taken up by the PC-3 cells was determined by flow cytometry and
followed in real time by spinning disc fluorescent microscopy.
Arachidonic acid is rapidly taken up by PC-3 cells with a maximal
number of cells, 67.7174.72%, taking up AA at 30 min. After this
time there is a steady decline in the number of AA positively
stained cells, with only 30.7371.73% of PC-3 cells staining positive
90 min post dosing. Maximum uptake occurs at 45 min, with a
geometric mean difference to the controls of 62.83716.39
(P¼ 0.019), a figure which again declines with time. This
phenomenon was also confirmed in real time with time lapse
spinning disc microscopy (Supplementary Figure 1).

Effect of x-3 and x-6 PUFAs on invasion

Omega-6 PUFAs, in particular AA, have been associated with an
increase in risk of advanced CaP and that this risk can be reduced
by increased intake of o-3 PUFAs. Therefore, we sought to
determine the ability of AA, DHA and EPA to stimulate PC-3
invasion through a synthetic basement membrane, Matrigel, and to
compare its ability to stimulate migration with human BMS.

PC-3 cells were cultured overnight in the presence of escalating
doses of AA, DHA or EPA and cell viability assessed by Trypan
blue exclusion. Only 100 mM DHA was shown (Figure 4A) to have
an effect on the overall cell viability of the PC-3 culture after 18 h
exposure, reducing viability to 88.5675.4% (although this did not
reach statistical significance (P¼ 0.168)).

To determine the ability of o-3 and o-6 PUFA to induce PEC
invasion, exponentially growing PC-3 cells were seeded on to
Matrigel-coated cell culture inserts above either TCP, human BMS
or escalating doses (5–100 mM) of AA, DHA or EPA. After 18 h at
371C with 5% CO2, the number of invasive cells was counted.
Arachidonic acid at concentrations p50 mM, was shown to be a
potent stimulus for invasion (Figure 4B), with concentrations of
X5 mM inducing similar levels of invasion to BMS (5 mM AA;
P¼ 0.17). Arachidonic acid did not induce LnCaP or PNT2-C2 cell
lines to invade even in the presence of androgen (Supplementary
Figure 2).
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In comparison, both EPA and DHA (Figure 4C and D) did not
significantly induce invasion above the background level of TCP
(PX0.05), except for 10 mM EPA, which induced a small but
nonsignificant increase in invasion of PC-3 cells (418.5745.2 vs
380.3739.6; P¼ 0.347). Eicosapentaenoic acid concentrations
X50 mM induced a reduction in the number of invading PC-3
cells in comparison to TCP (325.9735.2 and 283721.6 vs
380.3739.6 at 50 mM and 100 mM, respectively) although these
decreases were not significant (P¼ 0.576 and P¼ 0.144, respec-
tively). With DHA at a 5 mM concentration a nonsignificant
reduction in cellular invasion was observed (260.8733.8 vs
380.3739.6; P¼ 0.098) by comparison with TCP.

x-3 inhibits x-6-stimulated PEC invasion

The proliferative potential of AA has been shown to be abrogated
by the addition of o-3 PUFA’s (Honn et al, 1994; Rose, 1997;

Norrish et al, 1999). We sought to determine whether the addition
of o-3 PUFAs to an environment rich in AA would reduce the level
of induced invasion. Figures 5A and B shows the effect of the
addition of increasing concentrations of EPA or DHA to an
invasion chamber containing 10 mM of AA as a stimulus and
compared to TCP and BMS.

Both EPA and DHA were potent blockers of AA stimulation of
invasion. Eicosapentaenoic acid and DHA, at concentrations
X5 mM completely inhibited invasion towards 10 mM AA, inducing
similar levels of invasion as TCP (776.8774.1 vs 858.7755.1;
P¼ 0.396 and 723.7768.1 vs 858.7755.1; P¼ 0.154 by comparison
with TCP for 5 mM EPA and DHA, respectively).

PGE2 recovers x-6 induced invasion in the presence of x-3

To determine the basic mechanism of o-3 inhibition of AA-
induced malignant PEC invasion, we repeated the invasion assays

H&E Brightfield

Lipid
0.27

0
100 �M

Protein
1

0

Figure 1 PECs localise to lipid-rich regions in bone marrow metastases. Fourier transform infrared microscopy chemometric analysis of prostate bone
metastasis. Haematoxylin and eosin-stained section (H&E) depicting bone metastasis. Square outlines the region of a serial section analysed by FTIR as
shown by the brightfield image. The lighter shaded locations within the brightfield photomicrograph depict CaP cells. The lipid hydrocarbon peak area
(3007 cm�1 to 2798 cm�1) intensity image displays lipid localisation within the section. The protein image (1729 cm�1 to 1485 cm�1) reveals the boundary
between the CaP cells and haemopoietic bone marrow. Scale bar¼ 100 mm.
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100 �m 20 �m

10 �m

20 �m

100 �m 20 �m

A B

C D

E F

Figure 2 PC-3 cells localise to adipocytes in BMS co-culture and take up lipids. 5� 102 PC-3 cells co-cultured with primary long-term human BMS,
visualised by staining with anti pan-cytokeratin and developed by DAB (brown). Bone marrow adipocytes and lipid droplets were visualised by staining with
0.5% Oil Red O. Images were captured utilising a Zeiss AxioVert 35 M with a C-Aprochromat � 63 1.2 NA water immersion objective lens. (A–C)
Brightfield photomicrographs of PC-3 cells co-cultured with BMS showing PC-3 localisation to bone marrow adipocytes and lipid uptake. (D) Deconvolved
brightfield image showing localisation of lipid droplets within the PC-3 cytoplasm. x and y panels show orthogonal planes of data along the white cross hair.
(E–F) Brightfield photomicrograph of PC-3 cells co-cultured with primary human prostate fibroblasts.
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with 10mM AA blocked with 20 mM o-3 PUFA and attempted
recovery of invasion by the addition of the AA metabolites, 5-
HETE, 12(S)-HETE, 15(S)-HETE and PGE2. All AA metabolites
were titrated for their ability to stimulate invasion of PC-3 cells

through a Matrigel basement membrane and used in subsequent
experiments at the optimum concentration (data not shown).

Figure 6A–C show the effect of the addition of AA lipoxygenase
products, 5-HETE, 12(S)-HETE and 15(S)-HETE on PC-3 invasion
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after loading with AA was visualised by fluorescent yellow/gold Nile Red staining (488 nm excitation–565 nm emission). (III) High-resolution confocal false
coloured image of AA pulsed PC-3 cells. (IV) Confocal 3D relief image showing localisation of lipid droplets within the cytoplasm of PC-3 cells. (B) FACS
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staining positive for AA uptake overtime, (II) graph showing the level of AA uptake by PC-3 cells overtime as determined by the geometric fluorescent mean.
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towards 10 mM AA in the presence of blocking concentrations of
DHA or EPA (20mM). Although 5-HETE (Figure 6A) did not induce
invasion in its own right (748.7743.3 vs 719.6743.4 (5-HETE vs
TCP), P¼ 0.64), addition of 100 nM 5-HETE to AA blocked with
20mM EPA induced significant recovery of PC-3 invasion
(931.3768.4 vs 719.6743.4; P¼ 0.00457) as compared to EPA
control. Although addition of 100 nM 5-HETE to AA blocked with
20mM DHA induced PC-3 invasion as compared to the DHA
control, it was not significant (844752.4 vs 719743.4; P¼ 0.1425).

15(S)-hydroxyeicosatetraenoic acid (Figure 6B) induced inva-
sion of PC-3 cells as compared to TCP (769738.7 vs 641.8729.8;
P¼ 0.016) and partially restored PC-3 invasion in the presence of
EPA-blocked AA (803.3767.6 vs 584.5744.6, P¼ 0.0222 by
comparison with the EPA blocked AA control). However, addition
of 15(S)-HETE did not release the DHA blocked system (P¼ 0.4887
as compared to DHA control). 12(S)-hydroxyeicosatetraenoic acid
like 15(S)-HETE (Figure 6C) induced invasion of PC-3 by itself,
inducing 802.6730.4 vs 691738.6 cells to invade (P¼ 0.0333 in
comparison to TCP). Like 5-HETE and 15(S)-HETE, 12(S)-HETE
was only able to release the invasive block induced by EPA,
resulting in 935.9749.6 vs 774.8740.3 cells invading (P¼ 0.01944)
as compared to EPA control.

Prostaglandin E2 was shown to be a potent stimulator of PC-3
invasion, with 10 ng ml�1 inducing similar levels to AA
(915.42764.5 vs 997.8755.5; P¼ 0.3431). Addition of 10 ng ml�1

PGE2 to an invasion blocked system, with 10 mM AA acting as the
main stimulus and 20 mM of either EPA, DHA or 8 mM NS-398
blocking invasion (Figure 6D), resulted in complete recovery of

AA-induced invasion (997.8755.47 vs 1022.8784.7 (P¼ 0.8042),
911.8746 (P¼ 0.2452), 974.3714 (P¼ 0.6841) for AA vs
EPAþPGE2, DHAþPGE2 and NS-398þ PGE2, respectively).

Only EPA inhibits invasion towards BMS

To determine the potential of o-3 inhibition of malignant PEC
invasion towards human BMS, in vitro co-culture assays were set
up utilising human BMS as the target for invasion in the presence
of escalating concentrations of either EPA or DHA (Figure 7A and
B). Eicosapentaenoic acid at concentrations X20 mM reduced
invasion toward BMS (655.8755.8 (P¼ 0.04085) and 535.3744
(P¼ 0.0003) vs 796.2721.4 at 20 and 50 mM, respectively) as
compared to BMS. However, this was not observed with DHA at
concentrations up to 100 mM (P¼ 0.2905 as compared to BMS).

AA recovers invasive ability of depleted BMS

To address the potential role of AA in the stimulation of invasion
towards BMS in vivo, in vitro co-culture invasion models were
constructed using long-term human BMS grown in the presence or
absence of hydrocortisone, essential for the formation of
adipocytes in the BMS (Toogood et al, 1980) and hence
haemopoiesis (Dexter et al, 1977). We utilised these cultures as a
source of lipid-free BMS. Figure 7C shows photomicrographs of
5-week-old human BMS cultures from the same donor grown in
the presence or absence of 0.5 mM hydrocortisone. Both cultures
developed similar confluent BMS fibroblasts. However, in the
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absence of hydrocortisone there were no signs of haemopoiesis or
colonies of adipocytes.

The ability of the hydrocortisone-depleted BMS to act as a
stimulant for invasion was then assessed in comparison to normal
BMS and the ability of AA to recover invasion was determined
(Figure 7D). Hydrocortisone-depleted BMS weakly stimulated
PC-3 invasion through Matrigel (838.6759.6 vs 688.5761.1;
P¼ 0.1096 as compared to TCP) but was a significantly weaker
stimulus than control BMS (P¼ 0.0059). Addition of 10 mM AA to
the hydrocortisone-depleted BMS restored the ability of this BMS
to induce invasion, with measured levels of invasion comparable to
the level induced by normal BMS also supplemented with 10mM

AA (1280743 vs 1308742.9; P¼ 0.655).

DISCUSSION

The role of diet, especially PUFAs, in CaP has been a highly
controversial subject with epidemiological studies generating
conflicting information as to the effect of o-6 and o-3 PUFAs in
the pathogenesis and progression of CaP. In vitro studies
examining the role of both families of PUFAs in CaP have

provided some insight into the potential mechanisms of their
effect. Metabolism of the essential o-6 PUFA LA leads to the
production of AA, metabolites of which have been shown, in the
case of 5(S)-HETE, to protect PEC from apoptosis and to induce
proliferation, and in the case of 12(S)-HETE to induce endothelial
invasion and angiogenesis in vivo, leading to the formation of
larger tumours. These effects have been shown to be abrogated by
the use of o-3 PUFAs (Rose and Connolly, 1999). In this study we
have addressed for the first time the role of PUFAs in stimulating
BMS metastatic migration, because of the known predilection that
prostate cancer has for the haemopoietic bone marrow. This study
is the first to demonstrate that o-3 PUFAs have an inhibitory effect
on cell migration in vitro and thus potentially metastasis.

The means by which cancer cells migrate in a site-specific
manner, and in particular, the reasons underlying the predilection
that some cancers such as prostate cancer have for the red bone
marrow are poorly understood. There are a number of potential
factors which may be influential but presently, there is no specific
known mechanism. The CXCR4/SDF-1 axis has been postulated as
being critical in this process (Taichman et al, 2002; Sun et al, 2003)
but we have previously shown that this forms only a part of the
invasive stimulus generated by the BMS (Hart et al, 2005). The
BMS is a lipid-rich environment, with the presence of adipocytes
being of critical importance for the haemopoietic process (Dexter
et al, 1977). Lipid-related studies of the BMS microenvironment
have shown that the lipid component comprises of various fats
including oleic acid (35.274.9%), palmitic acid (27.872.5),
palmitoleic (8.172.7%) stearic acid (6.371.4%) and linoleic acid
(12.372.7– 15.372.9%) (Sumida, 1965; Denizot et al, 1999).
Arachidonic acid, a metabolite of LA, is also present within the
BMS although the concentration varies from 2.570.9% in the BMS
plasma to 9.5270.4% within the cellular component (Denizot et al,
1998). As the body ages the amount of fatty tissue/yellow bone
marrow increases (up to 10% every decade (Compston, 2002)),
along with a notable increase in adipocytes (Meunier et al, 1971;
Rozman et al, 1989). Using our co-culture in vitro models of BMS
invasion, we have shown that the bone metastatic CaP cell line PC-
3 actively seek out and move towards adipocyte-rich regions of the
BMS. In the presence of bone marrow adipocytes the PC-3 cells
were observed to take up lipids actively and in a time-dependent
manner (Figures 1 –3). The role of lipid uptake is currently unclear
but it is possible that the lipid may be utilised as an energy
substrate to meet the needs of the accelerated cellular metabolism,
known to be a feature of the metastasising malignant cell, and
indeed it has been shown that prostate cancer cells interact with
adipocytes. Tokuda et al (2003) showed that PC-3/adipocytes co-
cultures induced both PC-3 proliferation and differentiation.
Conversion of LA to AA leads to the generation of AA metabolites,
PGE2, 5-HETE, 12(S)-HETE and 15(S)-HETE. Both PGE2 and 5-
HETE have been shown to have CaP proliferative properties.
Studies by Hughes-Fulford et al (2005) demonstrated that p10mM

AA induced PC-3 proliferation by elevating expression of cPLA2
and COX-2, fivefold and threefold respectively, with subsequent
increased levels of PGE2. 12(S)-hydroxyeicosatetraenoic acid also
increased prostate tumour growth by increasing angiogenesis with
subsequent decrease in necrosis, but it has also been shown to have
varied roles in the metastatic processes in CaP, including
enhancing cell motility (Honn et al, 1994; Gao et al, 1995). Unlike
PGE2, 5-HETE and 12(S)-HETE, 15(S)-HETE is associated with
benign prostate tissue. Formation of 15(S)-HETE is reduced in the
majority of CaP (Shappell et al, 1999) and it acts as a PPARg
agonist (Shappell et al, 2001), an effect which has been shown to
inhibit proliferation of breast (Mueller et al, 1998), colon
(Brockman et al, 1998) and bladder (Brockman et al, 1998)
carcinoma cell lines.

As a major component of the lipid composition of normal BMS
adipocytes is LA and its metabolite AA (Sumida, 1965; Denizot
et al, 1998; Denizot et al, 1999) and that the level of AA decreases
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in the prostate cancer patients (Mamalakis et al, 2002), we sought
to determine the rate of lipid uptake. PC-3 cells cultured in the
presence of 10 mM AA and stained with Nile Red rapidly took up
the PUFA from the local environment (within 15 min), reaching a
maximum level of uptake after 45 min. The level of AA then
diminished over time suggesting metabolism of the AA into PGE2
(Hughes-Fulford et al, 2005) or HETEs. This potential rapid
metabolism of AA, correlating with patient data (Mamalakis et al,
2002; Faas et al, 2003), suggests that AA cyclooxgenase and
lipoxygenase products are potentially important components of
the cancer process.

The study by (Mamalakis et al, 2002) also showed that despite a
reduction of AA in prostatic tissues between CaP and BPH patients
there was no significant difference in the levels of AA within the
adipose tissue. We therefore hypothesised that the level of AA
within the adipocyte-rich BMS may be maintained in CaP patients
and act as an attractant for metastatic PEC. Using our in house in
vitro invasion assays we showed that AA was a potent stimulator of
invasion, inducing similar levels of invasion as to those seen using

BMS. This series of experiments showed that AA is a far stronger
stimulator of invasion than SDF-1 (Hart et al, 2005) and that this is
possibly the predominant signal for invasion of the BMS, leading
to the characteristic disturbance of the skeletal and bone marrow
metabolism.

The importance of the AA signal from the BMS was further
confirmed in our in vitro co-culture models utilising primary
human BMS cultures grown in the presence or absence of
hydrocortisone (Figure 7C and D). Toogood et al (1980) showed
that mesenchymal progenitors within the BMS cultured in the
absence of hydrocortisone do not differentiate into adipocytes. In
the absence of adipocytes, BMS induced PC-3 invasion but at a
significantly lower level than adipocyte-rich BMS. The small
amount of invasion observed was possibly due to the production of
other factors such as SDF-1, which has previously been shown to
induce PC-3 invasion, by the BMS (Hart et al, 2005). Addition of
10mM AA completely restored the ability of adipocyte-free BMS to
induce PC-3 invasion demonstrating the potency of AA to induce
invasion.
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Omega-3 PUFAs, especially the marine PUFAs, EPA and DHA,
have been shown to inhibit the proliferation of both prostate and
breast cancer cells in vitro and in vivo. The mode of action of o-3
PUFAs is by competing with AA for the cyclooxygenases and the
lipoxygenases, leading to the production of metabolically inactive
products such as D17-6-keto-PGF and TXB3 (reviewed in Rose and
Connolly, 1999). Furthermore, dietary intake of o-3 PUFAs has
been associated with a decreased risk in developing aggressive/
metastatic CaP (Terry et al, 2001; Augustsson et al, 2003).
Epidemiological evidence now points to the importance of the
o-3 :o-6 ratio within the diet and a decrease in this ratio is
associated with increased risk of aggressive disease (Rose and
Connolly, 1999). This is most noticeable in the diets of Japanese
and Eskimos who traditionally had a high o-3 :o-6 ratio due to
high fish intake. This has changed over the last couple of decades
to a more Western low o-3 :o-6 diet with a subsequent increase in
the risk of both breast (Wynder et al, 1991) and prostate cancer
(Lanier et al, 1976; Lanier et al, 1996).

Here we demonstrate that the o-3 PUFAs DHA and EPA are
strong inhibitors of invasion towards AA capable of blocking
invasion at a ratio of 1 : 2 o-3 :o-6 (Figure 5). The predominant
block is in the production of PGE2 by COX-2 as the addition of
10 ng ml�1 PGE2 to an o-3 or NS-398 COX-2 inhibitor blocked
system restores the level of PC-3 invasion (Figure 6D). Therapeutic
blockade of PGE2 production using COX inhibitors such as
NSAIDs or specific COX-2 inhibitors such as celecoxib, rofecoxib
and NS-398 have shown potential to inhibit both tumour growth
and metastasis in experimental animal models (Dandekar and
Lokeshwar, 2004; Patel et al, 2005). However, there are concerns
after observations that COX-2 inhibitors increase the risk of
cardiovascular events during both the VIGOR and APC trials
(reviewed in Krotz et al, 2005; Luo et al, 2005). Unlike the synthetic
COX-2 inhibitors, EPA and DHA are associated with a reduced risk
of cardiovascular disease and sudden cardiac death (Holub and
Holub, 2004; Harrison and Abhyankar, 2005). Trials have shown
that the early administration of 1 g day�1 o-3 PUFA supplements
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reduced the risk of sudden cardiac death by 45% and the
overall mortality by 20% (Marchioli et al, 2002) and that
doses of up to 4 g day�1 doses can be tolerated (reviewed
in Harrison and Abhyankar, 2005). Therefore we propose that
there is particular scope for the use of dietary DHA and EPA
not only to effect proliferation but also in the anti-metastatic
treatment of CaP.

The data suggests that both DHA and EPA may also act on
different pathways involved in invasion. Figure 5 shows that both
5 mM DHA and EPA reduced PC-3 invasion to levels similar to that
of nondirectedmigration but the addition of the lipoxygenase
products 5, 12(S) and 15(S)-HETE show different patterns of
recovery (Figure 6). Addition of HETEs was able to partially
restore the invasive effect of AA in the presence of EPA but did not
remove the DHA block. Surprisingly 15(S)-HETE, which is not
produced from AA by PC-3 owing to loss of 15-LOX-2 expression
and plays a role in the suppression of o-6-induced PEC
proliferation (Shappell et al, 1999; Shappell et al, 2001), partially
restored EPA-blocked PC-3 invasion. However, addition of PGE2
to systems blocked by either EPA or DHA completely restored
invasion towards either AA or BMS. This difference was high-
lighted by the potential of o-3 PUFAs to inhibit PC-3 invasion
towards primary BMS cultures (Figure 7A and B). Only EPA was
able to block invasion towards BMS although only at higher
concentrations (20–50 mM) than observed in the monoculture
invasion assays. This may be due to the presence of PGE2 and
HETEs already within the co-culture which is due to the

metabolism of o-6 PUFAs by cells within the BMS. Within this
system, however, DHA was unable to block the BMS invasive
stimuli, even at a final concentration of 100 mM.

In summary we have provided in vitro evidence supporting the
epidemiological data that the dietary ratio of o-3 :o-6 is crucial in
determining the risk of metastatic disease in CaP. Arachidonic acid
is a potent stimulator of PEC invasion and is a major component of
the stimulus directing metastatic PEC to the BMS to form bone
metastases. As the epidemiological data suggests, increasing the
ratio of o-3 :o-6 PUFAs, in particular increasing the amount of
EPA in the diet, can inhibit the metastatic process by blocking the
production of PGE2 and therefore reducing the risk of aggressive
disease.
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