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Abstract: In this review, we discuss the unrealized potential of incorporating plant–microbe and
microbe–microbe interactions into invasive plant management strategies. While the development of
this as a viable strategy is in its infancy, we argue that incorporation of microbial components into
management plans should be a priority and has great potential for diversifying sustainable control
options. We advocate for increased research into microbial-mediated phytochemical production,
microbial controls to reduce the competitiveness of invasive plants, microbial-mediated increases of
herbicidal tolerance of native plants, and to facilitate increased pathogenicity of plant pathogens of
invasive plants.
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1. Introduction

Plants serve as habitats for microbes and microbial communities, which can colonize
every plant tissue type [1–3]. These includes endophytes, which colonizes inter- and in-
tracellular spaces within leaves, stems, and roots but are asymptomatic on the host [4], as
well as epiphytes which colonize external surfaces of plant tissues. These microbes have
varied direct and indirect interactions with plants that range from antagonistic (negative),
mutualistic (positive) and everything in between [5]. In plant–microbe mutualisms, plants
often release compounds that attract and feed the associated microbes, which may in turn
secrete compounds that improve plant health and growth, thereby enhancing nutrient ac-
quisition or making plants more resistant to environmental stressors. Prominent examples
of mutualistic plant-microbe interactions are the symbioses between plants and nitrogen
fixing bacteria and/or mycorrhizal fungi, that help plants grow in soils with low nutri-
ent quality [6]. Conversely, antagonistic microorganisms negatively affect plant growth
and/or health, which may be due to direct pathogenicity or a reduction in nutrient uptake
rates. However, while we are beginning to better understand plant–microbiome interaction
mechanisms [7], there is much about these interactions that remains unresolved [8]. With
increased study of these interactions, experimental frameworks are beginning to emerge to
investigate how microbiome manipulations can be best done to achieve management goals.

To aid in the control of invasive plants, there has been increased interest in the de-
velopment and utilization of microbial biocides as targeted direct biocontrol agents [9,10].
Several fungal biocides have shown promise in helping to control invasive plants, in-
cluding Fusarium oxysporum, Fusarium ploriferatum, and Trichoderma koningiopsis which can
partially control the invasive Euphorbia heterophylla (Mexican Fire Plant) [11], and Albifim-
bria verrucaria (formally Myrothecium verrucaria (Stachybotryaceae) [12]), which has been
demonstrated to have biocidal action on numerous invasive plants including Kudzu [10],
Lygodium microphyllum (old world climb fern) [13] as well as Salvinia molesta (floating
fern) [14]. Additionally, the fungal genera Colletotrichum, Phoma, and Sclerotinia, as well as
bacteria within in the genera Xanthomonas and Pseudomonas have also been demonstrated
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to have broad biocidal qualities [15]. However, complex multi-partite microbe–microbe
interactions within plants can act in unforeseen ways to limit or modulate targeted goals.
Plant-microbiome manipulative investigations are underexplored but have been suggested
as a novel tool for invasive plant management [16]. Here, we argue that microbiome ma-
nipulations can be a powerful tool for helping to control invasive plants, but this emerging
application has hitherto been underutilized and poorly studied.

Given the potential importance of microbial based invasive plant management, we
examine existing research on the interactions between invasive plants and their microbiome
and posit the impacts of manipulations of these microbial communities to favor invasive
plant suppression and control. Together, these studies reflect the need for additional
investigations and a broader scope of research into the applications of invasive plant–
microbiome and microbe–microbe interactions as a microbial-based management tool.
Microbial-informed invasive plant control strategies could include the introduction of
plant pathogenic microbes or microbial inhibition of beneficial plant-associated microbes;
together, these will act to reduce invasive plant fitness and ecological impacts. Application
of synthetic and/or naturally isolated microbial communities or consortia composed of
multiple species with different modes of action and various microbe–microbe interactions
could be an alternative and complimentary approach in invasive plant management [17].

While biocontrol is still and will likely remain an integral part of invasive plant
management, studies into microbiome manipulations to suppress invasive plants are
needed to improve efficacy of biocontrol agents as well as provide control opportunities
where biocontrol or herbicidal applications are prohibited or otherwise problematic.

Classical biocontrol applications can carry risks; one of the major challenges with
a classic biocontrol approach is the adaptation and spread of resistant plant genotypes,
which will provide diminishing returns over time [18]. Another drawback is often the
lack of biocontrol host specificity [19]. Many plant pathogens used for biocontrol can
infect alternative hosts leading to unintended mortality of non-invasive and/or non-target
plants. A potentially fruitful frontier in plant management could be the development of
microbial consortia that negatively impacts invasive plant fitness through either decreasing
their tolerance to biotic or abiotic environmental stress or by improving native plant
competitiveness in invaded areas. Microbial consortia are likely to be more effective
than individual microbial species introductions as communities tend to be more robust to
environmental fluctuations. Also, the probability of plants developing systemic immune
responses to consortia is lower than that of individual taxa. In microbial consortia, each
member within the consortia interacts and impacts either directly or indirectly with the
plant host and/or with one another which ultimately creates an interactive network that
impacts host plant fitness and health [20]. We illustrate how these interactive networks may
influence invasive plants to achieve control goals (Figure 1). Consortia can be governed by
the presence of keystone species (hubs), the major determinants of the microbiome network
structure [21], or it may involve tripartite or multipartite interactions [22,23]. Investigations
into appropriate network structure for each target invasive plant are needed to develop
individual control strategies.

This complex interactive relationship can occur via metabolite or hormone exchange,
or through signal transduction pathways [24,25]. Microbial consortia can exhibit complex
functionality and their robustness to environmental fluctuations needs to be extensively
examined before applications are developed for environmental use. There is an expanding
body of literature showing that plant secondary metabolites can alter plant microbiomes
and result in differential microbial community assembly [26,27]. Plants release a large pro-
portion of their photosynthates through the soil rhizosphere [28,29] which activates nutrient
mobilizing symbionts and/or beneficial plant growth-promoting (PGP) bacteria [30,31].
Plant secondary metabolites impact microbiome structure by acting as signaling molecules,
nutrients sources, or as direct toxins [27,32]. Some studies have demonstrated that invasive
plants can produce more secondary metabolites than native plants [33,34]. These secondary
metabolites facilitate nutrient cycling [35] which may allow invasive plants to outcompete
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native species. For example, benzoxazinoid indole-derived compounds can function as
allelochemicals or protectants against pathogens [36] and act as chemoattractant for (PGP)
bacteria in the rhizosphere [37] in invasive plants. Additionally, plant growth promot-
ing rhizobia have been demonstrated to increase scavenged nutrient translocation into
legumes, with phosphate additions driving increase nodulation production to facilitate
plant growth [38,39]. This, in addition to rhizobia-mediated reduction of ethylene stress
associated with degradation of the ethylene precursor molecule 1-aminocyclopropane-1-
carboxylic acid (ACC) by ACC deaminase (ACCd) can lead to plant stress reduction [40,41],
which facilitates increased resistance to phytopathogens via indirect and direct actions [42].
Together, the utility of considering the integration of plant–microbe and microbe–microbe
interactions to alleviate pathogenicity of native plants in the face of biocidal control of
proximate invasive plants becomes clear.
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Figure 1. Diagrammatic representation of potential microbial interactions with invasive plants. Direct
(solid lines) and indirect (dashed lines) impacts (positive [+] dignified with arrows and negative [−]
signified with capped lines) on invasive plant fitness are indicated.

Here, we discuss several scenarios that have been envisaged whereby modification of
invasive plant or native plant microbiomes can be considered as a promising sustainable
approach in invasive plant control and recovery by native plants. We encourage the re-
search community to incorporate multipartite microbial interactions into the development
of the next generation of invasive plant management strategies. These include improv-
ing beneficial native plant phytochemical production, reducing the competitiveness of
invasive plants, increasing herbicidal tolerance of native plants, and facilitating increased
pathogenicity within invasive plants.

2. Research Directions
2.1. Improving Beneficial Native Plant Phytochemical Production

One of the most promising directions of microbial-mediated invasive plant manage-
ment is perhaps the least well studied. Factors allowing for the success and establishment
of invasive species in non-native ranges have been investigated for a long time [43]. Accord-
ing to the novel weapons hypothesis, allelopathic chemicals released by invasive species
more effectively inhibit plants from outside of that species’ native community than do those
of its native range [44]. One major reason is the more ‘successful’ exotic plants have diverse
plant secondary metabolites which may protect against biotic and abiotic stress [45]. These
allelopathic effects can accelerate plant invasions [46,47]. Conversely, if the allelopathic
potential of native species could be maximized in similar ways, it may provide additional
protection against exotic invasions. The allelopathic interactions between native and in-
vasive plants are poorly studied but some studies suggest that allelochemical production
by native plants can reduce invasive plants growth [48]. For instance, Pinus ponderosa was
reported to allelopathically suppress the growth of Centaurea stoebe, a noxious weed in the
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western USA [49]. Further, the presence of pine litter alters soil chemical dynamics, thereby
altering the composition soil microbes which can, in turn, further suppress Centaurea [50].

More detailed elucidation of plant–plant–microbe interaction mechanisms is needed
to fully integrate these interactions into management and restoration strategies, but these
interactions are promising in theory. It was reported that the European invasive plant,
Alliaria petiolate can limit native plants’ mycorrhizal fungal richness and colonization
rates through releasing secondary metabolites, which in turn negatively impacts native
plant health and fitness [51,52]. To provide native plants with a competitive advantage,
emphasis needs to be directed toward identifying, selecting and harnessing microbial
communities that can improve and/or maximize the native plants’ secondary metabolites
or allelochemicals production. This could take the shape of exogenous application of
selected microbial consortia or as seed coatings used in restoration planting. Unraveling
the mechanisms through which microbes control the production of secondary metabolites
like allelochemicals and vice versa will help us to pursue the development of management
strategies that imitate the structure and function of native plant ecosystems while reducing
chemical inputs on the environment. We view this as an important but understudied
potential management tool and one that desperately needs additional research to harness
this potential.

2.2. Reducing Competitiveness in Invasive Plants

Previous studies have found that exotic and/or invasive plants tend to interact differ-
ently or more favorably with microbes outside of their native range [53] and can physically
alter microbial network structure in invaded ranges [54]. This suggests that soil microbes
could be a key component to invasive plant establishment and continued fitness in invaded
areas. Many studies reveal that invasive plant microbiomes play a large role in their ability
to survive in adverse environmental conditions through mitigation or alleviation of envi-
ronmental stressors [55]. Understanding the role soil- and plant-associated microbes play in
the invasion process will help find strategies to reduce plant fitness in invaded ecosystems.
Invasive plants have a competitive advantage over native species [56] and usually have
higher net primary productivity (NPP) and greater nitrogen scavenging ability than native
plants [57,58]. The rapid radiation of invasive plants can be partially accounted for by
co-introduction of pathogens or shifts in abiotic conditions in introduced ranges [46,59],
increased abundance and activity of symbiotic microbes [60,61], and higher mineralization
rates of nitrogen [62,63], which can be directly influenced by plant endophytes [64]. Soil
communities can also be altered following the introduction of invasive species [54], which
can account for the higher nitrification rates, a phenomenon that shifts competitive out-
comes in favor of invaders and against natives [60]. Invasive plant-mediated shifts in soil
properties can further exacerbate microbial community alterations, which can further favor
establishment [65].

Manipulating microbial communities within and among invasive plants through the
introduction of new microbial populations or providing favorable conditions for shifting
established population ratios is a largely uninvestigated option to reduce the competi-
tiveness of invasive plants. This can lead to shifting competitive probabilities in favor of
native species, allowing favorable interspecific competition outcomes for native plants.
However, it should be noted that utilization of such microbial inoculates, even if favorable
outcomes can be achieved, is not without controversy [66], but we need to balance the
net benefit with potential ecosystem harm when making these decisions. One avenue
towards microbial-mediated invasive plant management is utilizing microbial consortia
that can indirectly suppresses invasive plant growth, but development and validation
of consortia prior to environmental testing can be difficult [67]. Suppression of invasive
plants can occur through inhibition of microbes that mostly benefit the invasive plant,
which increases invasive plant fitness. Inhibiting these beneficial microbes will result
in net reduction in invasive plant fitness as nutrient acquisition (among other potential
mechanisms) capability will be reduced. Evidence for the efficacy of such an approach
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comes from the counter example of utilizing endophytes and other microbes to increase
plant productivity by means of pathogen alleviation [68], whereby endophytes can reduce
pathogenicity, thereby benefiting the plant. This other side of the coin is an obvious exten-
sion, but one that has been relatively unexplored. Another potential approach is to alter
the native plant community near invasive plants to facilitate subsequent cascading effects
on soil microbial communities [69]. For instance, planting cover crops in infested areas
could affect the quantity and quality of root exudates to the soil, which may in turn affect
soil biogeochemical processes and nutrient pools and change the microbial community
in invaded areas that favor native plants, although, unfortunately, this type of next-order
manipulation is not a major area of active research [70].

2.3. Increasing Herbicide Tolerance in Native Plants

If native or otherwise desirable plants in close proximity to invasive plants can be
made more resistant to common herbicides, or less responsive to herbicidal drift, then
direct herbicidal application to control invasive plants will produce less ancillary damage.
If plant antioxidant content and reactive oxygen species (ROS) scavenging capability could
be increased in native plants, they might better tolerate many herbicidal actions. Herbicides
can trigger ROS generation in microbes [71] and these ROSs can increase plant cellular
damage [72]. It has been shown that certain microbes can function as bio-remediators
and convert organic pollutants and xenobiotics into nontoxic products and utilize them a
source of carbon, phosphorus, sulfur or nitrogen [73]. Several reports have implicated the
significant roles of microbes in degrading the active ingredients of some herbicides [74]. For
example, Atrazine can be metabolized by some rhizospheric bacteria including Arthrobacter
sp. [75], Pseudomonas aeruginosa, and Clavibacter michiganense [76]. Some Pseudomonas
strains can metabolize atrazine into cyanuric acid which is then hydrolytically changed
to ammonia and carbon dioxide [76]. Manipulating native plant microbiomes in favor of
these herbicidal degraders may provide a level of protection to the native plant, but this
protective ability is likely to be context-dependent based on the herbicidal mode of action
and half-life in soil. Here, we present an incomplete list of taxa that have documented
herbicide degradation capabilities. While this is only intended to provide a snapshot of
how some microbes can degrade or otherwise transform herbicides, this can serve as a
list of potential microbial targets that may have utilization potential for protection against
herbicidal action and should be investigated further (Table 1).

Table 1. List of bacterial (top) and fungal (bottom) taxa that have demonstrated herbicidal biodegradation or mineralization
capabilities. Presented are species/strain names, herbicides and mode of actions of degradation.

Species/Strain Herbicide Mode of Action Citation

Bacteria
Pseudomonas sp. ADP. Atrazine Mineralization [77]

Burkholderia (Pseudomonas) cepacia DBO1(pRO101) 2,4-Dichlorophenoxyacetic acid Biodegradation [78]
Comamonas sp. SWP-3 Swep Hydrolysis [79]

Alicycliphilus sp. PH-34 Swep Hydrolysis [79]
Sphingomonas wittichii DC-6 Chlorocetanilide Mineralization [80]

Pseudomonas syringae Triazole Biotransformation [81]
Xanthomonas citri Triazole Biotransformation [81]

Enterobacter cloacae K7 Glyphosate Biodegradation [82]
Arthrobacter sp. GLP-1 Glyphosate Biodegradation [82]

Fungi
Trichoderma viride Pirimicarb Biodegradation [83]

Trichoderma harzianum Pirimicarb Biodegradation [83]
Nocardioides sp. MFC-A Mefenacet Hydrolysis [84]

Rhodococcus rhodochrous MFC-B Mefenacet Hydrolysis [84]
Stenotrophomonas sp. Mefenacet Hydrolysis [84]
Polyporus tricholoma Paraquat Enzymatic Degradation [85]

Cilindrobasidium leave Paraquat Enzymatic Degradation [85]
Deconica citrospora Paraquat Enzymatic Degradation [85]
Aspergillus terrus Triazole Biotransformation [81]

Penicillium chrysogenum Triazole Biotransformation [81]
Mortierella sp. strain Gr4 Isoproturon Hydrolysis [86]
Phoma cf. eupyrena Gr61 Isoproturon Hydrolysis [86]

Alternaria sp. strain Gr174 Isoproturon Hydrolysis [86]
Plectosphaerella cucumerina AR1 Nicosulfuron Hydrolysis [87]

Phanerochaete chyrosporium Atrazine Biotransformation [88]
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An additional mechanism to confer tolerance to herbicides in native plants could be
priming tolerance through microbial-based induction of ROS scavengers within native
plants [89,90] or induction of jasmonic acid, oxylipins and salicylic acid production, leading
to induction of tolerance responses to herbicide oxidative stress [90]. Another ecologically
sound approach to boost native plant tolerance to oxidative stress from herbicides is in-
oculation with plant growth promoting microbes (PGPM) and certain mycorrhizal fungi.
PGPMs can enhance plant growth and resistance to stressors through a wide variety of
mechanisms including regulating plant hormones and other phytochemicals, improving
nutrition acquisition, siderophore production, enhancing the antioxidant system and acti-
vation of induced systemic resistance (ISR) [91]. Most commercially available biofertilizers
contain single species inoculants that promote plant growth; however, consortia inoculation
might provide higher growth promotion and stronger disease resistance due to cumulative
synergistic effects of consortia inoculation over individual inoculations [70].

As discussed earlier, some herbicides cause oxidative damage in plants. For example,
glyphosate inhibits the shikimic acid pathway and consequently the production of ROS in
tissues [92]. Another mechanism to protect native plants is through the upregulation of
phenylpropanoid pathways and boosting the antioxidant system through exogenous treat-
ment of native plants with phytohormones or microbial partners that causes upregulation
within the plant [93]. More research into microbial-mediated upregulation of protective
pathways needs to be conducted.

2.4. Facilitating Increased Pathogenicity in Invasive Plants

Numerous studies indicate that plant-microbe interactions can improve plant tolerance
to biotic stress and/or alleviate pathogenicity effects via multiple mechanisms including
secretion of antimicrobial compounds [42,94–96], hyperparasitism [97], and competition
for resources such as nutrients or space [98]. However, most research on direct interactions
between microbes and pathogens focuses on pathogen mitigation and symptom allevi-
ation [8,99]. Investigations into microbial-mediated pathogen facilitation and increased
pathogenicity have not been extensively studied but may have enormous potential to
suppress invasive plants [16]. Some plant-associated microbes produce metabolites that
can promote pathogen development and facilitate disease [100]. Further, pathogens might
exploit specific plant microbes to enhance their pathogenicity or plant susceptibility, and
this connection might be driven by production of a plethora of secondary metabolites
or hormones by endophytes [99] which may directly or indirectly (via inhibition of a
mycoparasite, for instance) facilitate pathogenicity. By developing a framework whereby
microbiome manipulations can increase a pathogen’s efficacy, invasive plants can be dra-
matically suppressed via naturally occurring environmental pathogens. Facilitation occurs
when one microorganism enhances the development or growth of another. This facilita-
tion may also be due to ecological interactions including competitive exclusion or niche
partitioning [101]. By investigating and understanding the dynamics of the invasive plant
micro- and mycobiomes, we can develop strategies for modification and manipulation of
these communities [16] to favor successful colonization and growth of taxa that facilitate
pathogen virulence, or taxa that negatively impact invasive PGPMs, thus resulting in
suppression in invasive plants and a reduction in plant fitness. This is an emerging field
of study, but one that we feel will be of increasing importance with a growing empha-
sis on sustainable and non-chemical controls of invasive plants [15]. Targeting invasive
plant microbiomes is a novel method of integrated management of invasive plants that
deserves to be explored. Identifying, understanding, and the utilization of microorganisms
or microbial products to reduce invasive plant fitness are becoming more central parts of
sustainable agriculture. To better understand the potential for microbial-mediated facili-
tation of pathogenicity of invasive plants, and to stimulate the research community into
action, it is useful to briefly examine some mechanisms in induction of signaling cascades
in plants by microbes.
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Plant responses to colonization by microbes can be broadly categorized into one of
two main categories SAR (systemic acquired resistance), triggered by plant pathogens,
and ISR (induced systemic resistance), triggered by root-colonizing mutualistic microbes
(Figure 2) [102,103]. Although both pathways share many common signaling components,
their elicitors and regulators are distinct. The conserved microbe-specific elicitors, re-
ferred to as microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs), are
perceived by the plants’ innate immune systems pattern recognition receptors (PRRs).
Examples of elicitors include flagellin (Flg), elongation factor Tu (EF-Tu), peptidoglycan
(PGN), lipopolysaccharides (LPS), Ax21 (activator of XA21-mediated immunity in rice),
fungal chitin, and β-glucans from oomycetes, among others, can be recognized by plant
surface localized PRRs [104]. MAMP elicitors, upon perception, can trigger a SAR signaling
cascade which is characterized by increased levels of the hormone salicylic acid (SA) which,
activates the expression of a large set of pathogenesis-related (PR) genes through the in-
duction of the redox-regulated protein NON-EXPRESSOR OF PR GENES1 (NPR1) leading
to the activation of the defense responses [105,106]. The mechanisms underpinning NPR1
action have been well documented [107] and it plays a major role in direct pathogenicity
and defense in plants. In SAR, MAMPs elicitors activate ISR signaling pathway which is
mediated by an SA-independent pathway where Jasmonic Acid (JA) and ethylene (ET) play
major roles, and typically functions without PR gene activation [105,106]. Some studies
have suggested that NPR1 may also be required for the ISR triggered by certain rhizospheric
microbes [106,108]. Some studies also suggest that ISR is required for SA accumulation
in plants [109–111]. ISR eliciting rhizospheric microbes activate plant defense responses
which are often effective against a broad spectrum of plant pathogens [112] which could be
an avenue to increase native plants fitness. However, there are cases in which harmless
or even beneficial microbes can assist pathogen establishment [113], which demonstrates
the importance of additional research into these interactions before microbial-mediated
disease facilitation and/or protection can be fully developed.
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induced systemic acquired resistance (SAR) and rhizosphere-mediated induced systemic resistance
(ISR) inspired by [114] for Arabidopsis thaliana but applicable to plants in general. Crosstalk between
the two pathways occurs through the activation of NONEXPRESSOR OF PATHOGENESIS-RELATED
GENES1 (NPR1). Non-pathogenic plant-associated microbes, usually from the rhizosphere, can
trigger the SAR pathway as well as ISR. In the rhizosphere-mediated ISR pathway, components from
the jasmonic acid (JA) and ethylene (ET) responses act in sequence to activate a systemic resistance
response (orange arrows). Pathogenic agents could activate the pathogen-induced SAR, through the
activation of NPR1 (blue arrows), leading to the expression of PATHOGENESIS-RELATED genes
(PRs) (black arrow). NPR1 also mediates crosstalk between the SA signaling pathway.
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2.5. Concerns and Potential Problems with Microbial Deployment

To establish a successful microbial-mediated control program, there are many potential
concerns that must be taken into account. Introduction of microbes into nature, even if
these microbes are already occurring in a particular environment, can carry risk. There is
always a risk of non-target associations with applied microbes, which may be problematic
particularly for pathogenic applications [115]; extensive host-specificity testing procedures
are needed to predict the potential non-target effects. Additionally, development and
implementation of microbial applications must be approached from a risk assessment
framework [116]. Some have argued that the risk associated with potential unforeseen
consequences of microbial inoculants is unacceptable [66] as well as being confronted by
too many potential ethical and legal issues [117]. This wariness is understandable, and
is largely justified by highlighting the complexity of these systems [118,119] which may
occlude potential problems until too late. However, one could argue that the economic
and ecological cost of doing nothing [120–122] is far greater than a calculated risk, as
long as controlled in planta validations and detailed cost–benefit analyses have been
conducted [123]. Extensive work is must be done to study pathogenicity, adaptability,
colonization, reproduction, dispersal, and survival efficiency of any potential microbial
agents used for biocontrol [124], but this is a desperately needed area of additional research
in the future.

3. Research Gaps, Future Directions, and Conclusions

Several studies have explored the role of particular microbes for biocontrol or plant
protection services. However, there have only been limited investigations into field-scale
investigations and utilization of a consortia approach to either control invasive plants,
or benefit native plants to shift competitive outcomes when threatened with invasive
plants [79,125–128]. Here, we advocate for additional research to advance sustainability
and an integrated microbiological approach to help suppress invasive plant fitness as a
potential additional tool for land managers. We identify three main, but not complete,
research priorities that need to be investigated to move this field out of its infancy: (1) the
development of integrated predictive models to understand the multipartite effects of
pathogen–endophyte interactions associated with invasive plants; (2) the definition and
elucidation of core pathogen–endophyte combinations on invasive plants to develop targets
for additional investigations; (3) the elucidation of how microbial consortia mechanistically
interact with hosts, environments, and management strategies in order to develop targeted
application plans.

Invasive plant species are one of the challenges facing the world, leading to great
economic losses. Inclusion of microbial-based management options for invasive plant
management should be investigated with the goal of ultimately reducing invasive plant
fitness. Combinations of individual microbes with complementary or synergistic traits
may increase the competitive ability of native plants and/or susceptibility of invasive
plants which may ultimately reduce invasive plant fitness in the invaded range. Not
only does the effectiveness of individual microbes need to be examined for invasive plant
control, but so does the interrelation, strength, and directionality of interactions between
taxa. These strategies should be incorporated in invasive plant management programs.
Here, we implore the invasive plant management research community to incorporate
microbial dynamics into explorations of control strategies. The control potential of such
methods is promising, but additional investigations are needed to move these strategies
into active development.
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