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Purpose: To develop a deep neural network that detects the scleral spur in anterior
segment optical coherence tomography (AS-OCT) images.

Methods: Participants in the Chinese American Eye Study, a population-based study
in Los Angeles, California, underwent complete ocular examinations, including AS-OCT
imaging with the Tomey CASIA SS-1000. One human expert grader provided reference
labels of scleral spur locations in all images. A convolutional neural network (CNN)-based
on the ResNet-18 architecture was developed to detect the scleral spur in each image.
Performance of the CNN model was assessed by calculating prediction errors, defined
as the difference between the Cartesian coordinates of reference and CNN-predicted
scleral spur locations. Prediction errors were compared with intragrader variability in
detecting scleral spur locations by the reference grader.

Results: The CNN was developed using a training dataset of 17,704 images and tested
using an independent dataset of 921 images. The mean absolute prediction errors of
the CNN model were 49.27 ± 42.07 μm for X-coordinates and 47.73 ± 39.70 μm for
Y-coordinates. The mean absolute intragrader variability was 52.31 ± 47.75 μm for
X-coordinates and 45.88 ± 45.06 μm for Y-coordinates. Distributions of prediction
errors for the CNN and intragrader variability for the reference grader were similar for
X-coordinates (P = 0.609) and Y-coordinates (P = 0.378). The mean absolute prediction
error of the CNN was 73.08 ± 52.06 μm and the mean absolute intragrader variability
was 73.92 ± 60.72 μm.

Conclusions:A deep neural network can detect the scleral spur on AS-OCT imageswith
performance similar to that of a human expert grader.

Translational Relevance:Deep learningmethods that automate scleral spur detection
can facilitate qualitative and quantitative assessments of AS-OCT images.

Introduction

Closure of the anterior chamber angle (ACA)
is the primary risk factor for developing primary
angle closure glaucoma (PACG), a leading cause
of permanent vision loss worldwide.1 Angle closure
occurs when there is appositional or synechial contact
between the trabecular meshwork (TM) and iris.
Angle closure leads to impaired aqueous humor

outflow and elevated intraocular pressure, an impor-
tant risk factor for glaucomatous optic neuropa-
thy.2 Therefore, early detection of angle closure is
crucial to prevent permanent vision loss, especially
because there are effective treatments to alleviate angle
closure.3–5

Gonioscopy is the current clinical standard for
evaluating the ACA and detecting angle closure.
However, gonioscopic assessments are subjective,
qualitative, and limited by interexaminer variability.6
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Anterior segment optical coherence tomography (AS-
OCT) is an in vivo imaging method that provides an
alternative to gonioscopy for evaluating the anterior
segment and its structures, including the ACA.7–9
AS-OCT images provide qualitative assessments of
the ACA and quantitative measurements of ocular
biometric parameters, some of which are risk factors
for angle closure disease.10–13 AS-OCT measure-
ments also have excellent intradevice, intragrader,
and intergrader reproducibility.6,14–18 However, a
long-standing limitation of AS-OCT is that image
analysis is only semiautomated; a trained grader must
manually identify specific anatomic structures before
angle closure can be detected and quantified.19–21 This
time-intensive and expertise-dependent process has
significantly hindered the clinical and research utility
of AS-OCT.

The scleral spur is the key anatomic structure for
assessing the ACA and detecting angle closure in
AS-OCT images. The TM is poorly detectable by
standalone AS-OCT devices, such as the Zeiss Visante
(Carl Zeiss Meditec, Dublin, CA), Tomey CASIA
SS-1000 (Tomey Corporation, Nagoya, Japan), and
Heidelberg Anterion (Heidelberg Engineering, Heidel-
berg, Germany), owing to the wavelength of their
scanning lasers. However, it is relatively easy to detect
the scleral spur, which demarcates the posterior bound-
ary of the TM.22 Angle closure in AS-OCT images
is defined by iridotrabecular contact (ITC), which is
contact between the inner corneal curvature and iris
anterior to the scleral spur.15 In addition, quantita-
tive measurements of angle width, lens position, to
other biometric parameters are only accessible once the
scleral spur has been detected.

Deep learning is a form of artificial intelligence that
has proven to be an effective method for automat-
ing the analysis of ocular images, including AS-OCT
images.23–26 In this study, we combine deep learn-
ing methods and population-based AS-OCT data to
develop and test a fully automated convolutional
neural network (CNN) model for detecting the scleral
spur in AS-OCT images.

Methods

Participants were recruited as part of the Chinese
American Eye Study (CHES), a population-based,
cross-sectional study that included 4572 Chinese
participants aged 50 years and older residing in
Monterey Park, California. As participants in CHES,
patients received a complete eye examination by a
trained ophthalmologist, including gonioscopy and

AS-OCT imaging. Ethics committee approval was
previously obtained from the University of Southern
California Medical Center Institutional Review Board.
All study procedures adhered to the recommendations
of the Declaration of Helsinki. All study participants
provided informed consent.

Inclusion criteria for the study included CHES
participants who received AS-OCT imaging. Exclu-
sion criteria included a history of media opacities
that precluded visualization of intraocular structures.
Participants with history of prior laser peripheral irido-
tomy, eye surgery (e.g., cataract extraction, incisional
glaucoma surgery), or penetrating eye injury were not
excluded. Both eyes from a single participant could
be recruited so long as they fulfilled the inclusion and
exclusion criteria.

Clinical Assessment

Gonioscopy was performed in the seated position
with a Posner-type 4-mirror lens (Model ODPSG;
Ocular Instruments, Inc., Bellevue, WA) under dark
ambient lighting (0.1 cd/m2) by two trained ophthal-
mologists (D.W., C.L.G.) masked to other examina-
tion findings. A 1-mm light beam was reduced to a
narrow slit. Care was taken to avoid light from falling
on the pupil and to avoid inadvertent indentation. The
gonioscopy lens could be tilted to gain a view of the
angle over the convexity of the iris. Angle closure was
defined as any eye in which the pigmented TM could
not be visualized in three or more angle quadrants.

AS-OCT imaging in CHES was performed in the
seated position under dark ambient lighting (0.1 cd/m2)
before pupillary dilation by a single trained ophthal-
mologist (D.W.) with the Tomey CASIA SS-1000
swept-source Fourier-domain device (Tomey Corpora-
tion). There were 128 two-dimensional cross-sectional
AS-OCT images acquired per eye. During imaging,
the eyelids were gently retracted, taking care to avoid
inadvertent pressure on the globe.

Image Processing and Analysis

Raw image data were imported into the SS-OCT
Viewer software (version 3.0, Tomey Corporation).
One human expert grader (grader 1, A.A.P.) masked
to the identities and examination results of the partic-
ipants, marked the scleral spurs in four images per
eye; these labels of scleral spur locations were consid-
ered the reference standard. Before the current study,
grader 1 underwent extensive training in scleral spur
detection, including manual analysis of approximately
500 AS-OCT images (not included in the study) while
supervised by at least one of two glaucoma special-
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Figure 1. (a) Flow diagram of the ResNet-18 CNN architecture used to develop the model. Unmarked AS-OCT images were used as inputs
to the CNN. The model predicted the Cartesian coordinates (X- and Y-locations) of the scleral spur. (b) Representative AS-OCT images used
in CNN development. FC = fully connected; ReLu = rectified linear units.

ists (B.Y.X or R.V.). Four images were analyzed and
exported in JPEG format per eye: the first image was
oriented along the horizontal (temporal–nasal) merid-
ian, and additional OCT images were evenly spaced
45° apart. Owing to a limitation in the SS-OCT Viewer
software, scleral spur locations could only be exported
when at least six of eight possible scleral spurs were
marked. Thus, corrupt images and images with signif-
icant artifacts, including by the eyelids or arcus senilis,
that precluded manual detection of the scleral spur by
grader 1 were excluded. This step helped to minimize
noise during CNN model training and testing. Images
were divided in two along the vertical midline, and
right-sided images were rotated about the vertical axis
to standardize images with the ACA to the left and
corneal apex to the right. No adjustments were made
to image brightness or contrast. Image manipulations
were performed in MATLAB (Mathworks, Natick,
MA).

Before model training, images from 95% of partici-
pants were segregated into a training dataset. Images
from the remaining 5% of participants were segre-
gated into an independent test dataset. To prevent
data leakage (e.g., intereye and intraeye correlations)
between training and test datasets, multiple images
acquired from a single participant appeared together

in either the training or test dataset and were not
split across both datasets. Data manipulations were
performed in the Python programming language.

The reference grader (grader 1) and a second
glaucoma fellowship-trained human grader (grader 2,
B.Y.X.), both masked to participant identities, exami-
nation results, and original scleral spur locations,
independently marked the scleral spur in all test
dataset images. These locations were used to calcu-
late metrics of intragrader and intergrader variability.
Images reinspected as part of the test dataset could
be further excluded owing to noise and artifacts that
precluded attempts to mark the scleral spur by one or
both of the graders.

Deep Learning Model Development

A deep CNN model was developed to predict the
Cartesian coordinates of the scleral spur in individ-
ual AS-OCT images (Fig. 1). The original AS-OCT
images had a standardized resolution of 900 (height)
by 831 (width) pixels. Reference labels of scleral spur
coordinates were based on manual analysis of these
images by grader 1. The uppermost 69 pixels of
each image, which did not contain any information
about ocular structures, were cropped to make images
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compatible with the ResNet architecture, which only
accepts square images as inputs. These images (831 ×
831 pixels) were automatically resized to 224 × 224
pixels by the ResNet architecture to be consistent with
its original training dataset. Grayscale input images
were preprocessed by normalizing RGB channels to
have a mean of [0.485, 0.456, 0.406] and a standard
deviation of [0.229, 0.224, 0.225]. Reference scleral
spur coordinates were transposed and downsampled
before training to match the new pixel coordinate
space.

The deep learning model was a modified ResNet-18
CNN pretrained on the ImageNet Challenge dataset.27
The final pooling and fully connected layers were
removed and replaced by with a fully connected layer
with two output nodes corresponding to X- and Y-
coordinates. The Adam optimization algorithm and L1
loss was used to train the network. Transfer learning
was first applied to train the final layer of the CNN.28
Then all layers of the CNNwere fine-tuned using back-
propagation. Optimization was performed using L1
loss and the Adam optimization algorithm; L1 loss was
used instead of L2 to reduce the effect of outliers in
the training data. Scleral spur coordinates predicted
by the CNN were then upsampled and transposed to
match the pixel coordinate space of the original AS-
OCT images. Pixels were then rescaled to micrometers
(μm) based on the manufacturer-provided conversion
rate of 1 pixel = 8 μm (width) × 10 μm (height).

Deep Learning Model Testing

The performance of the CNN model was assessed
by calculating the error associated with the predicted
Cartesian coordinates of each scleral spur location.
X- and Y-coordinate prediction errors were calculated
in micrometers by subtracting CNN-predicted coordi-
nates from the corresponding reference coordinates
1. Intraobserver variability of X- and Y-coordinates
were calculated in μm by subtracting the second set
of scleral spur coordinates by grader 1 from corre-
sponding reference coordinates. Intergrader variability
of X- and Y-coordinates were calculated in microme-
ters by subtracting scleral spur coordinates by grader
2 from corresponding reference coordinates. Absolute
error was calculated as: � (X-coordinate error2 + Y-
coordinate error2).

Histograms were plotted to visualize the distri-
bution of X-coordinate, Y-coordinate, and absolute
errors in 10 μm increments. The normality of error
distributions was assessed with the Kolmogorov-
Smirnov test. The Wilcoxon signed-rank test was
used to compare three pairs of error distributions:

reference – CNN, reference – grader 1 (new), and
reference – grader 2.

The CNN was retrained on different-sized random
subsets of the training dataset to evaluate the effect
of dataset size on algorithm performance. The size
of the random subsets was increased in 2% to 10%
increments.

Post Hoc Analysis of Sample Size

Based on our final sample size (921 images in the test
dataset) and the largest standard deviation of errors
associated with detecting X- and Y-coordinates of
scleral spur location (78.24 μm for intergrader variabil-
ity of X-coordinates), our study was powered to detect
a difference of 7.5 μm with an alpha of 0.05 and a
beta of 0.2. To put this number into context, 7.5 μm
is smaller than both the width (8.0 μm) and height
(10.0 μm) of a single pixel in the original AS-OCT
images.

Results

Of the 4582 participants, 2210 (48.2%) enrolled in
CHES underwent AS-OCT imaging. There were 114
participants (5.2%) who were excluded based on the
exclusion criteria, with the majority (N = 106) being
due to either corrupt or missing images or imaging
artifacts. The complete study dataset included 18,664
AS-OCT images from 2333 eyes of 2096 participants.
The mean and standard deviation of participant age
was 60.2 ± 7.67 years (range, 50–94 years). There were
732 (34.9%)male participants and 1364 (65.1%) female.
There were 4256 images (22.8%) that came from angle
closure eyes and 14,408 (77.2%) that came from open
angle eyes.

The CNN model was developed using a training
dataset of 17,696 images from 2213 eyes of 1991 partic-
ipants (95% of total participants) and corresponding
scleral spur coordinates. The performance of the CNN
model was assessed using a test dataset of 960 images
from 120 eyes of 105 participants (5% of total partic-
ipants). Of the 960 images, 39 (4.1%) were excluded
owing to noise or artifacts that precluded attempts to
mark the scleral spur by one or both of the graders.
There was no overlap of participants between the train-
ing and test datasets. There were 223 images (24.2%)
that came from angle closure eyes and 698 images
(75.8%) that came from open angle eyes.
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Table. Metrics of CNN Model Performance and Intragrader and Intergrader Variability in Open Angle, Angle
Closure, and All Eyes (N = 921)

CNN Prediction Error (μm) Intragrader Variability (μm) Intergrader Variability (μm)

All eyes (N = 921)
X-coordinate 1.23 ± 64.80 0.82 ± 70.84 −43.56 ± 78.24
Y-coordinate −0.56 ± 62.10 8.07 ± 63.53 −37.85 ± 73.49
Absolute X-coordinate 49.27 ± 42.07 52.31 ± 47.75 67.10 ± 59.27
Absolute Y-coordinate 47.73 ± 39.70 45.88 ± 45.06 63.59 ± 52.79
Absolute overall 73.08 ± 52.06 73.92 ± 60.72 97.34 ± 73.29

Open angle eyes (N = 698)
X-coordinate −1.06± 61.58 0.84± 67.95 −44.29± 77.54
Y-coordinate −4.36± 57.11 3.19± 56.09 −43.06± 66.07
Absolute overall 69.22± 47.70 67.37± 56.82 96.10± 70.37

Angle closure eyes (N = 223)
X-coordinate 8.41 ± 73.65 0.78 ± 79.39 −41.27 ± 80.53
Y-coordinate 11.37 ± 74.54 μm 31.60 ± 73.65 −21.52 ± 91.22
Absolute overall 85.16 ± 62.41 94.44 ± 67.70 101.21 ± 81.81

Deep Learning Model Performance

The mean prediction error of the CNN model
was 1.23 ± 64.80 μm for X-coordinates and
–0.56 ± 62.10 μ for Y-coordinates (Table, Fig. 2).
The mean absolute prediction error of the CNN
model was 49.27 ± 42.07 μm for X-coordinates,
47.73 ± 39.70 μm for Y-coordinates, and 73.08
± 52.06 μm overall (Table). The mean intragrader
variability of scleral spur location was 0.82 ± 70.84
μm for X-coordinates and 8.07 ± 63.53 μm for Y-
coordinates (Table, Fig. 2). The mean absolute
intragrader variability of scleral spur location was
52.31 ± 47.75 μm for X-coordinates, 45.88 ± 45.06
μm for Y-coordinates, and 73.93 ± 60.72 μm overall
(Table). Themean intergrader variability of scleral spur
location was –43.56 ± 78.24 μm for X-coordinates and
−37.85 ± 73.49 μm for Y-coordinates (Table,
Supplementary Fig. S1). The mean absolute inter-
grader variability of scleral spur location was
67.10 ± 59.27 μm for X-coordinates, 63.59 ± 52.79 μm
for Y-coordinates, and 97.34 ± 73.29 μm for absolute
values (Table).

The mean prediction errors tended to be lower
for open angle compared with angle closure eyes
(Table). The mean prediction errors of the CNNmodel
were –1.06 ± 61.58 μm (open) and 8.41 ± 73.65 μm
(closed) for X-coordinates, –4.36 ± 57.11 μm (open)
and 11.37 ± 74.54 μm (closed) for Y-coordinates, and
69.22± 47.70 μm (open) and 85.16± 62.41 μm (closed)
for absolute values. The mean intragrader variabil-
ity of scleral spur location was 0.84 ± 67.95 μm

(open) and 0.78± 79.39 μm (closed) for X-coordinates,
3.19 ± 56.09 μm (open) and 31.60 ± 73.65 μm (closed)
for Y-coordinates, and 67.37 ± 56.82 μm (open) and
94.44 ± 67.70 μm (closed) μm for absolute values. The
mean intergrader variability of scleral spur location
was –44.29 ± 77.54 μm (open) and –41.27 ± 80.53 μm
(closed) for X–coordinates, −43.06 ± 66.07 μm (open),
and –21.52 ± 91.22 μm (closed) for Y-coordinates,
and 96.10 ± 70.37 μm (open) and 101.21 ± 81.81 μm
(closed) μm for absolute values.

The distribution of absolute prediction errors by the
CNN was 40.61% within 50 μm, 76.22% within 100
μm, 90.88% within 150 μm, and 97.18% within 200 μm
(Figs. 3 and 4). The distribution of errors from intra-
grader variability was 43.43% within 50 μm, 76.33%
within 100 μm, 89.47% within 150 μm, and 95.22%
within 200 μm. The distribution of errors from inter-
grader variability was 27.14% within 50 μm, 62.21%
within 100 μm, 81.76% within 150 μm, and 91.64%
within 200 μm.

One previous study used 80 μm along both the X-
and Y-axes as a cutoff for clinically significant variabil-
ity in detecting scleral spur locations.14 In our study,
80.76% of predicted coordinates by the CNN model
and 79.57% of repeat coordinates by grader 1 were
within 80 μm of the reference coordinates along both
the X- and Y-axes. 71.91% of coordinates by grader 2
were within 80 μm of the reference coordinates along
both the X- and Y-axes.

The distributions of X- and Y-coordinate errors
were not normally distributed (Kolmogorov-Smirnov
test, P < 0.001) for any of the three comparisons:
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Figure 2. Distribution of CNN-predicted and intraobserver errors in scleral spur location definition. (Top) Scatter plots of CNN-predicted
errors (left) and intragrader errors (right). Mean error plotted in red. (Middle) Histograms of X-coordinate CNN prediction (left) and intraob-
server (right) errors. (Bottom) Histograms of Y-coordinate CNN prediction (left) and intraobserver (right) errors.
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Figure 3. Representative images of various absolute distances (50, 100, 150, and 200 μm) between reference grader-marked (cross) and
CNN-predicted (circle) scleral spur locations.

Figure 4. Histograms of absolute CNN-predicted (left) and intraobserver (right) errors in scleral spur location.
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reference – CNN, reference – grader 1 (new), and
reference – grader 2. The Wilcoxon signed-ranked test
revealed that the distributions of errors for reference –
CNN and reference – grader 1 were similar for both
X-coordinates (P = 0.609) and Y-coordinates (P =
0.378). The same test demonstrated that the distribu-
tions of errors for reference – grader 1 (new) and refer-
ence – grader 2were dissimilar for bothX- (signed-rank
test; P < 0.001) and Y-coordinates (signed-rank test;
P < 0.001).

Themean prediction error increased when the CNN
was re-trained with smaller subsets of the training
dataset (Supplementary Fig. S2). Mean prediction
error declined to a stable absolute value of approxi-
mately 75 μm when the CNN model was developed
using 30% or more of the training dataset.

Discussion

In this study, we developed and tested a deep neural
network model that detects the scleral spur in AS-OCT
images. The CNN was based on the ResNet-18 archi-
tecture and achieved human expert level performance;
the distribution of prediction errors by the CNNmodel
was similar to intragrader variability by the human
grader who provided reference labels of scleral spur
locations. These prediction errors were also signifi-
cantly smaller than the intergrader variability observed
between human expert graders. To our knowledge, this
is the first fully automated method for detecting the
scleral spur in AS-OCT images at a human expert
level, even in eyes with angle closure. We believe this
method resolves a long-standing limitation in the field
of AS-OCT imaging and could greatly enhance the
utility of AS-OCT imaging for clinical care and scien-
tific research.

The scleral spur is the key anatomic landmark in
the detection of ITC, which defines angle closure based
on qualitative analysis of AS-OCT images. Previous
studies demonstrated that ITC is sometimes missed on
gonioscopy despite being more predictive of incident
gonioscopic angle closure and primary angle closure
disease (PACD).15,29 Therefore, an automated method
to detect the scleral spur and ITC would facilitate
a more thorough evaluation of the ACA and earlier
detection of patients at risk for angle closure disease.
This method would be especially beneficial for clini-
cians who are inexperienced with manual interpreta-
tion of AS-OCT images. Deep learning methods were
applied to develop a CNNmodel that detects a specific
amount of ITC (more than one-third of the width of
the TM) on AS-OCT images.25 However, it is currently
unclear what degree of ITC is clinically significant and
affects the aqueous outflow function of the eye. There-

fore, direct detection of the scleral spur allows for more
flexible assessments of the ACA for ITC.

Automated detection of the scleral spur also has
important implications for developing and testing
new quantitative methods to evaluate and monitor
patients with primary angle closure disease. A recent
landmark randomized controlled trial demonstrated
that gonioscopy is poorly able to identify which
patients with early primary angle closure disease are
at higher risk of disease progression.30 This finding
may be related to the fact gonioscopy grades are only
weakly associated with angle width in eyes with angle
closure.31 Conversely, quantitative AS-OCT measure-
ments of angle width have a strong association with
intraocular pressure, a strong risk factor for glaucoma-
tous optic neuropathy, in a subset of eyes with primary
angle closure disease.32 However, the clinical utility
of this finding is currently limited by the technical
challenges associated with manual analysis of AS-OCT
images. Automating quantitative analysis of AS-OCT
images could also facilitate monitoring the progression
of angle narrowing and closure over time. Trend-based
analysis of angle width is not possible with gonioscopy,
which has led to a lack of consensus on how often
patients with early primary angle closure disease
should be monitored or when they should be treated.

We assessed the performance of our CNN model
by comparing it to the intragrader reproducibil-
ity of a human expert grader with more than
20,000 images of experience. There was no significant
difference in the X- and Y-coordinate distributions
of prediction errors for the CNN and intragrader
variability for the human grader. In addition, absolute
errors were similar for the CNN model and human
grader, with 75% and 90% of absolute prediction errors
fell within 100 μm and 150 μm of reference scleral spur
locations, respectively. However, assessing the perfor-
mance of the CNN model in absolute terms is more
challenging. One previous study used 80 μm along both
the X- and Y-axes as a cutoff for clinically significant
variability in detecting scleral spur location.14 That
study reported intragrader reproducibility of 84%
within 80 μm, which is similar to the 81% by the CNN
model and 80% by the reference grader in our study.
That study also reported intergrader reproducibility
of 77% within 80 μm, compared with 73% in our
study. However, these results should be interpreted
with some caution because that study was based on 31
multiethnic eyes, whereas our study was based on 2333
eyes of a single ethnicity, which likely contributed to
differences in image quality and distributions of scleral
spur locations.

The scleral spur can be more difficult to detect in
eyes with angle closure owing to attenuation of the
OCT signal in portions of the ACA with ITC. We
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assessed the performance of our CNNmodel in subsets
of images from open angle and angle closure eyes
to determine if angle status had any effect on the
accuracy of predicted scleral spur coordinates. Overall,
mean prediction errors and intragrader and intergrader
variability were greater in eyes with angle closure.
However, this differencewas actually smaller for predic-
tion errors by the CNN model compared with intra-
grader variability by the reference grader. This finding
suggests that the CNN model can capably detect the
scleral spur, even in angle closure eyes.

Our methods have some limitations. Reference
scleral spur labels were provided by one human grader
with experience marking the scleral spur in more
than 20,000 images. However, scleral spur detection
is subjective, and it remains a possibility that scleral
spur locations predicted the CNN model will not
generalize to other graders. It is reassuring that inter-
grader variability between expert graders in our study,
one of whom provided the reference labels for CNN
training, was comparable with the variability reported
in another study.14 Nevertheless, it could be benefi-
cial to retrain the CNN model based on reference
labels provided by a panel of expert graders now that
its ability to replicate the performance of a single
grader has been demonstrated. Similarly, our model
may not generalize to images acquired on other AS-
OCT devices. The location and appearance of the
ACA can vary based on the AS-OCT device, and
some devices are able to resolve fine anatomic struc-
tures, such as the TM. Therefore, we determined that
a much smaller training dataset composed of approxi-
mately 8000 images could be enough to obtain compa-
rable performance should the CNN model need to be
retrained using a different dataset. Finally, although
our CNN model is highly effective at detecting the
scleral spur, it is unclear how mislocalizing the scleral
spur affects corresponding AS-OCT measurements.
Therefore, future work should assess the biometric
measurements associated with predicted scleral spur
locations to rule out the possibility that small differ-
ences in scleral spur locations lead to significant differ-
ences in biometric measurements.

In summary, we used AS-OCT data from a
population-based study of Chinese Americans to
develop a deep neural network capable of detecting the
scleral spur at the level of a human expert. This solves
a major limitation faced by clinicians and researchers
who use AS-OCT to manage or study patients with
angle closure. We hope that this method will facilitate
qualitative evaluation of the ACA for angle closure
and development of quantitative clinical methods to
manage patients at risk for primary angle closure
glaucoma.
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