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The increasing incidence and changing epidemiology of invasive fungal infections continue to present many
challenges to their effective management. The repertoire of antifungal drugs available for treatment is still lim-
ited although there are new antifungals on the horizon. Successful treatment of invasive mycoses is dependent
on a mix of pathogen-, host- and antifungal drug-related factors. Laboratories need to be adept at detection of
fungal pathogens in clinical samples in order to effectively guide treatment by identifying isolates with acquired
drug resistance.While there are international guidelines on how to conduct in vitro antifungal susceptibility test-
ing, these are not performed as widely as for bacterial pathogens. Furthermore, fungi generally are recovered in
cultures more slowly than bacteria, and often cannot be cultured in the laboratory. Therefore, non-culture-
basedmethods, includingmolecular tests, to detect fungi in clinical specimens are increasingly important in pa-
tient management and are becoming more reliable as technology improves. Molecular methods can also be
used for detection of target gene mutations or other mechanisms that predict antifungal drug resistance.
This review addresses acquired antifungal drug resistance in the principal human fungal pathogens and de-
scribes known resistancemechanisms andwhat in-house and commercial tools are available for their detection.
It is emphasized that this approach should be complementary to culture-based susceptibility testing, given the
range of mutations, resistance mechanisms and target genes that may be present in clinical isolates, but may
not be included in current molecular assays.

Introduction
Amphotericin B was the first antifungal drug for systemic treat-
ment of invasive fungal infections (IFIs), and has been the ‘gold
standard’ of antifungal therapy for nearly 50 years.1 It has activity
against a broad range of human pathogenic fungi, that includes
those under review, and extremely few develop resistance follow-
ing exposure to the drug.

The introduction to the clinic of the triazole antifungals itra-
conazole and fluconazole in the 1980s offered more therapeutic

options for treating IFIs. Additionally, azoles present fewer class-
related side effects compared with amphotericin B.2

Fluconazole resistance in Candida albicans was first reported
in the 1990s in AIDS patients who were receiving prolonged low-
dose treatment courses for recurrent mucosal candidiasis.3

Investigations revealed that multiple molecular mechanisms
could be involved in acquired resistance in C. albicans.4 Candida
krusei species (new taxonomic name: Pichia kudriavzevii) are in-
trinsically resistant to fluconazole, while Candida glabrata has re-
duced susceptibility. There are increasing reports of acquired
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fluconazole resistance emerging in Candida tropicalis and
Candida parapsilosis. The newly identified Candida auris, which
has spread widely across the globe, is characterized by frequent
acquired resistance to fluconazole, amphotericin B and often
multi-antifungal drug resistance.5

Although most clinical isolates of Cryptococcus neoformans
are susceptible to fluconazole, the emergence of drug-resistant
strains has been reported, usually linked to prior drug exposure.6

Subsequent to its introduction for clinical use, acquired resist-
ance to itraconazole emerged in Aspergillus fumigatus.7,8 The
third-generation triazoles, voriconazole, posaconazole and isavu-
conazole have greater activity against mould fungi than itracon-
azole. Voriconazole was licensed for the treatment of invasive
aspergillosis (IA) in the early 2000s and soon became the drug
of choice for that indication. However, within a few years, reports
of multi-triazole resistance impacting these triazoles emerged
from the Netherlands and the A. fumigatus isolates involved
were found to have novel molecular changes in the gene encod-
ing the target of the azoles, cyp51A.9 Additionally, some
triazole-resistant A. fumigatus isolates have cyp51-independent
resistance mechanisms.

The echinocandins caspofungin, micafungin and anidulafun-
gin are members of the most recent major class of antifungals
to be licensed for clinical use. They are established first-line ther-
apy in patients with candidaemia and other forms of invasive
candidiasis.10 Since their introduction, reports have appeared of
acquired echinocandin resistance in Candida spp., most notably
in C. glabrata.11 By contrast, resistance to echinocandins in
Aspergillus spp. appears to be uncommon12 but their clinical
use as monotherapy in aspergillosis is limited because their in
vivo activity is lower, a potential consequence of their in vitro anti-
fungal effect on Aspergillus spp. being only fungistatic.13

Flucytosine has its main antifungal activity against Cryptococcus
and Candida spp., but because of the rapid development of fungal
resistance during flucytosinemonotherapy, its use is mainly limited
to combination therapy with amphotericin B. Acquired resistance is
associated with mutations affecting cellular drug uptake and the
target nucleic acid synthetic pathway. Flucytosine is not recom-
mended for the treatment of aspergillosis because of apparent in-
trinsic drug resistance, but its efficacy is pH dependent and so it
could show in vitro antifungal activity at anatomical sites of
Aspergillus infection where there is an acidic environment.14,15

Terbinafine has fungicidal activity and main indication in
dermatophyte infections.16 It is also occasionally used in com-
bination with another antifungal agent for the treatment of
mould infections. This is because of its potential to act synergis-
tically in drug combinationwhere there is shared inhibitory action
on ergosterol biosynthesis. There are recent reports of terbinafine
resistance in the dermatophytes Trichophyton mentagrophytes/
Trichophyton interdigitale complex and Trichophyton rubrum par-
ticularly from India,17 but this is increasingly being reported
in other countries as well.18–21 Recently, the taxonomy for the
T. mentagrophytes/T. interdigitale complex was revised and a
new species, Trichophyton indotineae, proposed for the highly
terbinafine-resistant Indian isolates.22,23

Trimethoprim/sulfamethoxazole, although principally used
as an antibacterial agent, is established as first choice
to treat Pneumocystis jirovecii pneumonia (PcP). While
mutations in target fungal genes are well characterized, their

clinical relevance for predicting drug resistance is less clearly
established.

The EUCAST sub-committee on Antifungal Susceptibility
Testing (as well as the CLSI) has developed susceptibility testing
methods for human pathogenic yeasts and moulds, including
dermatophytes, with freely available evidence-based break-
points for categorizing susceptible versus resistant isolates
(www.eucast.org/astoffungi) that correlate with clinical out-
comes. For less frequent organisms where MICs are available
but MIC-outcome data are not, epidemiological cut-off values
(ECOFFs) allow detection of isolates with acquired resistanceme-
chanisms. However, susceptibility testing is dependent on culture
of the isolate, which is not always possible or available within a
reasonable time frame. When cultured samples yield one of
the principal fungal pathogens discussed here, this is usually
achieved within 48–72 h, whereas dermatophytes require
week(s) of incubation, and culture of P. jirovecii is not possible
in the diagnostic laboratory.

Recognizing the above limitations, molecular tests have been
developed and evaluated for rapid fungal detection in body fluids
and tissues, and for fungal identification where growth is de-
tected in clinical samples such as blood cultures; these have
been extensively and critically reviewed elsewhere.24–26

Non-culture-based molecular tests to detect antifungal drug re-
sistance in fungal pathogens, whether in-house or commercial,
are more limited in number and are reviewed here and summar-
ized in Table 1 for Aspergillus spp.,27–38 Candida spp.,39–41

Trichophyton spp.42,43 and P. jirovecii.44,45 This is accompanied
by guidance points on their use in clinical practice (Table 2). Of
note, in this review, the term ‘mutation’ is used for non-
synonymous changes in resistance genes that are confirmed or
suspected to be related to resistance because they occur in
phenotypically resistant strains. The consequent amino acid
changes are referred to as alterations.

Aspergillus spp.
Background
Acquired antifungal drug resistance has been described in differ-
ent Aspergillus spp. and for various antifungals, but research has
focused mainly on triazole resistance in A. fumigatus. Triazoles
are notmutagenic, but genetic variation (including triazole resist-
ance mutations) may arise through spontaneous mutations, mi-
totic recombination or meiotic recombination.46 When a
population of Aspergillus conidia is exposed to triazole selection
pressure, isolates harbouring a resistance mutation will thrive
in comparison with WT isolates and become dominant in the
population. This process of resistance selection can take place
in a patient who receives prolonged treatment with triazoles (in-
host selection) or in the environmentwhere residues of azole fun-
gicides with activity against A. fumigatus may provide selection
pressure.

Acquired triazole resistance in A. fumigatus

Cyp51-mediated triazole resistance

In A. fumigatus, triazole resistancemechanisms aremainly asso-
ciated with alterations in the cyp51A gene that encodes the
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14α-demethylase, an enzyme responsible for the final step of
the ergosterol biosynthesis pathway. Ergosterol is the major
sterol component of fungal membranes and is critical for mem-
brane permeability and fluidity, thereby being essential for fungal
growth and survival.47 A. fumigatus carries one Cyp51A and one
Cyp51B protein, where Cyp51B is constitutively expressed and
Cyp51A expression is inducible.48 Lanosterol 14α-demethylase
point amino acid mutations mainly appear in Cyp51A and can
lead to amino acid changes that result in modifications to ligand
access channels throughwhich azoles gain access to the enzyme
active site and bind to the haemmolecule.48 Hotspots for amino
acid substitutions include G54, G138, M220 and G448, which cor-
respond with specific azole resistance phenotypes (Table 3).49–82

These single resistance mutations are commonly found in pa-
tients with prior exposure to triazole therapy. Non-synonymous

substitutions of A. fumigatus Cyp51A protein, such as L98H,
Y121F and T289A, are commonly accompanied by tandem re-
peats (TRs) in the gene promoter,30 which up-regulate the ex-
pression of the cyp51A gene.83 Resistance mutations that
involve TRs, such as TR34/L98H and TR46/Y121F/T289A (Table 3),
are commonly associated with environmental resistance selec-
tion through exposure to azole fungicides.84 Molecule similarity
between triazole fungicides and medical triazoles is believed to
be responsible for cross-resistance.85 Single resistancemutations
are frequently found in patients treated with triazoles, but they
have also been recovered from the environment.86 While
TR-mediated resistance mutations are associated with environ-
mental resistance selection, in-host selection of a TR120 resist-
ance mutation,78 and also an in-host selection of a TR variation
TR34

3 /L98H, has been reported.87 Ultimately, characteristics of

Table 1. In-house and commercial non-culture methods that detect molecular resistance mechanisms in reviewed fungal pathogens

Fungal pathogen
(Specimen types) Antifungal drug

In-house detection of drug resistance
mechanism(s)

Commercially available assays for detection
of drug resistance mechanism(s)

Aspergillus spp. (Sputum,
bronchoalveolar lavage,
serum, or plasma)

Triazoles Real-time PCR studies24–30

Pyrosequencing31
Aspergenius® multiplex real-time PCR detects
Aspergillus TR34/L98H; TR46/T289A; TR46/
Y121F gene mutations in cyp51A32,33,36–38

Aspergenius® multiplex real-time PCR detects
G54 and M220 RUO in cyp51A of A.
fumigatus34

MycoGENIE® detects A. fumigatus TR34/L98H
gene mutations35–38

FungiplexR® Aspergillus Azole-R IVD real-time
PCR detects A. fumigatus TR34 and TR46

24,38

Candida spp. Triazoles No assays for azole resistance due to multiple
mechanisms playing in concert

Echinocandins PCR assay to detect Glucan synthase (FKS)
gene(s) for subsequent sequencing to identify
mutations in the hotspots of fks1 and fks2 (C.
glabrata only)39,40

Cryptococcus spp. Fluconazole No assays due to variable mechanisms of
resistance

Dermatophytes Terbinafine PCR assay to detect squalene epoxidase
(SQLE) gene for subsequent sequencing to
identify mutations in Trichophyton
mentagrophytes/interdigitale and T.
rubrum17,42

DermaGenius® Resistance Multiplex real-time
PCR kit.43 Detects:
T. rubrum/Trichophyton soudanense, T.
interdigitale/mentagrophytes, T.
mentagrophytes (ITS type IV), T. tonsurans, T.
violaceum, Trichophyton quinckeanum/
Trichophyton schoenleinii and SQLE
alterations: L393F, F397L, L393S, F397I,
F397V.

P. jirovecii Trimethoprim/
sulfamethoxazole

Dihydropteroate synthase gene mutations:
Detected using RFLP, PCR sequencing, SSCP,
MLST, PCR pyrosequencing44

Atovaquone mutations: Sequencing of
Cytochrome b substitutions in the Qo region
T121l, L123F, T100l, l120V, S125A, P239L and
L248F (see Table S1)

PneumoGenius® real-time PCR detects
mutations at codons 55 and 57 in
dihydropteroate synthase (DPHS)
gene-encoding sulphonamide resistance45
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the fungus and its (azole) environment will determine the supply
of mutations and subsequent selection rather than whether re-
sistance was selected in a host or in the environment.86,88

Other triazole resistance mechanisms in A. fumigatus

In 10%–50% of triazole-resistant A. fumigatus isolates, a WT
cyp51A gene sequence is found, indicating that other pathways
or resistance mutations are likely to be present.54 The hap
gene complex member hapE has been shown to be associated
with an azole-resistant phenotype.89,90 Another target involves
the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA)
reductase-encoding gene (hmg1), which represents a rate-
limiting enzyme in the ergosterol biosynthetic pathway.91

Hmg1mutations have been proposed as an underlying mechan-
ism in azole-resistant isolates lacking cyp51A mutations.91–94

Other mechanisms include the overexpression of cyp51B,95 the
overexpression of efflux pumps (e.g. Cdr113 and AtrF),96,97 and
mutations in regulators and the transcriptional network (e.g.
SrbA).98 The negative cofactor two A and B (NCT) complexwas re-
cently identified as a key regulator of triazole resistance by
modulating the expression levels of the transcription factors as-
sociated with ergosterol biosynthesis and triazole resistance.99

Trends in triazole resistance phenotypes and genotypes
in A. fumigatus
SNPs are commonly found in the cyp51A gene of A. fumigatus iso-
lates of which the significance for the resistance phenotype is un-
known. In a recent resistance survey involving 640 clinical
A. fumigatus isolates, 445 isolates harboured TR34/L98H of which
24 (5%) exhibited one or more additional mutations, including
F495I (9 isolates), Q259H (5), S297T (4), D262N (1), N326H (1),
P337L (1), Y341H (1), I364V (1), G328A (1) and L399V (1).49 These
SNPs might or might not impact on the triazole resistance pheno-
type. F495I was recently shown to be associated with resistance
to imidazole fungicides, such as imazalil and prochloraz, which
was confirmed by recombination experiments.58 However, TR34/
L98H with F495I showed lower voriconazole MICs compared with
TR34/L98Hwithout F495I, indicating an effect of this SNP on the ac-
tivity of voriconazole.58 Hmg1 gene mutations have been found in
isolates harbouring TR34/L98H and TR46/Y121F/T289A and have
been suggested to alter the triazole-resistant phenotype.91

However, although hmg1mutations were found in 24% of A. fumi-
gatus isolates with a triazole-resistant phenotype, 8% of isolates
with aWTphenotype also harboured SNPs in this gene.100 The loca-
tion and type of SNP may determine their significance for the
triazole-resistant phenotype, but this requires further studies.

In addition to SNPs, an increased number of TRs have been ob-
served in triazole-resistant A. fumigatus isolates, including three
or four copies of TR46.

76 However, no specific phenotype change
could be demonstrated in these isolates.

Finally, a significant trend towards decreased voriconazole re-
sistancewas noted in TR34/L98H isolates in the above-mentioned
resistance survey.49 In 2013 96% (44 of 46) of TR34/L98H
isolates were classified as voriconazole resistant, while in
2018 only 55% (59 of 108) of TR34/L98H isolates exhibited a
voriconazole-resistant phenotype (P=0.0001).49 However, no
underlyingmechanismwas found that could explain the voricon-
azole phenotype shift. Through known and unknown resistance

mechanisms, an increasing diversity in azole-resistant pheno-
types and genotypes is emerging, which is likely to result from
the dynamic environments A. fumigatus is exposed to and its
ability to adapt to these changes.

Resistance testing of A. fumigatus and clinical
implications
Although susceptibility testing remains the cornerstone for
guidance of antifungal therapy choices, there are increasing
challenges with respect to A. fumigatus resistance. Firstly,
many cases of IA are diagnosed in the absence of a
positive Aspergillus culture. Mixed triazole-susceptible and
triazole-resistant isolates causing infection in patients with IA
have been reported and testing of multiple A. fumigatus colonies
is therefore recommended.101 As susceptibility testing of mul-
tiple colonies is very laborious, an agar-based screening strategy
has proven useful to detect resistant colonies.102 Clinical
breakpoints are available for triazoles and A. fumigatus, although
it remains unclear if susceptible isolates can be safely treated
with a triazole if the isolate is resistant for one or more other
triazoles.103 In culture-negative patients, commercial resistance
PCR assays are available to detect TR34/L98H and/or TR46/Y121F/
T289A alterations directly in clinical specimens (Table 1).38,104 As
these assays rely on the amplification of specific targets,
which are confirmed as the cause of azole resistance, addition-
al/alternative resistance mutations and single resistance muta-
tions are not detected. With increasing variation in resistance
phenotypes, and thus of the proportion of resistance due to the
mechanisms not targeted by the PCR, the correlation between
resistance PCR and resistance phenotype will become less well
defined. Furthermore, the analytical sensitivity of resistance
PCRs in bronchoalveolar lavage (BAL) (which target the single
copy cyp51A gene) is lower than the Aspergillus PCR (where a
multi-copy gene is amplified), resulting in the inability to obtain
resistance target amplification in 30% of patients despite
resistant infection.105 Thus, although resistance PCR positivity
documents resistance, and triazole therapy thereby can be
avoided if a resistance mutation is detected, PCR negativity
does not confirm azole susceptibility, which in some circum-
stances, such as CNS aspergillosis, is critical. New approaches
are warranted to enable detection of a broad range of resistance
mutations, such as sequence-based strategies.31

Acquired triazole resistance in other Aspergillus species
Much less is known about the prevalence and underlying me-
chanisms of acquired triazole resistance in other Aspergillus
spp. This is probably in part because they are less often causes
of invasive disease, but also because acquired resistance is less
frequently researched. Cyp51A alterations have been reported
in azole-resistant Aspergillus terreus including M217I and
G51A,84 D344N and M217I,106 and M217T and M217V.107 The
codons G51 and M217 in A. terreus correspond, respectively, to
codons G54 and M220 in A. fumigatuswhich, as described above,
are also linked to triazole resistance. Molecular resistance
mechanisms have also been investigated in Aspergillus flavus.
P214L has been found in Cyp51A, and S240A and H349R
in Cyp51C in triazole-resistant isolates, but not in susceptible
counterparts.108,109 Moreover, MDR2, atrF andmfs1 up-regulation
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resulting in efflux were reported in azole-resistant A. flavus from
South Korea.110 Thus, as for A. fumigatus, target gene sequen-
cing can help detect acquired resistance, but it is not enough
to rule out additional mechanisms that cause triazole resistance
in these species.

Acquired echinocandin and amphotericin B resistance
in A. fumigatus
Although echinocandin resistance was successfully promoted in la-
boratory strains of A. fumigatuswith fks gene mutations as early as
in 2005, and this mechanism is common in Candida, echinocandin
resistance has rarely been reported in A. fumigatus. The first ex-
ample of echinocandin resistance in clinical A. fumigatus isolates
was reported in 2008 in a clinical isolate displaying overexpression
of the fks1 gene111 whereas the second involved a point mutation
in fks1 hotspot 1.12 Recently, it was shown that caspofunginmay in-
duce cellular stress, promoting formation of mitochondrion-derived

reactive oxygen species and triggering an alteration in the compos-
ition of plasmamembrane lipids surrounding glucan synthase, ren-
dering it non-susceptible to echinocandins.112 None of these
mechanisms is easily detectable in clinical microbiology laborator-
ies. Finally, we are unaware of any documented clinically relevant
acquired amphotericin B resistance mechanisms in A. fumigatus.

Candida species
Background
Acquired azole drug resistance rates in C. albicans are relatively
low worldwide (≤1%).113,114 In a 20 year global surveillance
study, using CLSI criteria, azole resistance in C. glabrata isolates
ranged from 5.6% to 10.1%; however, these rates were much
higher in North America (10.6%) than in Asia-Pacific (6.8%),
Europe (4.9%), or Latin America (2.6%).115 Resistance rates in
C. parapsilosis and C. tropicalis were as high as 5.4% and 4.9%,

Table 3. Cyp51 gene-related mutations and corresponding phenotype (EUCAST methodology) in triazole-resistant clinical A. fumigatus isolates

Resistance mutation

Phenotype (MIC mg/L)a

Comment ReferencesItraconazole Voriconazole Posaconazole

TR34/L98H 2–.16 0.5–.16 0.25–2 A significant trend towards lower VRC MICs was observed
between 2013 and 2018 in a national surveillance
program49

49–68

TR34/R65K/L98H .16 8 4 69
TR34/L98H/S297T .16 2 0.5 S297T not considered relevant for azole resistance29 51
TR34/L98H/S297T/
F495I

.16 1–8 0.5–.8 S297T not considered relevant for azole resistance;29 F495I
associated with imidazole resistance58

51, 54, 58, 60,
67, 71

TR34
3 /L98H .16 4 (–8) 1 87

TR46/Y121F/T289A 0.5–.16 .16 0.125–2 56, 58–61, 64–
68, 72–74

TR46/Y121F/M172I/
T289A

1 .16 0.5 M172I is also found in WT isolates29 75

TR46
3 /Y121F/M172I/
T289A/G448S

.16 .16 1 M172I is also found in WT isolates29 74, 76

TR53 .16 16 0.25 77
TR120/F46Y/M172V/
E427K

16–.16 4 0.5 In-host selection of TR120 in an isolate harbouring F46Y/
M172V/E427K with a triazole WT phenotype

78

F46Y/M172V/E427K 4 0.5–8 1–4 F46Y, M172V and E427K have also been found in WT
isolates29

50, 57, 79

F46Y/M172V/N248T/
D255E/E427K

.8 2 0.5 F46Y, M172V, N248T, D255E and E427K have also been
found in WT isolates29

53, 57, 71

G54W,E,R,V .16 0.06–2 0.5–.8 50, 52, 53, 55, 63
G138C .8 8–.8 1–.8 53, 80, 81
P216L .16 0.5–2 0.25–0.5 POS MIC.16 described in one study,61 possibly suggesting

accumulation of additional resistance mutations
52, 53, 61, 63, 67

F219L .16 0.25 0.25 52
M220I,K,L,R,T,V .16 0.5–4 0.5–.8 50, 51, 53, 59, 63
Y431C .8 2–4 1–2 81
G448S .8 2–8 0.25–1 53

VRC, voriconazole; POS, posaconazole.
aMIC ranges may represent a single isolate or the accumulation of MICs of multiple isolates from different studies. Broad MIC ranges could reflect
technical variation in MIC determination, factors related to the resistancemechanism detected or the presence of (undetected) additional resistance
mutations. Isavuconazole resistance classification is highly similar to that of voriconazole.82

Review

2058



respectively, with remarkable differences between continents.115

C. krusei is intrinsically resistant to fluconazole with MIC values
usually.32 mg/L.113–115 Other species with intrinsically elevated
fluconazole MIC values include C. glabrata, Candida inconspicua,
Candida lipolytica, Candida norvegensis, Candida rugosa,
Candida pelliculosa and Candida guilliermondii.114

Acquired azole resistance in Candida spp.
The gene encoding the target enzyme for azoles in Candida is the
erg11 (equivalent to the cyp51A gene in Aspergillus). Acquired
azole resistance in Candida spp. is quite uncommon and when
found is often preceded by months of therapy.116 It can be
caused by a variety of resistance mechanisms117–119 that often
work concurrently in clinical isolates and consequently the
underlyingmechanisms in isolates with azole resistance are rare-
ly dissected. Elevated non-WT fluconazole MICs are most com-
monly observed in C. glabrata and C. auris.

Alterations in erg11

Amino acid substitutions in Erg11 can affect the optimal binding
of the azoles to their target. Erg11 amino acid substitutions have
been reported in C. albicans by Morio et al.120

A study looking at 63 fluconazole-resistant C. albicans clinical
isolates observed that 55 carried at least one mutation in
erg11.121 When these mutations are introduced into an azole-
susceptible C. albicans strain, an increase in fluconazole MIC va-
lues is observed and is most prominent if the mutations are
homozygous.121,122

C. tropicalis isolates displaying azole resistance alone, or com-
bined with amphotericin B, carried erg11 mutations, which lead
to alterations at G464D and Y132F among isolates displaying flu-
conazole MIC values .64 mg/L and voriconazole MIC values of
.8 mg/L.123 Beyond the Erg11 alterations, these isolates dis-
played Erg3 substitutions S258Fand S113G. In a study evaluating
azole resistance among 431 C. parapsilosis and 227 C. tropicalis
isolates collected worldwide, 38 of 46 C. parapsilosis and 3 of 6
C. tropicalis isolates had the Erg11 alteration Y132F.114

In C. auris, a small number of erg11 gene mutations cause
azole resistance and these are usually clade specific.124,125

Y132F causes high resistance rates to fluconazole and voricon-
azole with CLSI MIC values of 1 or 2 mg/L, while K143R and
F126T increase fluconazole MIC values, but voriconazole values
remain below 0.5 mg/L.124

Up-regulation of erg11

Up-regulation of erg11 is not commonly noted in clinical isolates
and seems to only have amodest effect on azoleMICvalues.113,114

Alterations in erg3

Missense or nonsense mutations in erg3 have been reported to
enable fungal cells to develop resistance to polyenes and
azoles126 but these are uncommon in clinical isolates.

Efflux up-regulation

Up-regulation of efflux systems from the ATP-binding cassette
(ABC) transporters and the major facilitator superfamily (MFS)

can cause lower intracellular accumulation of the azoles, leading
to resistance.119 The ABC transporters involved in azole resist-
ance in C. albicans are Cdr1 and Cdr2. Functional homologues
of these are noted in other Candida spp. The most important
MFS transporter in Candida spp. is the Mdr1 pump, previously
named BenR. In contrast to Cdr1 and Cdr2, which have all azoles
as substrates, Mdr1 only extrudes fluconazole. Their substrate
specificity in C. albicans and C. glabratawas confirmed in a study
by Sanglard and Coste127 who evaluated the Cdr1, Cdr2 and
CgCdr1 from C. glabrata, as well as Mdr1 and Erg11 alterations.
They demonstrated that fluconazole MIC values were affected
by all resistancemechanisms, whereas the MIC values of itracon-
azole, isavuconazole, posaconazole and voriconazole were un-
changed when only Mdr1 was overexpressed.

Alterations in various zinc cluster transcription factors (ZCFs) have
been identifiedas being responsible for the up-regulation of the efflux
systems in Candida spp. In C. albicans, the promoter Tac1 is known to
up-regulate Cdr1 and Cdr2.128,129 Mutations in multidrug-resistant
regulator (mrr) 2 increasing the expression of Cdr1 have also been de-
scribed.130 In C. glabrata, resistance to azoles ismediatedby the over-
expression of the ABC multidrug transporter regulated by the ZCF
CgPdr1.131 This regulator is important for fungal–host interactions.
Mutations in this transcription factor have been demonstrated to in-
crease azole resistance in vitro and in vivo.131

Overexpression ofMdr1 in C. albicans has been associatedwith
a gain-of-function mutation in the promoter mrr1.132 C. albicans
isolates that became homozygous to mrr1 with a single nucleo-
tide substitution, resulting in P683S and G997V, demonstrated
elevated fluconazole MIC values. In a recent global surveillance
study, overexpression of Mdr1 was detected in 38 of 46
azole-resistant C. parapsilosis isolates exhibiting azole non-
susceptible or non-WT phenotypes.114

Combinations of resistance mechanisms

In most Candida spp. azole resistance is the result of a combin-
ation of mechanisms. In C. albicans laboratory isolates, resist-
ance usually occurs through the gain-of-function alterations in
the transcription factors Mrr1, Tac1 and Upc2, which results in
the up-regulation of efflux pumps and ergosterol biosynthesis
genes concomitantly. The combination of these mechanisms
generated a 500-fold increase in fluconazole MIC values.133 In
addition to up-regulating genes encoding efflux transporters
and erg11, clinical isolates had Erg11 amino acid substitutions
known to cause resistance.116

Molecular detection of azole resistance in Candida
Due to this plethora of resistance mechanisms that can co-exist,
susceptibility testing is a better tool for clinical laboratories to de-
tect resistance to azole agents than genetic methods. Molecular
detection of erg11 gene mutations known to cause azole resist-
ance could be used to detect or confirm resistance.134 However,
resistance could not be ruled out in the absence of these
alterations.

Echinocandin resistance
The 1,3-β-D-glucan synthase (GS) complex mainly comprises two
subunits Fks and Rho, of which Fks1p is the main target of the
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echinocandins.135,136 Fks1, Fks2 and Fks3 are encoded by the genes
fks1, fks2 and fks3, respectively. Resistance in Candida spp. is
caused by mutations in fks1 for most Candida spp. and also in
fks2 in C. glabrata.137 These occur within two specific regions,
known as hotspots (HS) 1 and 2 (Figure 1).136 These regions are
highly conserved within each species, but have different amino
acid sequences. Intrinsically elevated echinocandin MIC values
have been associated with inherent genetic polymorphisms within
the fks sequence among certain species, notably including C.
parapsilosis.138

Echinocandin resistance rates are low for most Candida spp.,
with the exception of C. glabrata. Results for 20 years of the
SENTRY Antifungal Surveillance Program demonstrated that
echinocandin resistance did not show dramatic changes for
the five most common Candida spp.115 This is different to the
findings of Alexander et al.139 who showed an increase in echi-
nocandin resistance in C. glabrata of 7.3%. However, a large sur-
vey performed by the CDC, Atlanta, USA, found that the rate of
echinocandin non-susceptible C. glabrata isolates increased
from 4.2% to 7.8% between 2008 and 2014.140 Recent data
from a global surveillance study demonstrate a decrease in
caspofungin resistance rates among C. glabrata. From 2017 to
2020, only 1.9% of the 1448 C. glabrata collected in 29 countries
exhibited caspofungin resistance and 2.7% displayed resistance
to any echinocandin tested (M. Castanheira, unpublished). In a

nationwide Danish survey of Candida spp. isolates from cases
of candidaemia (2004–18), the proportion of Candida spp. sus-
ceptible to fluconazole decreased while there was a slight in-
crease in echinocandin resistance and this was associated
with a proportional decrease in C. albicans isolates and an in-
crease in C. glabrata isolates.141 In one single-centre survey of
Candida spp. isolates, also from candidaemia cases collected
between 2002–19, there was an increase in fluconazole resist-
ance (3.5%–6.8%) while echinocandin resistance remained
stable at around 3%.142

C. albicans is the second most common Candida sp. to display
echinocandin resistance, most likely due to its high prevalence
in clinical settings. Heterozygous and homozygous mutations in
C. albicans may generate different phenotypes.143

In a study of C. glabrata isolates over a 10 year period, 119 iso-
lates displaying non-WT MIC values for echinocandins were
screened for fks gene mutations.144 A total of 28 had alterations
in fks hotspots. The most common alterations were fks2 HS1
S663P or F659S/V/Y, followed by fks1 HS1 S629P. This is also
true for the emerging species C. auris, which is a major problem
in certain countries.145–147

Candida spp. isolates from recent studies have mostly de-
monstrated mutations of the corresponding codons in both
C. glabrataand C. albicans, and other species, confirming that these
are the dominant amino acid alterations (Figure 1).113,114,136

Figure 1. Amino acid (AA) sequences of Fks1 and Fks2 in 10WT Candida species. Amino acid codons associatedwith increased MIC are underlined and
in bold font. In the online version a colour indication is applied to inform origin (naturally occurring or acquired) and impact on the MIC (strong, weak or
silent). Red: ‘strong R’mutation, subscript at codons involving amutation or deletion; superscript at codon involving amutation or stop codon. Yellow:
‘weak R’ mutation. Blue: inherent AA difference with proven or possible relation to intrinsic lower susceptibility. Grey: inherent AA difference of un-
known importance. Green: inherent AA difference, probably with no effect. aOf note: combination of the following alterations outside the defined hot-
spots has also been confirmed as cause of echinocandin resistance: Fks1 W508stop combined with Fks2 E655K. ECOFFs indicated in () are
estimated WT upper limits (peak MIC+2 dilutions) based upon the MICs of Danish blood isolates. *Inaccurate annotation, sequencing of entire gene-
sequence required. #The micafungin (but not anidulafungin) ECOFF for C. krusei is noticeably higher (0.25 mg/L) than for C. albicans (0.015 mg/L) and C.
glabrata (0.03 mg/L). NA, not available. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
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Isolates with double mutations have higher MIC values. Lackner
et al.143 demonstrated that C. albicans laboratory mutants with
homozygous double mutations significantly enhance resistance
in an in vivo model when compared with heterozygous single
mutations.

Although alterations in Fks2p and Fks3p are deemed unim-
portant for most Candida spp., homozygous deletions of fks2
and fks3 in laboratory-engineered strains of C. albicans decrease
their susceptibility to echinocandins since they result in a com-
pensatory overexpression of Fks1 and increase in cell wall
glucan.148

Interestingly, the MIC values for isolates with the same fks
gene mutations are not always the same. This finding suggests
the presence of compensatory mutations that could lead to
changes that would improve the binding of the echinocandins
—although not to the same level as a WT enzyme.149 Unlike
with azoles, drug efflux and biosynthesis pathway modulation
of the fungal cell wall does not seem to affect Candida spp. sus-
ceptibility to echinocandin agents.

Clinical aspects of echinocandin resistance
Candida spp. isolates can develop resistance to echinocandins
after short therapy courses or long-term treatment (median �1
month),150 and resistance has not been described in drug-naive
patients except where it has been acquired nosocomially.149

Thismeans that echinocandin use is themain driver of mutations
and resistance. Thus, isolates from breakthrough infection have
elevated MIC values and amino acid substitutions in the Fks
hotspots.151

In a study evaluating the risk factors for patients having
C. glabrata candidaemia with an isolate harbouring an fks muta-
tion, patientswho received 3 ormore days of echinocandin therapy
were more likely to have isolates that developed echinocandin
resistance and to carry fks mutations.152

Molecular detection of echinocandin resistance in
Candida spp.
Molecular methods for detection of echinocandin resistance
have been developed.153–155 The most commonly used was
PCR targeting the hotspot regions for the fks sequences, followed
by conventional sequencing methods. However, fks genes are
over 3 kb in length and sequencing the entire gene can be cum-
bersome. Furthermore, primers for fks gene amplification are
species specific, and this increases both the need for expertise
and added laboratory workload. A pyrosequencing method was
described for detecting fks mutations156 and, more recently,
next-generation sequencing has been used to evaluate several
different traits in fungal isolates, including echinocandin resist-
ance in Candida spp.113,114,157

Amphotericin B and flucytosine resistance
Acquisition of amphotericin B resistance in Candida spp. is appar-
ently rare,158 but current MIC-based methods may fail to detect
resistant isolates. Overall, low rates of breakthrough candidemia
in patients treated with amphotericin B have been described.159

Resistance to flucytosine in Candida spp. is primarily related to
impaired drug uptake by the cytosine permease encoded by fcy2,

and alterations in enzymes involved in the conversion of flucyto-
sine to the active compound 5-fluorouracil (Fcy1 and Fur1).160

Molecular detection of amphotericin B and flucytosine
resistance in Candida
Amphotericin B resistance in Candida spp. is mainly due to
changes in the ergosterol biosynthesis pathway.161 In contrast
to azole resistance, where erg11 mutations have been directly
associated with a resistance phenotype, there is no clear marker
for detection of amphotericin B resistance.162 Mutations in fcy2 or
fur1 that are associated with flucytosine resistance can be de-
tected by PCR.163,164 However, as flucytosine is rarely used for
Candida infections knowledge on resistancemutations is still lim-
ited and phenotypic testing remains the more attractive method
to detect resistance.

Cryptococcus spp.
Background
Cryptococcal meningitis occurs mainly in people living with HIV
and represents an important fungal cause of mortality, particu-
larly in sub-Saharan Africa.165 Recommended treatment for
cryptococcal meningitis is an induction regimen comprising am-
photericin B combined with flucytosine, followed by a consolida-
tion phase with fluconazole.166,167 Regimens may vary
depending on drug availability.167 For maintenance therapy, flu-
conazole is the treatment of choice. Indeed, amphotericin B, flu-
cytosine and the azoles show good in vitro activity against
Cryptococcus spp.168 In contrast, Cryptococcus spp. are intrinsic-
ally resistant to echinocandins.169,170

Acquired resistance to amphotericin B in Cryptococcus spp.
seems very uncommon.168 Resistance rates to fluconazole and
flucytosine remained low, at least in Europe and the USA, while
higher rates of fluconazole resistance have been reported from
other parts of the world such as Cambodia, South Africa and
Taiwan.171–173 In a comprehensive review of 29 studies published
between 1988 and 2017, the mean fluconazole resistance rate
was 10.6% for incident isolates, while it rose to 24.1% for relapse
isolates.173 Of note, in Africa specifically, 70% of isolates from
cases of relapse were resistant.172 Exposure to fluconazole dur-
ing therapy is probably the main driving force for emergence of
resistance.168 However, exposure to fungicides in the environ-
ment may also be responsible for fluconazole resistance.174–176

Indeed, it has been shown that in vitro exposure to both azole
or even non-azole fungicides used in agriculture can select flu-
conazole cross-resistant isolates of C. neoformans and
Cryptococcus gattii.174,175 Although primary flucytosine resist-
ance is rare in C. neoformans,168 acquired resistance is common
when the drug is used as monotherapy.177,178

In vitro antifungal susceptibility testing
Although there are reference methods for antifungal susceptibil-
ity testing, clinical breakpoints are currently not available for
Cryptococcus with the exception of 1 mg/L for amphotericin B
for EUCAST (www.eucast.org).173 Nevertheless, the values of
.32 and.16 mg/L for fluconazole and flucytosine, respectively,
and mainly obtained by the CLSI methodology, are often used as
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breakpoints in the literature.168 For fluconazole specifically, het-
eroresistance, where clinical resistance is not related to the MIC
(see below), further complicates MIC interpretation. Despite
these technical issues, there are many supportive data that cor-
related the high in vitro MICs to fluconazole, flucytosine, or am-
photericin B, with clinical failure both in experimental animal
models179–181 and in patients.168

Acquired azole resistance
Mechanisms of fluconazole resistance in Cryptococcus are varied
and include mutations in erg11,182–188 overexpression of
erg11,182,189 efflux pumps179,182,183,190–192 and heteroresis-
tance.193–200 (Table 4).

Alteration of the target enzyme, 14α-demethylase has been
reported in several studies (Table 4). A reduced affinity of the en-
zyme for azoles, associated with other mechanisms of resist-
ance, was demonstrated in fluconazole-resistant clinical
isolates of C. neoformans.182,183 More recently, severalmutations
in erg11 associated with azole resistance have been reported, in-
cluding G484S (corresponding to G464S in C. albicans),184,186

G470R187 and Y145F (equivalent to Y132F in C. albicans).185 A
G344S mutation in erg11 has also been observed in a
multi-azole-resistant laboratory mutant.188

Overexpression of erg11 is also a common mechanism of
azole resistance in yeasts. In an early study, it was shown that
there was an increased level of 14α-demethylase within
fluconazole-resistant C. neoformans isolates from AIDS pa-
tients.182 Similarly, overexpression of erg11 in the presence of flu-
conazole, associated with overexpression of an efflux pump, was
observed in an animal strain of C. neoformans.187

Several studies demonstrated a decreased intracellular con-
tent of fluconazole in fluconazole-resistant isolates of C. neofor-
mans supporting the presence of active multi-drug efflux
mechanisms.182,183,190 Subsequently, genes encoding multi-
drug transporters have been demonstrated in C. neoformans,201

and up-regulation of the ABC transporter CnAFR1 was shown to
be involved in fluconazole resistance in laboratory mutants,

confirmed in vivo in a murine model of cryptococcosis and ob-
served (in association with overexpression of erg11) in an isolate
of C. neoformans from a case of feline cryptococcosis.179,189,192

Efflux pumps have been demonstrated in C. gattii and shown
to confer fluconazole resistance when expressed in
Saccharomyces cerevisiae although their contributions to azole
resistance in clinical strains remain to be confirmed.191

Heteroresistance is anothermechanism that could be associated
with treatment failure in Cryptococcus spp. Heteroresistance is de-
fined by the presence, in a single isolate, of different populations
with differing susceptibility to a drug.196,200–203 Heteroresistance,
first described in 1999 in C. neoformans,193 is a dynamic and
heterogenous trait, not related to initial MIC194 but temperature
dependent.193,195 It is an intrinsic phenomenon, as it was demon-
strated in strains isolated before the discovery and use of azole
drugs.196,200 It has been reported both in C. neoformans and C.
gattii and seems to be more frequent in the latter species.200

Heteroresistance has been linked to chromosome duplication, in
particular a disomy of chromosome 1, which carries the genes
coding for Afr1 and Erg11.197,199 It is strain dependent and
more frequent after fluconazole treatment both in an animal
model198 and in patients.199

Amphotericin B resistance
Laboratory-generated amphotericin B-resistant mutants have
been characterized and showed no alteration in ergosterol con-
tent.190,204 In contrast, in amphotericin B-resistant clinical iso-
lates, a low content of ergosterol was observed and could be
attributed to a defect in the delta 8-7 isomerase, which plays a
role in ergosterol synthesis.183,205

Flucytosine resistance
Mechanisms of resistance to flucytosine in C. neoformansmay be
due tomutation in cytosine permease (fcy2), cytosine deaminase
(fcy1), or uracil phosphoribosyltransferase (fur1).206,207

Flucytosine resistance has also been reported in clinical isolates
of C. gattii, but with an as yet unknown mechanism(s).208

Table 4. Summary of mechanisms of resistance in Cryptococcus spp. to the main antifungal drug classesa

Drug class Mode of resistanceb Molecular mechanisms References

Azolesc Decreased affinity of 14α-demethylase,
mutations in ERG11

G484S, G470R, Y145F, (G344S) 182–188

ERG11 overexpression 182, 189
Decreased intracellular concentration of
azoles and efflux pumps

Up-regulation of ABC transporter CnAFR1 179, 182, 183,
190–192

Heteroresistance, chromosome
duplication

Chromosome 1 193–200

Amphotericin B Ergosterol depletion Defect in delta 8-7 isomerase 183, 205
Unknown 190, 204

Flucytosine Decreased uptake or metabolism Alterations of cytosine permease (FCY2), cytosine deaminase
(FCY1), uracil phosphoribosyltransferase (FUR1)

177, 209

Unknown Unknown 208

aCryptococcus spp. are inherently resistant to echinocandin drug class.
bSeveral mechanisms of resistance may be present in a single isolate.
cApplies mainly to fluconazole.

Review

2062



Nevertheless, in vitro experiments showed that defects in DNA
mismatch repair (MSH2) promote mutations responsible for flu-
cytosine resistance in Cryptococcus deuterogattii.209 It should be
pointed out that combination therapy with amphotericin B and
flucytosine may still be effective even in a case of flucytosine re-
sistance, depending on the mechanism of resistance involved.210

Molecular detection of drug resistance in Cryptococcus
Although antifungal drug resistance has been clearly demon-
strated in Cryptococcus spp., the mechanisms involved are di-
verse and not fully understood. There are currently no
commercialized nor easy diagnostic methods for the detection
of the molecular mechanisms of antifungal resistance in
Cryptococcus spp. in clinical microbiology laboratories.

Dermatophytes
Background
The majority of dermatophyte infections are caused by three
genera: Epidermophyton, Microsporum and Trichophyton. Mild in-
fections are treated topically with terbinafine, azoles (ketocon-
azole, miconazole, clotrimazole, luliconazole, sertaconazole,
eberconazole), amorolfine or ciclopirox. Serious infections, as
well as scalp and nail infections are treated systemically with ter-
binafine, triazoles (itraconazole or fluconazole) or griseofulvin
and often in combinationwith topical treatment. Newer systemic
triazoles including voriconazole and posaconazole are increas-
ingly used off label in failing case settings.211,212 Resistance in
dermatophytes was first reported shortly after the turn of the
millennium and as of today has been found in Trichophyton
and Microsporum spp. but not in Epidermophyton.213 Although
drug resistance in dermatophytes is not routinely investigated,
resistance in Trichophyton is increasingly reported world-
wide.42,214–217 The highest rates are observed in India, i.e. 36%
for terbinafine (MIC ≥4 mg/L) and 68% for fluconazole (MICs
≥16 mg/L) and apparently involve the spread of an early diver-
ging unique clade referred to as T. indotineae and previously re-
ported as T. mentagrophytes/T. interdigitale complex and
T. mentagrophytes genotype VIII.23 Recently, a study carried out
under the auspices of the European Academy of Dermatology
and Venereology task force of Mycology reported that among 20
European countries, only one country reported no known resist-
ance although susceptibility testing is not a routine test in clinical
laboratories.21 A total of 126 cases were reported as having either
clinical and/or microbiological-confirmed antifungal resistance
with infections located in the scalp, body (some very widespread),
groin, palm, soles (and co-infection of nails) and genital areas. In
Denmark, an increasing number of resistant cases are reported.218

Finally, terbinafine resistance was also found in two isolates from
wild hedgehogs in Poland, illustrating that resistant isolates may
be shed in the environment.219

In vitro antifungal susceptibility testing
Anumberof studies have reported terbinafineMICs for Trichophyton
by the CLSI M38-A2method.213,220–226 In these studies, MIC ranges
vary from ,0.007–0.031 to 0.125–≥32 mg/L and 0.004–0.06 to
0.06–0.06 mg/L for T. interdigitale and T. rubrum, respectively,

suggesting some interlaboratory variation.220–223 Moreover, dif-
ferential criteria have been adopted for identification of resistant
isolates, e.g. .0.25 and .2 mg/L, suggesting a need for stand-
ardization.221,226 No formal CLSI clinical breakpoints are estab-
lished but it is stated that most Trichophyton MICs are
≤0.25 mg/L but some T. rubrum have MICs of .0.5 mg/L.226 A
EUCAST method (E.Def 11.0) has been developed and validated
in a multicentre study.227 This method adopted an objective
spectrophotometric endpoint reading to improve reproducibility
and facilitates a broader implementation of antifungal suscepti-
bility testing for dermatophytes. Tentative ECOFFs have been es-
tablished but no breakpoints so far. These, as well as tentative
MIC targets and ranges for two Quality Control strains, can be
found at the EUCAST website (www.eucast.org).

Terbinafine resistance
Terbinafine resistance has been linked to hotspot mutations in the
squalene epoxidase (SQLE) target gene of Trichophyton
spp.20,42,214,221,228 The corresponding amino acid alterations de-
tected so far are summarized in Table 5. High-level resistance (≥5
2-fold dilution elevation of themodalMIC) is associatedwith altera-
tions involving L393 or F397 and these two codons are the most
common ones involved in terbinafine resistance in both
T. mentagrophytes, T. interdigitale, T. indotineae, T. rubrum and
Trichophyton tonsurans. Q408L is a novel alteration recently de-
scribed in highly resistant T.mentagrophytes isolates causing refrac-
tory infection in a married couple and L437P has recently been
found in a Danish T. rubrum isolate with high-level resistance.218,229

Less prominent MIC elevation (2–3 2-fold dilution elevation of the
modal MIC) has been associated with Q408L, F415S, H440Y,
S443P and combined I121M and V237I alterations.42,214,218

I121M combined with V237I is a novel alteration, possibly asso-
ciated with resistance given both codons are in close proximity to
the terbinafine binding site and are also situated in a region that
is conserved across several fungal species.42 Importantly, however,
although most terbinafine-resistant Trichophyton isolates harbour
SQLE mutations, resistant isolates without such mutations have
also been described, suggesting additional mechanisms may play
a role.230 Indeed, ABC transporters and MDR2, in particular, appear
to be involved in resistance to terbinafine in Trichophyton and also
to other antifungal compounds.231,232

Terbinafine resistance inMicrosporum is to our knowledge only
described in a single isolate from a feline patient treated unsuc-
cessfully with topical terbinafine for 3 months for severe skin in-
fection.217 In this isolate, the underlying mechanism involved
overexpression of the pdr1, mdr1, mdr2 and mdr4 genes encod-
ing ABC transporter proteins.233

Azole resistance
Within the T. rubrum genome, four ATP-binding cassette (ABC)
transporters (TruMdr1, TruMdr2, TruMdr3 and TruMdr5) and
TruMfs2 transporter belonging to the MFS have been shown to
be able to operate as azole efflux pumps.234 TruMdr3 and
TruMfs1 can act with all azole compounds, while TruMdr1 and
TruMfs2 only export fluconazole and voriconazole, and TruMdr2
and TruMdr5 are specific for itraconazole.216 As mentioned
above, efflux pumps can also transport terbinafine and can ac-
count for azole–terbinafine cross resistance.234 Similarly,
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itraconazole and fluconazole resistance inMicrosporum canis has
been linked to efflux pumps.235

Molecular detection of drug resistance in dermatophytes
Molecular detection of recognized resistance mutations provides
a possibility for rapid detection of resistance and particularly so
when compared with susceptibility testing methods for the
slow-growing dermatophytes. It also provides an option to de-
tect resistance when the isolate is not growing sufficiently well
in the susceptibility testing medium, and potentially also for dir-
ect detection of resistance in clinical material. SQLE target gene
amplification and sequencing allow detection of mutations con-
ferring high- and low-level resistance (Table 5 and described
above). Moreover, a PCR test for the detection of the two most
common alterations T1189C and C1191A conferring alterations
in L393F and F397L, respectively, was recently published,236

and a commercial PCR kit detecting alterations L393F, F397L,
L393S, F397I and F397V (Table 1).43

P. jirovecii
Background
Potentially drug-resistant PcP was first documented in the 1990s,
but it continues to be difficult to determine its current
scale.237,238 Polymorphisms in the genes encoding targets for
anti-PcP therapies are recognized as a potential reason for resist-
ant disease. Trimethoprim/sulfamethoxazole is recommended as
agent of first choice for treatment and prophylaxis of PcP. Certain
aspects of the disease itself might represent a problem for mo-
lecular diagnostic testing. Low fungal burdens in HIV-negative
patients can limit the applicability of PCR-based detection.
Second, many cases of PcP are caused by multiple co-infecting
strains, which include both WT and mutant genotypes.239,240

Finally, unlike most fungal diseases, laboratory culture plays no
role in the diagnosis and management of PcP.

In vitro antifungal susceptibility testing
The difficulty in culturing Pneumocystis has hindered both PcP
diagnosis and research and precludes the possibility of in vitro
susceptibility testing.241

Trimethoprim/sulfamethoxazole and atovaquone
resistance
A wide range of mutations have been identified in dihydroptero-
ate synthase (DHPS) and dihydrofolate reductase (DHFR) genes,

although even the presence of the most common polymorph-
isms (DHPS codons T55A and S57P) associated with
sulfamethoxazole-based resistance are not necessarily related
to treatment failure242 (Table S1, available as Supplementary
data at JAC Online). Mutations in cytochrome B gene have been
associated with potential atovaquone resistance, but the impact
on patient survival is unclear.243,244

It is very difficult to determine the prognostic impact of PcP
caused by a potentially resistant strain, irrespective of the type
of anti-PcP therapy, but in patients infected with strains pos-
sessing dhps gene mutants an increased duration of
hospital stay and the need for mechanical ventilation have
been noted.245 The impact of drug-resistant disease in the
non-HIV cohort remains difficult to determine, due to the ful-
minant nature of the infection in this broad population. Some
studies describe prior drug exposure as the factor behind re-
sistance, yet others describe resistant disease in
sulfamethoxazole-naive patients.246,247 This could reflect the
nature of the infection, and the need for infection control mea-
sures, which are currently not widely applied.246,247

The geographical distribution of mutations potentially asso-
ciated with PcP resistance is broad, with the studies originating
from all continents with the exception of Antarctica248–270

(Table S1). The number of documented cases is likely limited
by the number of studies investigating this issue, and evi-
dence would suggest that Pneumocystis strains with potential
resistance to therapy will be widespread. Of the available
studies, mutation rates associated with sulfamethoxazole
treatment failure vary between 0% and 100% (Table S1),
with the higher mutation rates documented in the USA com-
pared with Europe and the lowest rates documented in
resource-limited countries.44

Various routes of acquisition of resistant PcP have been de-
scribed, including human-to-human transmission of a resistant
strain, de novo development of resistance due to use of (possibly
sub-optimal) therapy, infection with resistant strains from an en-
vironmental source and reactivation of latent disease.44

Molecular detection of drug resistance
Of the novel diagnostic approaches, only molecular testing has
the potential to detect drug resistance. A variety of methods
(RFLP, DNA sequencing, SSCP, MLST and real-time PCR) have
been used, but DNA sequencing of target genes is usually ap-
plied.44 A commercial real-time PcP PCR assay capable of de-
tecting mutations at codons 55 and 57 in the dhps gene
potentially associated with sulphonamide treatment failure

Table 5. Overview of mutations in the squalene epoxidase (SQLE) target gene of T. rubrum and T. interdigitale and their implication for terbinafine
susceptibility (for references, see text)

High-level resistance Low-level resistance
Unknown impact (Direct sequencing,

unable to grow in EUCAST AFST)
Unrelated to
resistance

T. rubrum L437P, L393F, L393S,
F397L, F397I

I121M/V237I, F415S,
H440Y/F484Y, S443P

Y414C/L438C, F415V F484Y, I479V

T. indotineae (T. mentagrophytes/
T. interdigitale)

L393F, L393S, S395P,
F397L, Q408L, H440T

S443P L335F, A448T
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is available,45 but clinical validation is limited. One of the major
drawbacks of molecular testing for PcP is the lack of knowledge
regarding which target gene alterations affect drug suscepti-
bility. Indeed, it may be that other molecular mechanisms
are involved in combination with the polymorphisms already
identified and persistent PcP PCR positivity where Ct values in-
dicate a consistent or increasing burden despite therapy could
be associated with treatment failure. Therefore, molecular de-
tection of drug resistance in PcP is yet not ready for clinical
use.44

Conclusions
Molecular detection of antifungal drug resistance is, from a clin-
ical perspective, still in its infancy, but technically feasible and po-
tentially helpful, at least for the rapid detection of azole
resistance in A. fumigatus. Other important applications include
detection of echinocandin resistance in C. glabrata and terbina-
fine resistance in Trichophyton spp. New technologies, including
next-generation and metagenomic sequencing, have the poten-
tial to enable screening of pathogens and clinical specimens for
the presence of known and yet to be identified resistance me-
chanisms.24,271 However, it is important to be aware that mo-
lecular testing alone cannot determine an organism’s
antifungal drug susceptibility.

Not all resistance mechanisms are suitable for molecular detec-
tion, as diagnostic accuracy may be unknown, and new mechan-
isms of resistance continue to arise. Moreover, interpretation of
the clinical impact of a given mutation requires expertise about
the level and spectrum of resistance dependent on the codon in-
volved as well as the specific amino acid substitution.
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