
rsbl.royalsocietypublishing.org
Research
Cite this article: Tsuboi M, Gonzalez-Voyer A,

Kolm N. 2015 Functional coupling constrains

craniofacial diversification in Lake Tanganyika

cichlids. Biol. Lett. 11: 20141053.

http://dx.doi.org/10.1098/rsbl.2014.1053
Received: 11 December 2014

Accepted: 9 April 2015
Subject Areas:
evolution, ecology, behaviour

Keywords:
functional coupling, constraints, phylogenetic

comparative analysis, geometric

morphometrics, rate of evolution
Author for correspondence:
Masahito Tsuboi

e-mail: masahito.tsuboi@ebc.uu.se
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsbl.2014.1053 or

via http://rsbl.royalsocietypublishing.org.

& 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Evolutionary biology

Functional coupling constrains craniofacial
diversification in Lake Tanganyika cichlids

Masahito Tsuboi1, Alejandro Gonzalez-Voyer2,3 and Niclas Kolm3

1Evolutionary Biology Centre, Department of Ecology and Genetics/Animal Ecology, Uppsala University,
Norbyvägen 18D, 75236 Uppsala, Sweden
2Laboratorio de Conducta Animal, Instituto de Ecologı́a, Universidad Nacional Autónoma de México,
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Functional coupling, where a single morphological trait performs multiple func-

tions, is a universal feature of organismal design. Theory suggests that functional

coupling may constrain the rate of phenotypic evolution, yet empirical tests of

this hypothesis are rare. In fish, the evolutionary transition from guarding the

eggs on a sandy/rocky substrate (i.e. substrate guarding) to mouthbrood-

ing introduces a novel function to the craniofacial system and offers an ideal

opportunity to test the functional coupling hypothesis. Using a combination

of geometric morphometrics and a recently developed phylogenetic compara-

tive method, we found that head morphology evolution was 43% faster in

substrate guarding species than in mouthbrooding species. Furthermore, for

species in which females were solely responsible for mouthbrooding the

males had a higher rate of head morphology evolution than in those with bi-

parental mouthbrooding. Our results support the hypothesis that adaptations

resulting in functional coupling constrain phenotypic evolution.
1. Background
Functional coupling, the phenomenon where one structural system is required

to perform multiple functions, is a universal feature of organismal design [1,2].

Such multi-functionality has been suggested to constrain the trajectory and rate

of phenotypic evolution [3], whereas innovations that increase the evolutionary

flexibility within a structural system can enhance the potential for diversifica-

tion [4–6]. To date, however, the evolutionary impact of functional coupling

on the rate of phenotypic diversification has rarely been investigated.

Mouthbrooding in teleost fishes has evolved from an ancestral state of sub-

strate guarding, in which parents typically spawn and guard their eggs on a

sand substrate or stone substrate or in rock holes/crevices [7]. The evolutionary

transition to mouthbrooding offers an excellent opportunity to test the functional

coupling hypothesis because mouthbrooding introduces a novel function to the

cranium, which is originally adapted for feeding. Previous studies have found

that uni-parental mouthbrooding is often accompanied by sexual dimorphism

in craniofacial anatomy [8,9]. Additionally, a trade-off between reproduction

and feeding was reported in cardinalfishes [10] and cichlids [11], suggesting

that the functional coupling of feeding and brooding may impede morphological

diversification [12]. Although these studies indicate that mouthbrooding has con-

siderable influence on craniofacial diversification, studies that address the link

between mouthbrooding and morphological diversification while considering

the effect of shared ancestry are lacking.

The cichlid fishes of Lake Tanganyika are a textbook example of adaptive

radiation [13] and display remarkable variation in body morphology [14] and
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brood care [15]. The eco-morphological diversity of Lake

Tanganyika cichlids provides two separate contrasts that can

be used to test the functional coupling hypothesis. The first con-

trast is between mouthbrooders and substrate guarders. In

accordance with the functional coupling hypothesis [10], we

predict that substrate guarding cichlids will present a faster

rate of head shape evolution than mouthbrooding cichlids. The

second contrast is within mouthbrooding cichlids, where

males in species with bi-parental care perform both brooding

and feeding, while males in species with maternal care do not

brood the eggs or the offspring [15]. Therefore, we predict that

males in species with maternal care will have a faster rate of

head shape evolution than males in species with bi-parental care.
 ett.11:20141053
2. Material and methods
We used geometric morphometrics to quantify the head shape of

37 species of Lake Tanganyika cichlids. Details of morphological

data acquisition are described in [16]. Briefly, we digitized nine

homologous landmarks and seven semi-landmarks along the

edge of the forehead. Subsequently, generalized procrustes analysis

(GPA, [17]) was performed. GPA translates landmarks to the same

origin, scales landmarks to the same centroid size and rotates land-

marks around the centroid to minimize Euclidian distances among

specimens to obtain size-standardized average shapes of each

species. We first performed GPA for each species including both

sexes. Subsequently, the same procedure was repeated using data

for males (n ¼ 22) and females (n ¼ 26) of mouthbrooders to

obtain morphological measurements for a comparison between

bi-parental and maternal care species. Information on brooding

ecology and sex of the parental care provider was obtained from

the literature (electronic supplementary material, table S1).

All phylogenetic comparative analyses were performed using

the R statistical environment [18]. Our phylogenetic tree was a

subset of 500 trees drawn from a Bayesian phylogenetic reconstruc-

tion based on mitochondrial sequences downloaded from Genbank

[19]. We employed stochastic character mapping [20] to visualize

possible histories of character transition in brooding ecology and

the sex of the care provider using the PHYTOOLS package [21].

Using a transition matrix with unequal rates for ancestral state esti-

mation, we sampled 100 character histories per tree. In order to test

whether the rate of head shape evolution is different between

groups of cichlids with distinct brooding strategies, we performed

a simulation-based comparative analysis [22]. This analysis first

employs phylogenetic transformation [23] and the transformed

data are used to estimate a multivariate evolutionary rate par-

ameter (s2
mult:) based on the Euclidean distance between each

species and the origin of the phylogeny separately for the groups

under study. Subsequently, the ratio of the rate parameter between

groups is obtained (s2
mult:A=s

2
mult:B): According to our hypotheses,

the grouping was made based on either brooding strategy or sex

of the care provider. The observed ratio is then tested against the

simulated null distribution of the ratio of rate parameter under a

uniform evolutionary rate model. The number of simulations to

generate a null distribution of the ratio of the evolutionary rate par-

ameter was set to 999. A p-value of 0.05 (i.e. more than 95% of the

simulations show a lower ratio of the rate parameter than the obser-

vation) was employed as the cut-off point for statistical significance.

The comparison of evolutionary rate for high-dimensional data was

performed using the GEOMORPH package [24].
3. Results
The stochastic character mapping revealed that a transition

between mouthbrooding and substrate guarding occurred
once (figure 1a), while transitions between maternal and bi-

parental care occurred five times (figure 1b). We found that the

rate of head shape evolution was significantly faster in substrate

guarders (n ¼ 9, s2
sub:¼ 7:10� 10�4) than in mouthbrooders

(n¼ 28, s2
mou:¼ 4:97� 10�4, s2

sub:=s
2
mou: ¼ 1:43, p¼ 0.003).

Substrate guarders had more upward-pointing mouths with

straight forehead outlines (i.e. between maxilla and anterior

end of the dorsal fin) while mouthbrooders had more hori-

zontally pointed mouths with curved forehead outlines

(electronic supplementary material, figure S1). Within males

of mouthbrooders, the rate of head shape evolution was also

significantly faster in species with maternal care (n ¼ 13,

s2
mat:m:¼ 5:66� 10�4) than in species with bi-parental care

(n ¼ 9, s2
bi:m:
¼ 4:23� 10�4, s2

mat:m:=s
2
bi:m:¼ 1:34, p ¼ 0.03).

Males of maternal brooders had upward-pointing mouths

and dorsally positioned eyes, while males of bi-parental

brooders had horizontally pointed mouths and ventrally posi-

tioned eyes (electronic supplementary material, figure S2).

Finally, for females of mouthbrooders, the ratio of the

evolutionary rate parameter between species with mater-

nal care (n ¼ 16, s2
mat:f:¼ 5:55� 10�4) and bi-parental care

(n ¼ 10, s2
bi:f:¼ 5:19� 10�4) was not significantly different

(s2
mat:f:=s

2
bi:f:¼ 1:08, p ¼ 0.52).
4. Discussion
We demonstrate that mouthbrooding cichlids have a slower

rate of head shape evolution than substrate guarding cichlids,

in line with the functional coupling hypothesis [10,11]. Given

that substrate guarding is the ancestral state in this lineage

[7], this result suggests that the ecological transition to

mouthbrooding involved sacrificing the evolutionary versati-

lity of the craniofacial system. Our sex-specific analysis

within mouthbrooders further reinforces this conclusion.

We found that males of maternal care species have a faster

rate of head shape evolution than males in bi-parental care

species, while the difference was absent within females.

Together, our results suggest that the multi-functionality

associated with mouthbrooding constrains morphological

diversification in Lake Tanganyika cichlids.

The key selection pressure in forming the tremendous

variation in fish craniofacial diversity is trophic adaptation

([25,26], but see [27]). Given that the performance of both

mouthbrooding and feeding is associated with head mor-

phology [10,11], we speculate that mouthbrooding has a

profound influence on trophic adaptation. Specifically,

our result suggests that the decreased potential for mor-

phological diversification in mouthbrooding fish might

constrain trophic diversification. Furthermore, considering

the critical importance of eco-morphological niche specializ-

ation during the adaptive radiation of African cichlids [28],

our study indicates that mouthbrooding may constrain the

rate of speciation. Future studies investigating the rate of eco-

logical diversification and speciation in association with

mouthbrooding will provide additional tests of the general

implications of functional coupling on diversification

patterns and processes.
5. Conclusion
Our phylogenetic comparative analyses provide support for

the hypothesis that mouthbrooding operates as a constraint
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Figure 1. A molecular phylogeny of the Lake Tanganyika species used in our study with simulated character transitions in (a) the form of care (substrate guarding in
blue and mouthbrooding in orange) and (b) the sex of the care provider (bi-parental care in yellow and maternal care in purple). A consensus configuration (i.e. an
average shape) (a) for each species pooling both sexes and (b) for males (left) and females (right) is also provided.
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on craniofacial diversification [10,11]. More generally, our

results suggest that functional coupling may play an impor-

tant role in ecological diversification and speciation. The
transition to mouthbrooding has occurred also in nine other

families of fish [9]. Future investigation using these

additional groups of mouthbrooding fishes and a variety of
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ecological transitions associated with novel functions in

other vertebrate taxa will test the generality of the idea

that functional coupling is an important constraint on

vertebrate diversification.
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